xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 
17 #include "tb.h"
18 
19 /* Switch authorization from userspace is serialized by this lock */
20 static DEFINE_MUTEX(switch_lock);
21 
22 /* Switch NVM support */
23 
24 #define NVM_DEVID		0x05
25 #define NVM_VERSION		0x08
26 #define NVM_CSS			0x10
27 #define NVM_FLASH_SIZE		0x45
28 
29 #define NVM_MIN_SIZE		SZ_32K
30 #define NVM_MAX_SIZE		SZ_512K
31 
32 static DEFINE_IDA(nvm_ida);
33 
34 struct nvm_auth_status {
35 	struct list_head list;
36 	uuid_t uuid;
37 	u32 status;
38 };
39 
40 /*
41  * Hold NVM authentication failure status per switch This information
42  * needs to stay around even when the switch gets power cycled so we
43  * keep it separately.
44  */
45 static LIST_HEAD(nvm_auth_status_cache);
46 static DEFINE_MUTEX(nvm_auth_status_lock);
47 
48 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
49 {
50 	struct nvm_auth_status *st;
51 
52 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
53 		if (uuid_equal(&st->uuid, sw->uuid))
54 			return st;
55 	}
56 
57 	return NULL;
58 }
59 
60 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	mutex_lock(&nvm_auth_status_lock);
65 	st = __nvm_get_auth_status(sw);
66 	mutex_unlock(&nvm_auth_status_lock);
67 
68 	*status = st ? st->status : 0;
69 }
70 
71 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
72 {
73 	struct nvm_auth_status *st;
74 
75 	if (WARN_ON(!sw->uuid))
76 		return;
77 
78 	mutex_lock(&nvm_auth_status_lock);
79 	st = __nvm_get_auth_status(sw);
80 
81 	if (!st) {
82 		st = kzalloc(sizeof(*st), GFP_KERNEL);
83 		if (!st)
84 			goto unlock;
85 
86 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
87 		INIT_LIST_HEAD(&st->list);
88 		list_add_tail(&st->list, &nvm_auth_status_cache);
89 	}
90 
91 	st->status = status;
92 unlock:
93 	mutex_unlock(&nvm_auth_status_lock);
94 }
95 
96 static void nvm_clear_auth_status(const struct tb_switch *sw)
97 {
98 	struct nvm_auth_status *st;
99 
100 	mutex_lock(&nvm_auth_status_lock);
101 	st = __nvm_get_auth_status(sw);
102 	if (st) {
103 		list_del(&st->list);
104 		kfree(st);
105 	}
106 	mutex_unlock(&nvm_auth_status_lock);
107 }
108 
109 static int nvm_validate_and_write(struct tb_switch *sw)
110 {
111 	unsigned int image_size, hdr_size;
112 	const u8 *buf = sw->nvm->buf;
113 	u16 ds_size;
114 	int ret;
115 
116 	if (!buf)
117 		return -EINVAL;
118 
119 	image_size = sw->nvm->buf_data_size;
120 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
121 		return -EINVAL;
122 
123 	/*
124 	 * FARB pointer must point inside the image and must at least
125 	 * contain parts of the digital section we will be reading here.
126 	 */
127 	hdr_size = (*(u32 *)buf) & 0xffffff;
128 	if (hdr_size + NVM_DEVID + 2 >= image_size)
129 		return -EINVAL;
130 
131 	/* Digital section start should be aligned to 4k page */
132 	if (!IS_ALIGNED(hdr_size, SZ_4K))
133 		return -EINVAL;
134 
135 	/*
136 	 * Read digital section size and check that it also fits inside
137 	 * the image.
138 	 */
139 	ds_size = *(u16 *)(buf + hdr_size);
140 	if (ds_size >= image_size)
141 		return -EINVAL;
142 
143 	if (!sw->safe_mode) {
144 		u16 device_id;
145 
146 		/*
147 		 * Make sure the device ID in the image matches the one
148 		 * we read from the switch config space.
149 		 */
150 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
151 		if (device_id != sw->config.device_id)
152 			return -EINVAL;
153 
154 		if (sw->generation < 3) {
155 			/* Write CSS headers first */
156 			ret = dma_port_flash_write(sw->dma_port,
157 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
158 				DMA_PORT_CSS_MAX_SIZE);
159 			if (ret)
160 				return ret;
161 		}
162 
163 		/* Skip headers in the image */
164 		buf += hdr_size;
165 		image_size -= hdr_size;
166 	}
167 
168 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
169 }
170 
171 static int nvm_authenticate_host(struct tb_switch *sw)
172 {
173 	int ret;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		ret = tb_domain_disconnect_all_paths(sw->tb);
182 		if (ret)
183 			return ret;
184 		/*
185 		 * The host controller goes away pretty soon after this if
186 		 * everything goes well so getting timeout is expected.
187 		 */
188 		ret = dma_port_flash_update_auth(sw->dma_port);
189 		return ret == -ETIMEDOUT ? 0 : ret;
190 	}
191 
192 	/*
193 	 * From safe mode we can get out by just power cycling the
194 	 * switch.
