xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 enum nvm_write_ops {
30 	WRITE_AND_AUTHENTICATE = 1,
31 	WRITE_ONLY = 2,
32 };
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_nvm *nvm = priv;
332 	struct tb_switch *sw = tb_to_switch(nvm->dev);
333 	int ret;
334 
335 	pm_runtime_get_sync(&sw->dev);
336 
337 	if (!mutex_trylock(&sw->tb->lock)) {
338 		ret = restart_syscall();
339 		goto out;
340 	}
341 
342 	ret = nvm_read(sw, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 out:
346 	pm_runtime_mark_last_busy(&sw->dev);
347 	pm_runtime_put_autosuspend(&sw->dev);
348 
349 	return ret;
350 }
351 
352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 			       size_t bytes)
354 {
355 	struct tb_nvm *nvm = priv;
356 	struct tb_switch *sw = tb_to_switch(nvm->dev);
357 	int ret;
358 
359 	if (!mutex_trylock(&sw->tb->lock))
360 		return restart_syscall();
361 
362 	/*
363 	 * Since writing the NVM image might require some special steps,
364 	 * for example when CSS headers are written, we cache the image
365 	 * locally here and handle the special cases when the user asks
366 	 * us to authenticate the image.
367 	 */
368 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 	mutex_unlock(&sw->tb->lock);
370 
371 	return ret;
372 }
373 
374 static int tb_switch_nvm_add(struct tb_switch *sw)
375 {
376 	struct tb_nvm *nvm;
377 	u32 val;
378 	int ret;
379 
380 	if (!nvm_readable(sw))
381 		return 0;
382 
383 	/*
384 	 * The NVM format of non-Intel hardware is not known so
385 	 * currently restrict NVM upgrade for Intel hardware. We may
386 	 * relax this in the future when we learn other NVM formats.
387 	 */
388 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 	    sw->config.vendor_id != 0x8087) {
390 		dev_info(&sw->dev,
391 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 			 sw->config.vendor_id);
393 		return 0;
394 	}
395 
396 	nvm = tb_nvm_alloc(&sw->dev);
397 	if (IS_ERR(nvm))
398 		return PTR_ERR(nvm);
399 
400 	/*
401 	 * If the switch is in safe-mode the only accessible portion of
402 	 * the NVM is the non-active one where userspace is expected to
403 	 * write new functional NVM.
404 	 */
405 	if (!sw->safe_mode) {
406 		u32 nvm_size, hdr_size;
407 
408 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 		if (ret)
410 			goto err_nvm;
411 
412 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 		nvm_size = (SZ_1M << (val & 7)) / 8;
414 		nvm_size = (nvm_size - hdr_size) / 2;
415 
416 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 		if (ret)
418 			goto err_nvm;
419 
420 		nvm->major = val >> 16;
421 		nvm->minor = val >> 8;
422 
423 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 		if (ret)
425 			goto err_nvm;
426 	}
427 
428 	if (!sw->no_nvm_upgrade) {
429 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 					    tb_switch_nvm_write);
431 		if (ret)
432 			goto err_nvm;
433 	}
434 
435 	sw->nvm = nvm;
436 	return 0;
437 
438 err_nvm:
439 	tb_nvm_free(nvm);
440 	return ret;
441 }
442 
443 static void tb_switch_nvm_remove(struct tb_switch *sw)
444 {
445 	struct tb_nvm *nvm;
446 
447 	nvm = sw->nvm;
448 	sw->nvm = NULL;
449 
450 	if (!nvm)
451 		return;
452 
453 	/* Remove authentication status in case the switch is unplugged */
454 	if (!nvm->authenticating)
455 		nvm_clear_auth_status(sw);
456 
457 	tb_nvm_free(nvm);
458 }
459 
460 /* port utility functions */
461 
462 static const char *tb_port_type(struct tb_regs_port_header *port)
463 {
464 	switch (port->type >> 16) {
465 	case 0:
466 		switch ((u8) port->type) {
467 		case 0:
468 			return "Inactive";
469 		case 1:
470 			return "Port";
471 		case 2:
472 			return "NHI";
473 		default:
474 			return "unknown";
475 		}
476 	case 0x2:
477 		return "Ethernet";
478 	case 0x8:
479 		return "SATA";
480 	case 0xe:
481 		return "DP/HDMI";
482 	case 0x10:
483 		return "PCIe";
484 	case 0x20:
485 		return "USB";
486 	default:
487 		return "unknown";
488 	}
489 }
490 
491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492 {
493 	tb_dbg(tb,
494 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 	       port->port_number, port->vendor_id, port->device_id,
496 	       port->revision, port->thunderbolt_version, tb_port_type(port),
497 	       port->type);
498 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
499 	       port->max_in_hop_id, port->max_out_hop_id);
500 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
501 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
502 }
503 
504 /**
505  * tb_port_state() - get connectedness state of a port
506  *
507  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508  *
509  * Return: Returns an enum tb_port_state on success or an error code on failure.
510  */
511 static int tb_port_state(struct tb_port *port)
512 {
513 	struct tb_cap_phy phy;
514 	int res;
515 	if (port->cap_phy == 0) {
516 		tb_port_WARN(port, "does not have a PHY\n");
517 		return -EINVAL;
518 	}
519 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 	if (res)
521 		return res;
522 	return phy.state;
523 }
524 
525 /**
526  * tb_wait_for_port() - wait for a port to become ready
527  *
528  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529  * wait_if_unplugged is set then we also wait if the port is in state
530  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531  * switch resume). Otherwise we only wait if a device is registered but the link
532  * has not yet been established.
533  *
534  * Return: Returns an error code on failure. Returns 0 if the port is not
535  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536  * if the port is connected and in state TB_PORT_UP.
537  */
538 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539 {
540 	int retries = 10;
541 	int state;
542 	if (!port->cap_phy) {
543 		tb_port_WARN(port, "does not have PHY\n");
544 		return -EINVAL;
545 	}
546 	if (tb_is_upstream_port(port)) {
547 		tb_port_WARN(port, "is the upstream port\n");
548 		return -EINVAL;
549 	}
550 
551 	while (retries--) {
552 		state = tb_port_state(port);
553 		if (state < 0)
554 			return state;
555 		if (state == TB_PORT_DISABLED) {
556 			tb_port_dbg(port, "is disabled (state: 0)\n");
557 			return 0;
558 		}
559 		if (state == TB_PORT_UNPLUGGED) {
560 			if (wait_if_unplugged) {
561 				/* used during resume */
562 				tb_port_dbg(port,
563 					    "is unplugged (state: 7), retrying...\n");
564 				msleep(100);
565 				continue;
566 			}
567 			tb_port_dbg(port, "is unplugged (state: 7)\n");
568 			return 0;
569 		}
570 		if (state == TB_PORT_UP) {
571 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 			return 1;
573 		}
574 
575 		/*
576 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 		 * time.
578 		 */
579 		tb_port_dbg(port,
580 			    "is connected, link is not up (state: %d), retrying...\n",
581 			    state);
582 		msleep(100);
583 	}
584 	tb_port_warn(port,
585 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 	return 0;
587 }
588 
589 /**
590  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591  *
592  * Change the number of NFC credits allocated to @port by @credits. To remove
593  * NFC credits pass a negative amount of credits.
594  *
595  * Return: Returns 0 on success or an error code on failure.
596  */
597 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598 {
599 	u32 nfc_credits;
600 
601 	if (credits == 0 || port->sw->is_unplugged)
602 		return 0;
603 
604 	/*
605 	 * USB4 restricts programming NFC buffers to lane adapters only
606 	 * so skip other ports.
607 	 */
608 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
609 		return 0;
610 
611 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
612 	nfc_credits += credits;
613 
614 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
615 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
616 
617 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
618 	port->config.nfc_credits |= nfc_credits;
619 
620 	return tb_port_write(port, &port->config.nfc_credits,
621 			     TB_CFG_PORT, ADP_CS_4, 1);
622 }
623 
624 /**
625  * tb_port_set_initial_credits() - Set initial port link credits allocated
626  * @port: Port to set the initial credits
627  * @credits: Number of credits to to allocate
628  *
629  * Set initial credits value to be used for ingress shared buffering.
630  */
631 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
632 {
633 	u32 data;
634 	int ret;
635 
636 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637 	if (ret)
638 		return ret;
639 
640 	data &= ~ADP_CS_5_LCA_MASK;
641 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
642 
643 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
644 }
645 
646 /**
647  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648  *
649  * Return: Returns 0 on success or an error code on failure.
650  */
651 int tb_port_clear_counter(struct tb_port *port, int counter)
652 {
653 	u32 zero[3] = { 0, 0, 0 };
654 	tb_port_dbg(port, "clearing counter %d\n", counter);
655 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
656 }
657 
658 /**
659  * tb_port_unlock() - Unlock downstream port
660  * @port: Port to unlock
661  *
662  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
663  * downstream router accessible for CM.
664  */
665 int tb_port_unlock(struct tb_port *port)
666 {
667 	if (tb_switch_is_icm(port->sw))
668 		return 0;
669 	if (!tb_port_is_null(port))
670 		return -EINVAL;
671 	if (tb_switch_is_usb4(port->sw))
672 		return usb4_port_unlock(port);
673 	return 0;
674 }
675 
676 static int __tb_port_enable(struct tb_port *port, bool enable)
677 {
678 	int ret;
679 	u32 phy;
680 
681 	if (!tb_port_is_null(port))
682 		return -EINVAL;
683 
684 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
685 			   port->cap_phy + LANE_ADP_CS_1, 1);
686 	if (ret)
687 		return ret;
688 
689 	if (enable)
690 		phy &= ~LANE_ADP_CS_1_LD;
691 	else
692 		phy |= LANE_ADP_CS_1_LD;
693 
694 	return tb_port_write(port, &phy, TB_CFG_PORT,
695 			     port->cap_phy + LANE_ADP_CS_1, 1);
696 }
697 
698 /**
699  * tb_port_enable() - Enable lane adapter
700  * @port: Port to enable (can be %NULL)
701  *
702  * This is used for lane 0 and 1 adapters to enable it.
703  */
704 int tb_port_enable(struct tb_port *port)
705 {
706 	return __tb_port_enable(port, true);
707 }
708 
709 /**
710  * tb_port_disable() - Disable lane adapter
711  * @port: Port to disable (can be %NULL)
712  *
713  * This is used for lane 0 and 1 adapters to disable it.
714  */
715 int tb_port_disable(struct tb_port *port)
716 {
717 	return __tb_port_enable(port, false);
718 }
719 
720 /**
721  * tb_init_port() - initialize a port
722  *
723  * This is a helper method for tb_switch_alloc. Does not check or initialize
724  * any downstream switches.
725  *
726  * Return: Returns 0 on success or an error code on failure.
727  */
728 static int tb_init_port(struct tb_port *port)
729 {
730 	int res;
731 	int cap;
732 
733 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
734 	if (res) {
735 		if (res == -ENODEV) {
736 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
737 			       port->port);
738 			port->disabled = true;
739 			return 0;
740 		}
741 		return res;
742 	}
743 
744 	/* Port 0 is the switch itself and has no PHY. */
745 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
746 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
747 
748 		if (cap > 0)
749 			port->cap_phy = cap;
750 		else
751 			tb_port_WARN(port, "non switch port without a PHY\n");
752 
753 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
754 		if (cap > 0)
755 			port->cap_usb4 = cap;
756 	} else if (port->port != 0) {
757 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
758 		if (cap > 0)
759 			port->cap_adap = cap;
760 	}
761 
762 	tb_dump_port(port->sw->tb, &port->config);
763 
764 	/* Control port does not need HopID allocation */
765 	if (port->port) {
766 		ida_init(&port->in_hopids);
767 		ida_init(&port->out_hopids);
768 	}
769 
770 	INIT_LIST_HEAD(&port->list);
771 	return 0;
772 
773 }
774 
775 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
776 			       int max_hopid)
777 {
778 	int port_max_hopid;
779 	struct ida *ida;
780 
781 	if (in) {
782 		port_max_hopid = port->config.max_in_hop_id;
783 		ida = &port->in_hopids;
784 	} else {
785 		port_max_hopid = port->config.max_out_hop_id;
786 		ida = &port->out_hopids;
787 	}
788 
789 	/*
790 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
791 	 * reserved.
792 	 */
793 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
794 		min_hopid = TB_PATH_MIN_HOPID;
795 
796 	if (max_hopid < 0 || max_hopid > port_max_hopid)
797 		max_hopid = port_max_hopid;
798 
799 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
800 }
801 
802 /**
803  * tb_port_alloc_in_hopid() - Allocate input HopID from port
804  * @port: Port to allocate HopID for
805  * @min_hopid: Minimum acceptable input HopID
806  * @max_hopid: Maximum acceptable input HopID
807  *
808  * Return: HopID between @min_hopid and @max_hopid or negative errno in
809  * case of error.
810  */
811 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
812 {
813 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
814 }
815 
816 /**
817  * tb_port_alloc_out_hopid() - Allocate output HopID from port
818  * @port: Port to allocate HopID for
819  * @min_hopid: Minimum acceptable output HopID
820  * @max_hopid: Maximum acceptable output HopID
821  *
822  * Return: HopID between @min_hopid and @max_hopid or negative errno in
823  * case of error.
824  */
825 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
826 {
827 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
828 }
829 
830 /**
831  * tb_port_release_in_hopid() - Release allocated input HopID from port
832  * @port: Port whose HopID to release
833  * @hopid: HopID to release
834  */
835 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
836 {
837 	ida_simple_remove(&port->in_hopids, hopid);
838 }
839 
840 /**
841  * tb_port_release_out_hopid() - Release allocated output HopID from port
842  * @port: Port whose HopID to release
843  * @hopid: HopID to release
844  */
845 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
846 {
847 	ida_simple_remove(&port->out_hopids, hopid);
848 }
849 
850 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
851 					  const struct tb_switch *sw)
852 {
853 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
854 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
855 }
856 
857 /**
858  * tb_next_port_on_path() - Return next port for given port on a path
859  * @start: Start port of the walk
860  * @end: End port of the walk
861  * @prev: Previous port (%NULL if this is the first)
862  *
863  * This function can be used to walk from one port to another if they
864  * are connected through zero or more switches. If the @prev is dual
865  * link port, the function follows that link and returns another end on
866  * that same link.
867  *
868  * If the @end port has been reached, return %NULL.
869  *
870  * Domain tb->lock must be held when this function is called.
871  */
872 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
873 				     struct tb_port *prev)
874 {
875 	struct tb_port *next;
876 
877 	if (!prev)
878 		return start;
879 
880 	if (prev->sw == end->sw) {
881 		if (prev == end)
882 			return NULL;
883 		return end;
884 	}
885 
886 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
887 		next = tb_port_at(tb_route(end->sw), prev->sw);
888 		/* Walk down the topology if next == prev */
889 		if (prev->remote &&
890 		    (next == prev || next->dual_link_port == prev))
891 			next = prev->remote;
892 	} else {
893 		if (tb_is_upstream_port(prev)) {
894 			next = prev->remote;
895 		} else {
896 			next = tb_upstream_port(prev->sw);
897 			/*
898 			 * Keep the same link if prev and next are both
899 			 * dual link ports.
900 			 */
901 			if (next->dual_link_port &&
902 			    next->link_nr != prev->link_nr) {
903 				next = next->dual_link_port;
904 			}
905 		}
906 	}
907 
908 	return next != prev ? next : NULL;
909 }
910 
911 /**
912  * tb_port_get_link_speed() - Get current link speed
913  * @port: Port to check (USB4 or CIO)
914  *
915  * Returns link speed in Gb/s or negative errno in case of failure.
916  */
917 int tb_port_get_link_speed(struct tb_port *port)
918 {
919 	u32 val, speed;
920 	int ret;
921 
922 	if (!port->cap_phy)
923 		return -EINVAL;
924 
925 	ret = tb_port_read(port, &val, TB_CFG_PORT,
926 			   port->cap_phy + LANE_ADP_CS_1, 1);
927 	if (ret)
928 		return ret;
929 
930 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
931 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
932 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
933 }
934 
935 static int tb_port_get_link_width(struct tb_port *port)
936 {
937 	u32 val;
938 	int ret;
939 
940 	if (!port->cap_phy)
941 		return -EINVAL;
942 
943 	ret = tb_port_read(port, &val, TB_CFG_PORT,
944 			   port->cap_phy + LANE_ADP_CS_1, 1);
945 	if (ret)
946 		return ret;
947 
948 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
949 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
950 }
951 
952 static bool tb_port_is_width_supported(struct tb_port *port, int width)
953 {
954 	u32 phy, widths;
955 	int ret;
956 
957 	if (!port->cap_phy)
958 		return false;
959 
960 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
961 			   port->cap_phy + LANE_ADP_CS_0, 1);
962 	if (ret)
963 		return false;
964 
965 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
966 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
967 
968 	return !!(widths & width);
969 }
970 
971 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
972 {
973 	u32 val;
974 	int ret;
975 
976 	if (!port->cap_phy)
977 		return -EINVAL;
978 
979 	ret = tb_port_read(port, &val, TB_CFG_PORT,
980 			   port->cap_phy + LANE_ADP_CS_1, 1);
981 	if (ret)
982 		return ret;
983 
984 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
985 	switch (width) {
986 	case 1:
987 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
988 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
989 		break;
990 	case 2:
991 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
992 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
993 		break;
994 	default:
995 		return -EINVAL;
996 	}
997 
998 	val |= LANE_ADP_CS_1_LB;
999 
1000 	return tb_port_write(port, &val, TB_CFG_PORT,
1001 			     port->cap_phy + LANE_ADP_CS_1, 1);
1002 }
1003 
1004 static int tb_port_lane_bonding_enable(struct tb_port *port)
1005 {
1006 	int ret;
1007 
1008 	/*
1009 	 * Enable lane bonding for both links if not already enabled by
1010 	 * for example the boot firmware.
1011 	 */
1012 	ret = tb_port_get_link_width(port);
1013 	if (ret == 1) {
1014 		ret = tb_port_set_link_width(port, 2);
1015 		if (ret)
1016 			return ret;
1017 	}
1018 
1019 	ret = tb_port_get_link_width(port->dual_link_port);
1020 	if (ret == 1) {
1021 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1022 		if (ret) {
1023 			tb_port_set_link_width(port, 1);
1024 			return ret;
1025 		}
1026 	}
1027 
1028 	port->bonded = true;
1029 	port->dual_link_port->bonded = true;
1030 
1031 	return 0;
1032 }
1033 
1034 static void tb_port_lane_bonding_disable(struct tb_port *port)
1035 {
1036 	port->dual_link_port->bonded = false;
1037 	port->bonded = false;
1038 
1039 	tb_port_set_link_width(port->dual_link_port, 1);
1040 	tb_port_set_link_width(port, 1);
1041 }
1042 
1043 /**
1044  * tb_port_is_enabled() - Is the adapter port enabled
1045  * @port: Port to check
1046  */
1047 bool tb_port_is_enabled(struct tb_port *port)
1048 {
1049 	switch (port->config.type) {
1050 	case TB_TYPE_PCIE_UP:
1051 	case TB_TYPE_PCIE_DOWN:
1052 		return tb_pci_port_is_enabled(port);
1053 
1054 	case TB_TYPE_DP_HDMI_IN:
1055 	case TB_TYPE_DP_HDMI_OUT:
1056 		return tb_dp_port_is_enabled(port);
1057 
1058 	case TB_TYPE_USB3_UP:
1059 	case TB_TYPE_USB3_DOWN:
1060 		return tb_usb3_port_is_enabled(port);
1061 
1062 	default:
1063 		return false;
1064 	}
1065 }
1066 
1067 /**
1068  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1069  * @port: USB3 adapter port to check
1070  */
1071 bool tb_usb3_port_is_enabled(struct tb_port *port)
1072 {
1073 	u32 data;
1074 
1075 	if (tb_port_read(port, &data, TB_CFG_PORT,
1076 			 port->cap_adap + ADP_USB3_CS_0, 1))
1077 		return false;
1078 
1079 	return !!(data & ADP_USB3_CS_0_PE);
1080 }
1081 
1082 /**
1083  * tb_usb3_port_enable() - Enable USB3 adapter port
1084  * @port: USB3 adapter port to enable
1085  * @enable: Enable/disable the USB3 adapter
1086  */
1087 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1088 {
1089 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1090 			  : ADP_USB3_CS_0_V;
1091 
1092 	if (!port->cap_adap)
1093 		return -ENXIO;
1094 	return tb_port_write(port, &word, TB_CFG_PORT,
1095 			     port->cap_adap + ADP_USB3_CS_0, 1);
1096 }
1097 
1098 /**
1099  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1100  * @port: PCIe port to check
1101  */
1102 bool tb_pci_port_is_enabled(struct tb_port *port)
1103 {
1104 	u32 data;
1105 
1106 	if (tb_port_read(port, &data, TB_CFG_PORT,
1107 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1108 		return false;
1109 
1110 	return !!(data & ADP_PCIE_CS_0_PE);
1111 }
1112 
1113 /**
1114  * tb_pci_port_enable() - Enable PCIe adapter port
1115  * @port: PCIe port to enable
1116  * @enable: Enable/disable the PCIe adapter
1117  */
1118 int tb_pci_port_enable(struct tb_port *port, bool enable)
1119 {
1120 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1121 	if (!port->cap_adap)
1122 		return -ENXIO;
1123 	return tb_port_write(port, &word, TB_CFG_PORT,
1124 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1125 }
1126 
1127 /**
1128  * tb_dp_port_hpd_is_active() - Is HPD already active
1129  * @port: DP out port to check
1130  *
1131  * Checks if the DP OUT adapter port has HDP bit already set.
1132  */
1133 int tb_dp_port_hpd_is_active(struct tb_port *port)
1134 {
1135 	u32 data;
1136 	int ret;
1137 
1138 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1139 			   port->cap_adap + ADP_DP_CS_2, 1);
1140 	if (ret)
1141 		return ret;
1142 
1143 	return !!(data & ADP_DP_CS_2_HDP);
1144 }
1145 
1146 /**
1147  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1148  * @port: Port to clear HPD
1149  *
1150  * If the DP IN port has HDP set, this function can be used to clear it.
1151  */
1152 int tb_dp_port_hpd_clear(struct tb_port *port)
1153 {
1154 	u32 data;
1155 	int ret;
1156 
1157 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1158 			   port->cap_adap + ADP_DP_CS_3, 1);
1159 	if (ret)
1160 		return ret;
1161 
1162 	data |= ADP_DP_CS_3_HDPC;
1163 	return tb_port_write(port, &data, TB_CFG_PORT,
1164 			     port->cap_adap + ADP_DP_CS_3, 1);
1165 }
1166 
1167 /**
1168  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1169  * @port: DP IN/OUT port to set hops
1170  * @video: Video Hop ID
1171  * @aux_tx: AUX TX Hop ID
1172  * @aux_rx: AUX RX Hop ID
1173  *
1174  * Programs specified Hop IDs for DP IN/OUT port.
1175  */
1176 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1177 			unsigned int aux_tx, unsigned int aux_rx)
1178 {
1179 	u32 data[2];
1180 	int ret;
1181 
1182 	ret = tb_port_read(port, data, TB_CFG_PORT,
1183 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1184 	if (ret)
1185 		return ret;
1186 
1187 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1188 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1189 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1190 
1191 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1192 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1193 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1194 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1195 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1196 
1197 	return tb_port_write(port, data, TB_CFG_PORT,
1198 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1199 }
1200 
1201 /**
1202  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1203  * @port: DP adapter port to check
1204  */
1205 bool tb_dp_port_is_enabled(struct tb_port *port)
1206 {
1207 	u32 data[2];
1208 
1209 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1210 			 ARRAY_SIZE(data)))
1211 		return false;
1212 
1213 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1214 }
1215 
1216 /**
1217  * tb_dp_port_enable() - Enables/disables DP paths of a port
1218  * @port: DP IN/OUT port
1219  * @enable: Enable/disable DP path
1220  *
1221  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1222  * calling this function.
1223  */
1224 int tb_dp_port_enable(struct tb_port *port, bool enable)
1225 {
1226 	u32 data[2];
1227 	int ret;
1228 
1229 	ret = tb_port_read(port, data, TB_CFG_PORT,
1230 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1231 	if (ret)
1232 		return ret;
1233 
1234 	if (enable)
1235 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1236 	else
1237 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1238 
1239 	return tb_port_write(port, data, TB_CFG_PORT,
1240 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1241 }
1242 
1243 /* switch utility functions */
1244 
1245 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1246 {
1247 	switch (sw->generation) {
1248 	case 1:
1249 		return "Thunderbolt 1";
1250 	case 2:
1251 		return "Thunderbolt 2";
1252 	case 3:
1253 		return "Thunderbolt 3";
1254 	case 4:
1255 		return "USB4";
1256 	default:
1257 		return "Unknown";
1258 	}
1259 }
1260 
1261 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1262 {
1263 	const struct tb_regs_switch_header *regs = &sw->config;
1264 
1265 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1266 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1267 	       regs->revision, regs->thunderbolt_version);
1268 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1269 	tb_dbg(tb, "  Config:\n");
1270 	tb_dbg(tb,
1271 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1272 	       regs->upstream_port_number, regs->depth,
1273 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1274 	       regs->enabled, regs->plug_events_delay);
1275 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1276 	       regs->__unknown1, regs->__unknown4);
1277 }
1278 
1279 /**
1280  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1281  * @sw: Switch to reset
1282  *
1283  * Return: Returns 0 on success or an error code on failure.
1284  */
1285 int tb_switch_reset(struct tb_switch *sw)
1286 {
1287 	struct tb_cfg_result res;
1288 
1289 	if (sw->generation > 1)
1290 		return 0;
1291 
1292 	tb_sw_dbg(sw, "resetting switch\n");
1293 
1294 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1295 			      TB_CFG_SWITCH, 2, 2);
1296 	if (res.err)
1297 		return res.err;
1298 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
1299 	if (res.err > 0)
1300 		return -EIO;
1301 	return res.err;
1302 }
1303 
1304 /**
1305  * tb_plug_events_active() - enable/disable plug events on a switch
1306  *
1307  * Also configures a sane plug_events_delay of 255ms.
1308  *
1309  * Return: Returns 0 on success or an error code on failure.
1310  */
1311 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1312 {
1313 	u32 data;
1314 	int res;
1315 
1316 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1317 		return 0;
1318 
1319 	sw->config.plug_events_delay = 0xff;
1320 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1321 	if (res)
1322 		return res;
1323 
1324 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1325 	if (res)
1326 		return res;
1327 
1328 	if (active) {
1329 		data = data & 0xFFFFFF83;
1330 		switch (sw->config.device_id) {
1331 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1332 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1333 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1334 			break;
1335 		default:
1336 			data |= 4;
1337 		}
1338 	} else {
1339 		data = data | 0x7c;
1340 	}
1341 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1342 			   sw->cap_plug_events + 1, 1);
1343 }
1344 
1345 static ssize_t authorized_show(struct device *dev,
1346 			       struct device_attribute *attr,
1347 			       char *buf)
1348 {
1349 	struct tb_switch *sw = tb_to_switch(dev);
1350 
1351 	return sprintf(buf, "%u\n", sw->authorized);
1352 }
1353 
1354 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1355 {
1356 	int ret = -EINVAL;
1357 
1358 	if (!mutex_trylock(&sw->tb->lock))
1359 		return restart_syscall();
1360 
1361 	if (sw->authorized)
1362 		goto unlock;
1363 
1364 	switch (val) {
1365 	/* Approve switch */
1366 	case 1:
1367 		if (sw->key)
1368 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1369 		else
1370 			ret = tb_domain_approve_switch(sw->tb, sw);
1371 		break;
1372 
1373 	/* Challenge switch */
1374 	case 2:
1375 		if (sw->key)
1376 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1377 		break;
1378 
1379 	default:
1380 		break;
1381 	}
1382 
1383 	if (!ret) {
1384 		sw->authorized = val;
1385 		/* Notify status change to the userspace */
1386 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1387 	}
1388 
1389 unlock:
1390 	mutex_unlock(&sw->tb->lock);
1391 	return ret;
1392 }
1393 
1394 static ssize_t authorized_store(struct device *dev,
1395 				struct device_attribute *attr,
1396 				const char *buf, size_t count)
1397 {
1398 	struct tb_switch *sw = tb_to_switch(dev);
1399 	unsigned int val;
1400 	ssize_t ret;
1401 
1402 	ret = kstrtouint(buf, 0, &val);
1403 	if (ret)
1404 		return ret;
1405 	if (val > 2)
1406 		return -EINVAL;
1407 
1408 	pm_runtime_get_sync(&sw->dev);
1409 	ret = tb_switch_set_authorized(sw, val);
1410 	pm_runtime_mark_last_busy(&sw->dev);
1411 	pm_runtime_put_autosuspend(&sw->dev);
1412 
1413 	return ret ? ret : count;
1414 }
1415 static DEVICE_ATTR_RW(authorized);
1416 
1417 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1418 			 char *buf)
1419 {
1420 	struct tb_switch *sw = tb_to_switch(dev);
1421 
1422 	return sprintf(buf, "%u\n", sw->boot);
1423 }
1424 static DEVICE_ATTR_RO(boot);
1425 
1426 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1427 			   char *buf)
1428 {
1429 	struct tb_switch *sw = tb_to_switch(dev);
1430 
1431 	return sprintf(buf, "%#x\n", sw->device);
1432 }
1433 static DEVICE_ATTR_RO(device);
1434 
1435 static ssize_t
1436 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1437 {
1438 	struct tb_switch *sw = tb_to_switch(dev);
1439 
1440 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1441 }
1442 static DEVICE_ATTR_RO(device_name);
1443 
1444 static ssize_t
1445 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1446 {
1447 	struct tb_switch *sw = tb_to_switch(dev);
1448 
1449 	return sprintf(buf, "%u\n", sw->generation);
1450 }
1451 static DEVICE_ATTR_RO(generation);
1452 
1453 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1454 			char *buf)
1455 {
1456 	struct tb_switch *sw = tb_to_switch(dev);
1457 	ssize_t ret;
1458 
1459 	if (!mutex_trylock(&sw->tb->lock))
1460 		return restart_syscall();
1461 
1462 	if (sw->key)
1463 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1464 	else
1465 		ret = sprintf(buf, "\n");
1466 
1467 	mutex_unlock(&sw->tb->lock);
1468 	return ret;
1469 }
1470 
1471 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1472 			 const char *buf, size_t count)
1473 {
1474 	struct tb_switch *sw = tb_to_switch(dev);
1475 	u8 key[TB_SWITCH_KEY_SIZE];
1476 	ssize_t ret = count;
1477 	bool clear = false;
1478 
1479 	if (!strcmp(buf, "\n"))
1480 		clear = true;
1481 	else if (hex2bin(key, buf, sizeof(key)))
1482 		return -EINVAL;
1483 
1484 	if (!mutex_trylock(&sw->tb->lock))
1485 		return restart_syscall();
1486 
1487 	if (sw->authorized) {
1488 		ret = -EBUSY;
1489 	} else {
1490 		kfree(sw->key);
1491 		if (clear) {
1492 			sw->key = NULL;
1493 		} else {
1494 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1495 			if (!sw->key)
1496 				ret = -ENOMEM;
1497 		}
1498 	}
1499 
1500 	mutex_unlock(&sw->tb->lock);
1501 	return ret;
1502 }
1503 static DEVICE_ATTR(key, 0600, key_show, key_store);
1504 
1505 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1506 			  char *buf)
1507 {
1508 	struct tb_switch *sw = tb_to_switch(dev);
1509 
1510 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1511 }
1512 
1513 /*
1514  * Currently all lanes must run at the same speed but we expose here
1515  * both directions to allow possible asymmetric links in the future.
1516  */
1517 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1518 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1519 
1520 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1521 			  char *buf)
1522 {
1523 	struct tb_switch *sw = tb_to_switch(dev);
1524 
1525 	return sprintf(buf, "%u\n", sw->link_width);
1526 }
1527 
1528 /*
1529  * Currently link has same amount of lanes both directions (1 or 2) but
1530  * expose them separately to allow possible asymmetric links in the future.
1531  */
1532 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1533 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1534 
1535 static ssize_t nvm_authenticate_show(struct device *dev,
1536 	struct device_attribute *attr, char *buf)
1537 {
1538 	struct tb_switch *sw = tb_to_switch(dev);
1539 	u32 status;
1540 
1541 	nvm_get_auth_status(sw, &status);
1542 	return sprintf(buf, "%#x\n", status);
1543 }
1544 
1545 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1546 				      bool disconnect)
1547 {
1548 	struct tb_switch *sw = tb_to_switch(dev);
1549 	int val;
1550 	int ret;
1551 
1552 	pm_runtime_get_sync(&sw->dev);
1553 
1554 	if (!mutex_trylock(&sw->tb->lock)) {
1555 		ret = restart_syscall();
1556 		goto exit_rpm;
1557 	}
1558 
1559 	/* If NVMem devices are not yet added */
1560 	if (!sw->nvm) {
1561 		ret = -EAGAIN;
1562 		goto exit_unlock;
1563 	}
1564 
1565 	ret = kstrtoint(buf, 10, &val);
1566 	if (ret)
1567 		goto exit_unlock;
1568 
1569 	/* Always clear the authentication status */
1570 	nvm_clear_auth_status(sw);
1571 
1572 	if (val > 0) {
1573 		if (!sw->nvm->flushed) {
1574 			if (!sw->nvm->buf) {
1575 				ret = -EINVAL;
1576 				goto exit_unlock;
1577 			}
1578 
1579 			ret = nvm_validate_and_write(sw);
1580 			if (ret || val == WRITE_ONLY)
1581 				goto exit_unlock;
1582 		}
1583 		if (val == WRITE_AND_AUTHENTICATE) {
1584 			if (disconnect) {
1585 				ret = tb_lc_force_power(sw);
1586 			} else {
1587 				sw->nvm->authenticating = true;
1588 				ret = nvm_authenticate(sw);
1589 			}
1590 		}
1591 	}
1592 
1593 exit_unlock:
1594 	mutex_unlock(&sw->tb->lock);
1595 exit_rpm:
1596 	pm_runtime_mark_last_busy(&sw->dev);
1597 	pm_runtime_put_autosuspend(&sw->dev);
1598 
1599 	return ret;
1600 }
1601 
1602 static ssize_t nvm_authenticate_store(struct device *dev,
1603 	struct device_attribute *attr, const char *buf, size_t count)
1604 {
1605 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1606 	if (ret)
1607 		return ret;
1608 	return count;
1609 }
1610 static DEVICE_ATTR_RW(nvm_authenticate);
1611 
1612 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1613 	struct device_attribute *attr, char *buf)
1614 {
1615 	return nvm_authenticate_show(dev, attr, buf);
1616 }
1617 
1618 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1619 	struct device_attribute *attr, const char *buf, size_t count)
1620 {
1621 	int ret;
1622 
1623 	ret = nvm_authenticate_sysfs(dev, buf, true);
1624 	return ret ? ret : count;
1625 }
1626 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1627 
1628 static ssize_t nvm_version_show(struct device *dev,
1629 				struct device_attribute *attr, char *buf)
1630 {
1631 	struct tb_switch *sw = tb_to_switch(dev);
1632 	int ret;
1633 
1634 	if (!mutex_trylock(&sw->tb->lock))
1635 		return restart_syscall();
1636 
1637 	if (sw->safe_mode)
1638 		ret = -ENODATA;
1639 	else if (!sw->nvm)
1640 		ret = -EAGAIN;
1641 	else
1642 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1643 
1644 	mutex_unlock(&sw->tb->lock);
1645 
1646 	return ret;
1647 }
1648 static DEVICE_ATTR_RO(nvm_version);
1649 
1650 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1651 			   char *buf)
1652 {
1653 	struct tb_switch *sw = tb_to_switch(dev);
1654 
1655 	return sprintf(buf, "%#x\n", sw->vendor);
1656 }
1657 static DEVICE_ATTR_RO(vendor);
1658 
1659 static ssize_t
1660 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1661 {
1662 	struct tb_switch *sw = tb_to_switch(dev);
1663 
1664 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1665 }
1666 static DEVICE_ATTR_RO(vendor_name);
1667 
1668 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1669 			      char *buf)
1670 {
1671 	struct tb_switch *sw = tb_to_switch(dev);
1672 
1673 	return sprintf(buf, "%pUb\n", sw->uuid);
1674 }
1675 static DEVICE_ATTR_RO(unique_id);
1676 
1677 static struct attribute *switch_attrs[] = {
1678 	&dev_attr_authorized.attr,
1679 	&dev_attr_boot.attr,
1680 	&dev_attr_device.attr,
1681 	&dev_attr_device_name.attr,
1682 	&dev_attr_generation.attr,
1683 	&dev_attr_key.attr,
1684 	&dev_attr_nvm_authenticate.attr,
1685 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1686 	&dev_attr_nvm_version.attr,
1687 	&dev_attr_rx_speed.attr,
1688 	&dev_attr_rx_lanes.attr,
1689 	&dev_attr_tx_speed.attr,
1690 	&dev_attr_tx_lanes.attr,
1691 	&dev_attr_vendor.attr,
1692 	&dev_attr_vendor_name.attr,
1693 	&dev_attr_unique_id.attr,
1694 	NULL,
1695 };
1696 
1697 static umode_t switch_attr_is_visible(struct kobject *kobj,
1698 				      struct attribute *attr, int n)
1699 {
1700 	struct device *dev = kobj_to_dev(kobj);
1701 	struct tb_switch *sw = tb_to_switch(dev);
1702 
1703 	if (attr == &dev_attr_device.attr) {
1704 		if (!sw->device)
1705 			return 0;
1706 	} else if (attr == &dev_attr_device_name.attr) {
1707 		if (!sw->device_name)
1708 			return 0;
1709 	} else if (attr == &dev_attr_vendor.attr)  {
1710 		if (!sw->vendor)
1711 			return 0;
1712 	} else if (attr == &dev_attr_vendor_name.attr)  {
1713 		if (!sw->vendor_name)
1714 			return 0;
1715 	} else if (attr == &dev_attr_key.attr) {
1716 		if (tb_route(sw) &&
1717 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1718 		    sw->security_level == TB_SECURITY_SECURE)
1719 			return attr->mode;
1720 		return 0;
1721 	} else if (attr == &dev_attr_rx_speed.attr ||
1722 		   attr == &dev_attr_rx_lanes.attr ||
1723 		   attr == &dev_attr_tx_speed.attr ||
1724 		   attr == &dev_attr_tx_lanes.attr) {
1725 		if (tb_route(sw))
1726 			return attr->mode;
1727 		return 0;
1728 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1729 		if (nvm_upgradeable(sw))
1730 			return attr->mode;
1731 		return 0;
1732 	} else if (attr == &dev_attr_nvm_version.attr) {
1733 		if (nvm_readable(sw))
1734 			return attr->mode;
1735 		return 0;
1736 	} else if (attr == &dev_attr_boot.attr) {
1737 		if (tb_route(sw))
1738 			return attr->mode;
1739 		return 0;
1740 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1741 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1742 			return attr->mode;
1743 		return 0;
1744 	}
1745 
1746 	return sw->safe_mode ? 0 : attr->mode;
1747 }
1748 
1749 static struct attribute_group switch_group = {
1750 	.is_visible = switch_attr_is_visible,
1751 	.attrs = switch_attrs,
1752 };
1753 
1754 static const struct attribute_group *switch_groups[] = {
1755 	&switch_group,
1756 	NULL,
1757 };
1758 
1759 static void tb_switch_release(struct device *dev)
1760 {
1761 	struct tb_switch *sw = tb_to_switch(dev);
1762 	struct tb_port *port;
1763 
1764 	dma_port_free(sw->dma_port);
1765 
1766 	tb_switch_for_each_port(sw, port) {
1767 		if (!port->disabled) {
1768 			ida_destroy(&port->in_hopids);
1769 			ida_destroy(&port->out_hopids);
1770 		}
1771 	}
1772 
1773 	kfree(sw->uuid);
1774 	kfree(sw->device_name);
1775 	kfree(sw->vendor_name);
1776 	kfree(sw->ports);
1777 	kfree(sw->drom);
1778 	kfree(sw->key);
1779 	kfree(sw);
1780 }
1781 
1782 /*
1783  * Currently only need to provide the callbacks. Everything else is handled
1784  * in the connection manager.
1785  */
1786 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1787 {
1788 	struct tb_switch *sw = tb_to_switch(dev);
1789 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1790 
1791 	if (cm_ops->runtime_suspend_switch)
1792 		return cm_ops->runtime_suspend_switch(sw);
1793 
1794 	return 0;
1795 }
1796 
1797 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1798 {
1799 	struct tb_switch *sw = tb_to_switch(dev);
1800 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1801 
1802 	if (cm_ops->runtime_resume_switch)
1803 		return cm_ops->runtime_resume_switch(sw);
1804 	return 0;
1805 }
1806 
1807 static const struct dev_pm_ops tb_switch_pm_ops = {
1808 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1809 			   NULL)
1810 };
1811 
1812 struct device_type tb_switch_type = {
1813 	.name = "thunderbolt_device",
1814 	.release = tb_switch_release,
1815 	.pm = &tb_switch_pm_ops,
1816 };
1817 
1818 static int tb_switch_get_generation(struct tb_switch *sw)
1819 {
1820 	switch (sw->config.device_id) {
1821 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1822 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1823 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1824 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1825 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1826 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1827 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1828 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1829 		return 1;
1830 
1831 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1832 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1833 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1834 		return 2;
1835 
1836 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1837 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1838 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1839 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1840 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1841 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1842 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1843 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1844 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1845 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1846 		return 3;
1847 
1848 	default:
1849 		if (tb_switch_is_usb4(sw))
1850 			return 4;
1851 
1852 		/*
1853 		 * For unknown switches assume generation to be 1 to be
1854 		 * on the safe side.
1855 		 */
1856 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1857 			   sw->config.device_id);
1858 		return 1;
1859 	}
1860 }
1861 
1862 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1863 {
1864 	int max_depth;
1865 
1866 	if (tb_switch_is_usb4(sw) ||
1867 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1868 		max_depth = USB4_SWITCH_MAX_DEPTH;
1869 	else
1870 		max_depth = TB_SWITCH_MAX_DEPTH;
1871 
1872 	return depth > max_depth;
1873 }
1874 
1875 /**
1876  * tb_switch_alloc() - allocate a switch
1877  * @tb: Pointer to the owning domain
1878  * @parent: Parent device for this switch
1879  * @route: Route string for this switch
1880  *
1881  * Allocates and initializes a switch. Will not upload configuration to
1882  * the switch. For that you need to call tb_switch_configure()
1883  * separately. The returned switch should be released by calling
1884  * tb_switch_put().
1885  *
1886  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1887  * failure.
1888  */
1889 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1890 				  u64 route)
1891 {
1892 	struct tb_switch *sw;
1893 	int upstream_port;
1894 	int i, ret, depth;
1895 
1896 	/* Unlock the downstream port so we can access the switch below */
1897 	if (route) {
1898 		struct tb_switch *parent_sw = tb_to_switch(parent);
1899 		struct tb_port *down;
1900 
1901 		down = tb_port_at(route, parent_sw);
1902 		tb_port_unlock(down);
1903 	}
1904 
1905 	depth = tb_route_length(route);
1906 
1907 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1908 	if (upstream_port < 0)
1909 		return ERR_PTR(upstream_port);
1910 
1911 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1912 	if (!sw)
1913 		return ERR_PTR(-ENOMEM);
1914 
1915 	sw->tb = tb;
1916 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1917 	if (ret)
1918 		goto err_free_sw_ports;
1919 
1920 	sw->generation = tb_switch_get_generation(sw);
1921 
1922 	tb_dbg(tb, "current switch config:\n");
1923 	tb_dump_switch(tb, sw);
1924 
1925 	/* configure switch */
1926 	sw->config.upstream_port_number = upstream_port;
1927 	sw->config.depth = depth;
1928 	sw->config.route_hi = upper_32_bits(route);
1929 	sw->config.route_lo = lower_32_bits(route);
1930 	sw->config.enabled = 0;
1931 
1932 	/* Make sure we do not exceed maximum topology limit */
1933 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1934 		ret = -EADDRNOTAVAIL;
1935 		goto err_free_sw_ports;
1936 	}
1937 
1938 	/* initialize ports */
1939 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1940 				GFP_KERNEL);
1941 	if (!sw->ports) {
1942 		ret = -ENOMEM;
1943 		goto err_free_sw_ports;
1944 	}
1945 
1946 	for (i = 0; i <= sw->config.max_port_number; i++) {
1947 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1948 		sw->ports[i].sw = sw;
1949 		sw->ports[i].port = i;
1950 	}
1951 
1952 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1953 	if (ret > 0)
1954 		sw->cap_plug_events = ret;
1955 
1956 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1957 	if (ret > 0)
1958 		sw->cap_lc = ret;
1959 
1960 	/* Root switch is always authorized */
1961 	if (!route)
1962 		sw->authorized = true;
1963 
1964 	device_initialize(&sw->dev);
1965 	sw->dev.parent = parent;
1966 	sw->dev.bus = &tb_bus_type;
1967 	sw->dev.type = &tb_switch_type;
1968 	sw->dev.groups = switch_groups;
1969 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1970 
1971 	return sw;
1972 
1973 err_free_sw_ports:
1974 	kfree(sw->ports);
1975 	kfree(sw);
1976 
1977 	return ERR_PTR(ret);
1978 }
1979 
1980 /**
1981  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1982  * @tb: Pointer to the owning domain
1983  * @parent: Parent device for this switch
1984  * @route: Route string for this switch
1985  *
1986  * This creates a switch in safe mode. This means the switch pretty much
1987  * lacks all capabilities except DMA configuration port before it is
1988  * flashed with a valid NVM firmware.
1989  *
1990  * The returned switch must be released by calling tb_switch_put().
1991  *
1992  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1993  */
1994 struct tb_switch *
1995 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1996 {
1997 	struct tb_switch *sw;
1998 
1999 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2000 	if (!sw)
2001 		return ERR_PTR(-ENOMEM);
2002 
2003 	sw->tb = tb;
2004 	sw->config.depth = tb_route_length(route);
2005 	sw->config.route_hi = upper_32_bits(route);
2006 	sw->config.route_lo = lower_32_bits(route);
2007 	sw->safe_mode = true;
2008 
2009 	device_initialize(&sw->dev);
2010 	sw->dev.parent = parent;
2011 	sw->dev.bus = &tb_bus_type;
2012 	sw->dev.type = &tb_switch_type;
2013 	sw->dev.groups = switch_groups;
2014 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2015 
2016 	return sw;
2017 }
2018 
2019 /**
2020  * tb_switch_configure() - Uploads configuration to the switch
2021  * @sw: Switch to configure
2022  *
2023  * Call this function before the switch is added to the system. It will
2024  * upload configuration to the switch and makes it available for the
2025  * connection manager to use. Can be called to the switch again after
2026  * resume from low power states to re-initialize it.
2027  *
2028  * Return: %0 in case of success and negative errno in case of failure
2029  */
2030 int tb_switch_configure(struct tb_switch *sw)
2031 {
2032 	struct tb *tb = sw->tb;
2033 	u64 route;
2034 	int ret;
2035 
2036 	route = tb_route(sw);
2037 
2038 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2039 	       sw->config.enabled ? "restoring" : "initializing", route,
2040 	       tb_route_length(route), sw->config.upstream_port_number);
2041 
2042 	sw->config.enabled = 1;
2043 
2044 	if (tb_switch_is_usb4(sw)) {
2045 		/*
2046 		 * For USB4 devices, we need to program the CM version
2047 		 * accordingly so that it knows to expose all the
2048 		 * additional capabilities.
2049 		 */
2050 		sw->config.cmuv = USB4_VERSION_1_0;
2051 
2052 		/* Enumerate the switch */
2053 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2054 				  ROUTER_CS_1, 4);
2055 		if (ret)
2056 			return ret;
2057 
2058 		ret = usb4_switch_setup(sw);
2059 	} else {
2060 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2061 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2062 				   sw->config.vendor_id);
2063 
2064 		if (!sw->cap_plug_events) {
2065 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2066 			return -ENODEV;
2067 		}
2068 
2069 		/* Enumerate the switch */
2070 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2071 				  ROUTER_CS_1, 3);
2072 	}
2073 	if (ret)
2074 		return ret;
2075 
2076 	return tb_plug_events_active(sw, true);
2077 }
2078 
2079 static int tb_switch_set_uuid(struct tb_switch *sw)
2080 {
2081 	bool uid = false;
2082 	u32 uuid[4];
2083 	int ret;
2084 
2085 	if (sw->uuid)
2086 		return 0;
2087 
2088 	if (tb_switch_is_usb4(sw)) {
2089 		ret = usb4_switch_read_uid(sw, &sw->uid);
2090 		if (ret)
2091 			return ret;
2092 		uid = true;
2093 	} else {
2094 		/*
2095 		 * The newer controllers include fused UUID as part of
2096 		 * link controller specific registers
2097 		 */
2098 		ret = tb_lc_read_uuid(sw, uuid);
2099 		if (ret) {
2100 			if (ret != -EINVAL)
2101 				return ret;
2102 			uid = true;
2103 		}
2104 	}
2105 
2106 	if (uid) {
2107 		/*
2108 		 * ICM generates UUID based on UID and fills the upper
2109 		 * two words with ones. This is not strictly following
2110 		 * UUID format but we want to be compatible with it so
2111 		 * we do the same here.
2112 		 */
2113 		uuid[0] = sw->uid & 0xffffffff;
2114 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2115 		uuid[2] = 0xffffffff;
2116 		uuid[3] = 0xffffffff;
2117 	}
2118 
2119 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2120 	if (!sw->uuid)
2121 		return -ENOMEM;
2122 	return 0;
2123 }
2124 
2125 static int tb_switch_add_dma_port(struct tb_switch *sw)
2126 {
2127 	u32 status;
2128 	int ret;
2129 
2130 	switch (sw->generation) {
2131 	case 2:
2132 		/* Only root switch can be upgraded */
2133 		if (tb_route(sw))
2134 			return 0;
2135 
2136 		fallthrough;
2137 	case 3:
2138 		ret = tb_switch_set_uuid(sw);
2139 		if (ret)
2140 			return ret;
2141 		break;
2142 
2143 	default:
2144 		/*
2145 		 * DMA port is the only thing available when the switch
2146 		 * is in safe mode.
2147 		 */
2148 		if (!sw->safe_mode)
2149 			return 0;
2150 		break;
2151 	}
2152 
2153 	/* Root switch DMA port requires running firmware */
2154 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2155 		return 0;
2156 
2157 	sw->dma_port = dma_port_alloc(sw);
2158 	if (!sw->dma_port)
2159 		return 0;
2160 
2161 	if (sw->no_nvm_upgrade)
2162 		return 0;
2163 
2164 	/*
2165 	 * If there is status already set then authentication failed
2166 	 * when the dma_port_flash_update_auth() returned. Power cycling
2167 	 * is not needed (it was done already) so only thing we do here
2168 	 * is to unblock runtime PM of the root port.
2169 	 */
2170 	nvm_get_auth_status(sw, &status);
2171 	if (status) {
2172 		if (!tb_route(sw))
2173 			nvm_authenticate_complete_dma_port(sw);
2174 		return 0;
2175 	}
2176 
2177 	/*
2178 	 * Check status of the previous flash authentication. If there
2179 	 * is one we need to power cycle the switch in any case to make
2180 	 * it functional again.
2181 	 */
2182 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2183 	if (ret <= 0)
2184 		return ret;
2185 
2186 	/* Now we can allow root port to suspend again */
2187 	if (!tb_route(sw))
2188 		nvm_authenticate_complete_dma_port(sw);
2189 
2190 	if (status) {
2191 		tb_sw_info(sw, "switch flash authentication failed\n");
2192 		nvm_set_auth_status(sw, status);
2193 	}
2194 
2195 	tb_sw_info(sw, "power cycling the switch now\n");
2196 	dma_port_power_cycle(sw->dma_port);
2197 
2198 	/*
2199 	 * We return error here which causes the switch adding failure.
2200 	 * It should appear back after power cycle is complete.
2201 	 */
2202 	return -ESHUTDOWN;
2203 }
2204 
2205 static void tb_switch_default_link_ports(struct tb_switch *sw)
2206 {
2207 	int i;
2208 
2209 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2210 		struct tb_port *port = &sw->ports[i];
2211 		struct tb_port *subordinate;
2212 
2213 		if (!tb_port_is_null(port))
2214 			continue;
2215 
2216 		/* Check for the subordinate port */
2217 		if (i == sw->config.max_port_number ||
2218 		    !tb_port_is_null(&sw->ports[i + 1]))
2219 			continue;
2220 
2221 		/* Link them if not already done so (by DROM) */
2222 		subordinate = &sw->ports[i + 1];
2223 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2224 			port->link_nr = 0;
2225 			port->dual_link_port = subordinate;
2226 			subordinate->link_nr = 1;
2227 			subordinate->dual_link_port = port;
2228 
2229 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2230 				  port->port, subordinate->port);
2231 		}
2232 	}
2233 }
2234 
2235 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2236 {
2237 	const struct tb_port *up = tb_upstream_port(sw);
2238 
2239 	if (!up->dual_link_port || !up->dual_link_port->remote)
2240 		return false;
2241 
2242 	if (tb_switch_is_usb4(sw))
2243 		return usb4_switch_lane_bonding_possible(sw);
2244 	return tb_lc_lane_bonding_possible(sw);
2245 }
2246 
2247 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2248 {
2249 	struct tb_port *up;
2250 	bool change = false;
2251 	int ret;
2252 
2253 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2254 		return 0;
2255 
2256 	up = tb_upstream_port(sw);
2257 
2258 	ret = tb_port_get_link_speed(up);
2259 	if (ret < 0)
2260 		return ret;
2261 	if (sw->link_speed != ret)
2262 		change = true;
2263 	sw->link_speed = ret;
2264 
2265 	ret = tb_port_get_link_width(up);
2266 	if (ret < 0)
2267 		return ret;
2268 	if (sw->link_width != ret)
2269 		change = true;
2270 	sw->link_width = ret;
2271 
2272 	/* Notify userspace that there is possible link attribute change */
2273 	if (device_is_registered(&sw->dev) && change)
2274 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2275 
2276 	return 0;
2277 }
2278 
2279 /**
2280  * tb_switch_lane_bonding_enable() - Enable lane bonding
2281  * @sw: Switch to enable lane bonding
2282  *
2283  * Connection manager can call this function to enable lane bonding of a
2284  * switch. If conditions are correct and both switches support the feature,
2285  * lanes are bonded. It is safe to call this to any switch.
2286  */
2287 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2288 {
2289 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2290 	struct tb_port *up, *down;
2291 	u64 route = tb_route(sw);
2292 	int ret;
2293 
2294 	if (!route)
2295 		return 0;
2296 
2297 	if (!tb_switch_lane_bonding_possible(sw))
2298 		return 0;
2299 
2300 	up = tb_upstream_port(sw);
2301 	down = tb_port_at(route, parent);
2302 
2303 	if (!tb_port_is_width_supported(up, 2) ||
2304 	    !tb_port_is_width_supported(down, 2))
2305 		return 0;
2306 
2307 	ret = tb_port_lane_bonding_enable(up);
2308 	if (ret) {
2309 		tb_port_warn(up, "failed to enable lane bonding\n");
2310 		return ret;
2311 	}
2312 
2313 	ret = tb_port_lane_bonding_enable(down);
2314 	if (ret) {
2315 		tb_port_warn(down, "failed to enable lane bonding\n");
2316 		tb_port_lane_bonding_disable(up);
2317 		return ret;
2318 	}
2319 
2320 	tb_switch_update_link_attributes(sw);
2321 
2322 	tb_sw_dbg(sw, "lane bonding enabled\n");
2323 	return ret;
2324 }
2325 
2326 /**
2327  * tb_switch_lane_bonding_disable() - Disable lane bonding
2328  * @sw: Switch whose lane bonding to disable
2329  *
2330  * Disables lane bonding between @sw and parent. This can be called even
2331  * if lanes were not bonded originally.
2332  */
2333 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2334 {
2335 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2336 	struct tb_port *up, *down;
2337 
2338 	if (!tb_route(sw))
2339 		return;
2340 
2341 	up = tb_upstream_port(sw);
2342 	if (!up->bonded)
2343 		return;
2344 
2345 	down = tb_port_at(tb_route(sw), parent);
2346 
2347 	tb_port_lane_bonding_disable(up);
2348 	tb_port_lane_bonding_disable(down);
2349 
2350 	tb_switch_update_link_attributes(sw);
2351 	tb_sw_dbg(sw, "lane bonding disabled\n");
2352 }
2353 
2354 /**
2355  * tb_switch_configure_link() - Set link configured
2356  * @sw: Switch whose link is configured
2357  *
2358  * Sets the link upstream from @sw configured (from both ends) so that
2359  * it will not be disconnected when the domain exits sleep. Can be
2360  * called for any switch.
2361  *
2362  * It is recommended that this is called after lane bonding is enabled.
2363  *
2364  * Returns %0 on success and negative errno in case of error.
2365  */
2366 int tb_switch_configure_link(struct tb_switch *sw)
2367 {
2368 	struct tb_port *up, *down;
2369 	int ret;
2370 
2371 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2372 		return 0;
2373 
2374 	up = tb_upstream_port(sw);
2375 	if (tb_switch_is_usb4(up->sw))
2376 		ret = usb4_port_configure(up);
2377 	else
2378 		ret = tb_lc_configure_port(up);
2379 	if (ret)
2380 		return ret;
2381 
2382 	down = up->remote;
2383 	if (tb_switch_is_usb4(down->sw))
2384 		return usb4_port_configure(down);
2385 	return tb_lc_configure_port(down);
2386 }
2387 
2388 /**
2389  * tb_switch_unconfigure_link() - Unconfigure link
2390  * @sw: Switch whose link is unconfigured
2391  *
2392  * Sets the link unconfigured so the @sw will be disconnected if the
2393  * domain exists sleep.
2394  */
2395 void tb_switch_unconfigure_link(struct tb_switch *sw)
2396 {
2397 	struct tb_port *up, *down;
2398 
2399 	if (sw->is_unplugged)
2400 		return;
2401 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2402 		return;
2403 
2404 	up = tb_upstream_port(sw);
2405 	if (tb_switch_is_usb4(up->sw))
2406 		usb4_port_unconfigure(up);
2407 	else
2408 		tb_lc_unconfigure_port(up);
2409 
2410 	down = up->remote;
2411 	if (tb_switch_is_usb4(down->sw))
2412 		usb4_port_unconfigure(down);
2413 	else
2414 		tb_lc_unconfigure_port(down);
2415 }
2416 
2417 /**
2418  * tb_switch_add() - Add a switch to the domain
2419  * @sw: Switch to add
2420  *
2421  * This is the last step in adding switch to the domain. It will read
2422  * identification information from DROM and initializes ports so that
2423  * they can be used to connect other switches. The switch will be
2424  * exposed to the userspace when this function successfully returns. To
2425  * remove and release the switch, call tb_switch_remove().
2426  *
2427  * Return: %0 in case of success and negative errno in case of failure
2428  */
2429 int tb_switch_add(struct tb_switch *sw)
2430 {
2431 	int i, ret;
2432 
2433 	/*
2434 	 * Initialize DMA control port now before we read DROM. Recent
2435 	 * host controllers have more complete DROM on NVM that includes
2436 	 * vendor and model identification strings which we then expose
2437 	 * to the userspace. NVM can be accessed through DMA
2438 	 * configuration based mailbox.
2439 	 */
2440 	ret = tb_switch_add_dma_port(sw);
2441 	if (ret) {
2442 		dev_err(&sw->dev, "failed to add DMA port\n");
2443 		return ret;
2444 	}
2445 
2446 	if (!sw->safe_mode) {
2447 		/* read drom */
2448 		ret = tb_drom_read(sw);
2449 		if (ret) {
2450 			dev_err(&sw->dev, "reading DROM failed\n");
2451 			return ret;
2452 		}
2453 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2454 
2455 		ret = tb_switch_set_uuid(sw);
2456 		if (ret) {
2457 			dev_err(&sw->dev, "failed to set UUID\n");
2458 			return ret;
2459 		}
2460 
2461 		for (i = 0; i <= sw->config.max_port_number; i++) {
2462 			if (sw->ports[i].disabled) {
2463 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2464 				continue;
2465 			}
2466 			ret = tb_init_port(&sw->ports[i]);
2467 			if (ret) {
2468 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2469 				return ret;
2470 			}
2471 		}
2472 
2473 		tb_switch_default_link_ports(sw);
2474 
2475 		ret = tb_switch_update_link_attributes(sw);
2476 		if (ret)
2477 			return ret;
2478 
2479 		ret = tb_switch_tmu_init(sw);
2480 		if (ret)
2481 			return ret;
2482 	}
2483 
2484 	ret = device_add(&sw->dev);
2485 	if (ret) {
2486 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2487 		return ret;
2488 	}
2489 
2490 	if (tb_route(sw)) {
2491 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2492 			 sw->vendor, sw->device);
2493 		if (sw->vendor_name && sw->device_name)
2494 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2495 				 sw->device_name);
2496 	}
2497 
2498 	ret = tb_switch_nvm_add(sw);
2499 	if (ret) {
2500 		dev_err(&sw->dev, "failed to add NVM devices\n");
2501 		device_del(&sw->dev);
2502 		return ret;
2503 	}
2504 
2505 	/*
2506 	 * Thunderbolt routers do not generate wakeups themselves but
2507 	 * they forward wakeups from tunneled protocols, so enable it
2508 	 * here.
2509 	 */
2510 	device_init_wakeup(&sw->dev, true);
2511 
2512 	pm_runtime_set_active(&sw->dev);
2513 	if (sw->rpm) {
2514 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2515 		pm_runtime_use_autosuspend(&sw->dev);
2516 		pm_runtime_mark_last_busy(&sw->dev);
2517 		pm_runtime_enable(&sw->dev);
2518 		pm_request_autosuspend(&sw->dev);
2519 	}
2520 
2521 	tb_switch_debugfs_init(sw);
2522 	return 0;
2523 }
2524 
2525 /**
2526  * tb_switch_remove() - Remove and release a switch
2527  * @sw: Switch to remove
2528  *
2529  * This will remove the switch from the domain and release it after last
2530  * reference count drops to zero. If there are switches connected below
2531  * this switch, they will be removed as well.
2532  */
2533 void tb_switch_remove(struct tb_switch *sw)
2534 {
2535 	struct tb_port *port;
2536 
2537 	tb_switch_debugfs_remove(sw);
2538 
2539 	if (sw->rpm) {
2540 		pm_runtime_get_sync(&sw->dev);
2541 		pm_runtime_disable(&sw->dev);
2542 	}
2543 
2544 	/* port 0 is the switch itself and never has a remote */
2545 	tb_switch_for_each_port(sw, port) {
2546 		if (tb_port_has_remote(port)) {
2547 			tb_switch_remove(port->remote->sw);
2548 			port->remote = NULL;
2549 		} else if (port->xdomain) {
2550 			tb_xdomain_remove(port->xdomain);
2551 			port->xdomain = NULL;
2552 		}
2553 
2554 		/* Remove any downstream retimers */
2555 		tb_retimer_remove_all(port);
2556 	}
2557 
2558 	if (!sw->is_unplugged)
2559 		tb_plug_events_active(sw, false);
2560 
2561 	tb_switch_nvm_remove(sw);
2562 
2563 	if (tb_route(sw))
2564 		dev_info(&sw->dev, "device disconnected\n");
2565 	device_unregister(&sw->dev);
2566 }
2567 
2568 /**
2569  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2570  */
2571 void tb_sw_set_unplugged(struct tb_switch *sw)
2572 {
2573 	struct tb_port *port;
2574 
2575 	if (sw == sw->tb->root_switch) {
2576 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2577 		return;
2578 	}
2579 	if (sw->is_unplugged) {
2580 		tb_sw_WARN(sw, "is_unplugged already set\n");
2581 		return;
2582 	}
2583 	sw->is_unplugged = true;
2584 	tb_switch_for_each_port(sw, port) {
2585 		if (tb_port_has_remote(port))
2586 			tb_sw_set_unplugged(port->remote->sw);
2587 		else if (port->xdomain)
2588 			port->xdomain->is_unplugged = true;
2589 	}
2590 }
2591 
2592 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2593 {
2594 	if (flags)
2595 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2596 	else
2597 		tb_sw_dbg(sw, "disabling wakeup\n");
2598 
2599 	if (tb_switch_is_usb4(sw))
2600 		return usb4_switch_set_wake(sw, flags);
2601 	return tb_lc_set_wake(sw, flags);
2602 }
2603 
2604 int tb_switch_resume(struct tb_switch *sw)
2605 {
2606 	struct tb_port *port;
2607 	int err;
2608 
2609 	tb_sw_dbg(sw, "resuming switch\n");
2610 
2611 	/*
2612 	 * Check for UID of the connected switches except for root
2613 	 * switch which we assume cannot be removed.
2614 	 */
2615 	if (tb_route(sw)) {
2616 		u64 uid;
2617 
2618 		/*
2619 		 * Check first that we can still read the switch config
2620 		 * space. It may be that there is now another domain
2621 		 * connected.
2622 		 */
2623 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2624 		if (err < 0) {
2625 			tb_sw_info(sw, "switch not present anymore\n");
2626 			return err;
2627 		}
2628 
2629 		if (tb_switch_is_usb4(sw))
2630 			err = usb4_switch_read_uid(sw, &uid);
2631 		else
2632 			err = tb_drom_read_uid_only(sw, &uid);
2633 		if (err) {
2634 			tb_sw_warn(sw, "uid read failed\n");
2635 			return err;
2636 		}
2637 		if (sw->uid != uid) {
2638 			tb_sw_info(sw,
2639 				"changed while suspended (uid %#llx -> %#llx)\n",
2640 				sw->uid, uid);
2641 			return -ENODEV;
2642 		}
2643 	}
2644 
2645 	err = tb_switch_configure(sw);
2646 	if (err)
2647 		return err;
2648 
2649 	/* Disable wakes */
2650 	tb_switch_set_wake(sw, 0);
2651 
2652 	err = tb_switch_tmu_init(sw);
2653 	if (err)
2654 		return err;
2655 
2656 	/* check for surviving downstream switches */
2657 	tb_switch_for_each_port(sw, port) {
2658 		if (!tb_port_has_remote(port) && !port->xdomain)
2659 			continue;
2660 
2661 		if (tb_wait_for_port(port, true) <= 0) {
2662 			tb_port_warn(port,
2663 				     "lost during suspend, disconnecting\n");
2664 			if (tb_port_has_remote(port))
2665 				tb_sw_set_unplugged(port->remote->sw);
2666 			else if (port->xdomain)
2667 				port->xdomain->is_unplugged = true;
2668 		} else if (tb_port_has_remote(port) || port->xdomain) {
2669 			/*
2670 			 * Always unlock the port so the downstream
2671 			 * switch/domain is accessible.
2672 			 */
2673 			if (tb_port_unlock(port))
2674 				tb_port_warn(port, "failed to unlock port\n");
2675 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2676 				tb_port_warn(port,
2677 					     "lost during suspend, disconnecting\n");
2678 				tb_sw_set_unplugged(port->remote->sw);
2679 			}
2680 		}
2681 	}
2682 	return 0;
2683 }
2684 
2685 /**
2686  * tb_switch_suspend() - Put a switch to sleep
2687  * @sw: Switch to suspend
2688  * @runtime: Is this runtime suspend or system sleep
2689  *
2690  * Suspends router and all its children. Enables wakes according to
2691  * value of @runtime and then sets sleep bit for the router. If @sw is
2692  * host router the domain is ready to go to sleep once this function
2693  * returns.
2694  */
2695 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2696 {
2697 	unsigned int flags = 0;
2698 	struct tb_port *port;
2699 	int err;
2700 
2701 	tb_sw_dbg(sw, "suspending switch\n");
2702 
2703 	err = tb_plug_events_active(sw, false);
2704 	if (err)
2705 		return;
2706 
2707 	tb_switch_for_each_port(sw, port) {
2708 		if (tb_port_has_remote(port))
2709 			tb_switch_suspend(port->remote->sw, runtime);
2710 	}
2711 
2712 	if (runtime) {
2713 		/* Trigger wake when something is plugged in/out */
2714 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2715 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2716 	} else if (device_may_wakeup(&sw->dev)) {
2717 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2718 	}
2719 
2720 	tb_switch_set_wake(sw, flags);
2721 
2722 	if (tb_switch_is_usb4(sw))
2723 		usb4_switch_set_sleep(sw);
2724 	else
2725 		tb_lc_set_sleep(sw);
2726 }
2727 
2728 /**
2729  * tb_switch_query_dp_resource() - Query availability of DP resource
2730  * @sw: Switch whose DP resource is queried
2731  * @in: DP IN port
2732  *
2733  * Queries availability of DP resource for DP tunneling using switch
2734  * specific means. Returns %true if resource is available.
2735  */
2736 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2737 {
2738 	if (tb_switch_is_usb4(sw))
2739 		return usb4_switch_query_dp_resource(sw, in);
2740 	return tb_lc_dp_sink_query(sw, in);
2741 }
2742 
2743 /**
2744  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2745  * @sw: Switch whose DP resource is allocated
2746  * @in: DP IN port
2747  *
2748  * Allocates DP resource for DP tunneling. The resource must be
2749  * available for this to succeed (see tb_switch_query_dp_resource()).
2750  * Returns %0 in success and negative errno otherwise.
2751  */
2752 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2753 {
2754 	if (tb_switch_is_usb4(sw))
2755 		return usb4_switch_alloc_dp_resource(sw, in);
2756 	return tb_lc_dp_sink_alloc(sw, in);
2757 }
2758 
2759 /**
2760  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2761  * @sw: Switch whose DP resource is de-allocated
2762  * @in: DP IN port
2763  *
2764  * De-allocates DP resource that was previously allocated for DP
2765  * tunneling.
2766  */
2767 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2768 {
2769 	int ret;
2770 
2771 	if (tb_switch_is_usb4(sw))
2772 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2773 	else
2774 		ret = tb_lc_dp_sink_dealloc(sw, in);
2775 
2776 	if (ret)
2777 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2778 			   in->port);
2779 }
2780 
2781 struct tb_sw_lookup {
2782 	struct tb *tb;
2783 	u8 link;
2784 	u8 depth;
2785 	const uuid_t *uuid;
2786 	u64 route;
2787 };
2788 
2789 static int tb_switch_match(struct device *dev, const void *data)
2790 {
2791 	struct tb_switch *sw = tb_to_switch(dev);
2792 	const struct tb_sw_lookup *lookup = data;
2793 
2794 	if (!sw)
2795 		return 0;
2796 	if (sw->tb != lookup->tb)
2797 		return 0;
2798 
2799 	if (lookup->uuid)
2800 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2801 
2802 	if (lookup->route) {
2803 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2804 		       sw->config.route_hi == upper_32_bits(lookup->route);
2805 	}
2806 
2807 	/* Root switch is matched only by depth */
2808 	if (!lookup->depth)
2809 		return !sw->depth;
2810 
2811 	return sw->link == lookup->link && sw->depth == lookup->depth;
2812 }
2813 
2814 /**
2815  * tb_switch_find_by_link_depth() - Find switch by link and depth
2816  * @tb: Domain the switch belongs
2817  * @link: Link number the switch is connected
2818  * @depth: Depth of the switch in link
2819  *
2820  * Returned switch has reference count increased so the caller needs to
2821  * call tb_switch_put() when done with the switch.
2822  */
2823 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2824 {
2825 	struct tb_sw_lookup lookup;
2826 	struct device *dev;
2827 
2828 	memset(&lookup, 0, sizeof(lookup));
2829 	lookup.tb = tb;
2830 	lookup.link = link;
2831 	lookup.depth = depth;
2832 
2833 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2834 	if (dev)
2835 		return tb_to_switch(dev);
2836 
2837 	return NULL;
2838 }
2839 
2840 /**
2841  * tb_switch_find_by_uuid() - Find switch by UUID
2842  * @tb: Domain the switch belongs
2843  * @uuid: UUID to look for
2844  *
2845  * Returned switch has reference count increased so the caller needs to
2846  * call tb_switch_put() when done with the switch.
2847  */
2848 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2849 {
2850 	struct tb_sw_lookup lookup;
2851 	struct device *dev;
2852 
2853 	memset(&lookup, 0, sizeof(lookup));
2854 	lookup.tb = tb;
2855 	lookup.uuid = uuid;
2856 
2857 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2858 	if (dev)
2859 		return tb_to_switch(dev);
2860 
2861 	return NULL;
2862 }
2863 
2864 /**
2865  * tb_switch_find_by_route() - Find switch by route string
2866  * @tb: Domain the switch belongs
2867  * @route: Route string to look for
2868  *
2869  * Returned switch has reference count increased so the caller needs to
2870  * call tb_switch_put() when done with the switch.
2871  */
2872 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2873 {
2874 	struct tb_sw_lookup lookup;
2875 	struct device *dev;
2876 
2877 	if (!route)
2878 		return tb_switch_get(tb->root_switch);
2879 
2880 	memset(&lookup, 0, sizeof(lookup));
2881 	lookup.tb = tb;
2882 	lookup.route = route;
2883 
2884 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2885 	if (dev)
2886 		return tb_to_switch(dev);
2887 
2888 	return NULL;
2889 }
2890 
2891 /**
2892  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2893  * @sw: Switch to find the port from
2894  * @type: Port type to look for
2895  */
2896 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2897 				    enum tb_port_type type)
2898 {
2899 	struct tb_port *port;
2900 
2901 	tb_switch_for_each_port(sw, port) {
2902 		if (port->config.type == type)
2903 			return port;
2904 	}
2905 
2906 	return NULL;
2907 }
2908