195 	 */
196 	dma_port_power_cycle(sw->dma_port);
197 	return 0;
198 }
199 
200 static int nvm_authenticate_device(struct tb_switch *sw)
201 {
202 	int ret, retries = 10;
203 
204 	ret = dma_port_flash_update_auth(sw->dma_port);
205 	if (ret && ret != -ETIMEDOUT)
206 		return ret;
207 
208 	/*
209 	 * Poll here for the authentication status. It takes some time
210 	 * for the device to respond (we get timeout for a while). Once
211 	 * we get response the device needs to be power cycled in order
212 	 * to the new NVM to be taken into use.
213 	 */
214 	do {
215 		u32 status;
216 
217 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
218 		if (ret < 0 && ret != -ETIMEDOUT)
219 			return ret;
220 		if (ret > 0) {
221 			if (status) {
222 				tb_sw_warn(sw, "failed to authenticate NVM\n");
223 				nvm_set_auth_status(sw, status);
224 			}
225 
226 			tb_sw_info(sw, "power cycling the switch now\n");
227 			dma_port_power_cycle(sw->dma_port);
228 			return 0;
229 		}
230 
231 		msleep(500);
232 	} while (--retries);
233 
234 	return -ETIMEDOUT;
235 }
236 
237 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
238 			      size_t bytes)
239 {
240 	struct tb_switch *sw = priv;
241 	int ret;
242 
243 	pm_runtime_get_sync(&sw->dev);
244 	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
245 	pm_runtime_mark_last_busy(&sw->dev);
246 	pm_runtime_put_autosuspend(&sw->dev);
247 
248 	return ret;
249 }
250 
251 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
252 			       size_t bytes)
253 {
254 	struct tb_switch *sw = priv;
255 	int ret = 0;
256 
257 	if (mutex_lock_interruptible(&switch_lock))
258 		return -ERESTARTSYS;
259 
260 	/*
261 	 * Since writing the NVM image might require some special steps,
262 	 * for example when CSS headers are written, we cache the image
263 	 * locally here and handle the special cases when the user asks
264 	 * us to authenticate the image.
265 	 */
266 	if (!sw->nvm->buf) {
267 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
268 		if (!sw->nvm->buf) {
269 			ret = -ENOMEM;
270 			goto unlock;
271 		}
272 	}
273 
274 	sw->nvm->buf_data_size = offset + bytes;
275 	memcpy(sw->nvm->buf + offset, val, bytes);
276 
277 unlock:
278 	mutex_unlock(&switch_lock);
279 
280 	return ret;
281 }
282 
283 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
284 					   size_t size, bool active)
285 {
286 	struct nvmem_config config;
287 
288 	memset(&config, 0, sizeof(config));
289 
290 	if (active) {
291 		config.name = "nvm_active";
292 		config.reg_read = tb_switch_nvm_read;
293 		config.read_only = true;
294 	} else {
295 		config.name = "nvm_non_active";
296 		config.reg_write = tb_switch_nvm_write;
297 		config.root_only = true;
298 	}
299 
300 	config.id = id;
301 	config.stride = 4;
302 	config.word_size = 4;
303 	config.size = size;
304 	config.dev = &sw->dev;
305 	config.owner = THIS_MODULE;
306 	config.priv = sw;
307 
308 	return nvmem_register(&config);
309 }
310 
311 static int tb_switch_nvm_add(struct tb_switch *sw)
312 {
313 	struct nvmem_device *nvm_dev;
314 	struct tb_switch_nvm *nvm;
315 	u32 val;
316 	int ret;
317 
318 	if (!sw->dma_port)
319 		return 0;
320 
321 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
322 	if (!nvm)
323 		return -ENOMEM;
324 
325 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
326 
327 	/*
328 	 * If the switch is in safe-mode the only accessible portion of
329 	 * the NVM is the non-active one where userspace is expected to
330 	 * write new functional NVM.
331 	 */
332 	if (!sw->safe_mode) {
333 		u32 nvm_size, hdr_size;
334 
335 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
336 					  sizeof(val));
337 		if (ret)
338 			goto err_ida;
339 
340 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
341 		nvm_size = (SZ_1M << (val & 7)) / 8;
342 		nvm_size = (nvm_size - hdr_size) / 2;
343 
344 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
345 					  sizeof(val));
346 		if (ret)
347 			goto err_ida;
348 
349 		nvm->major = val >> 16;
350 		nvm->minor = val >> 8;
351 
352 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
353 		if (IS_ERR(nvm_dev)) {
354 			ret = PTR_ERR(nvm_dev);
355 			goto err_ida;
356 		}
357 		nvm->active = nvm_dev;
358 	}
359 
360 	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
361 	if (IS_ERR(nvm_dev)) {
362 		ret = PTR_ERR(nvm_dev);
363 		goto err_nvm_active;
364 	}
365 	nvm->non_active = nvm_dev;
366 
367 	mutex_lock(&switch_lock);
368 	sw->nvm = nvm;
369 	mutex_unlock(&switch_lock);
370 
371 	return 0;
372 
373 err_nvm_active:
374 	if (nvm->active)
375 		nvmem_unregister(nvm->active);
376 err_ida:
377 	ida_simple_remove(&nvm_ida, nvm->id);
378 	kfree(nvm);
379 
380 	return ret;
381 }
382 
383 static void tb_switch_nvm_remove(struct tb_switch *sw)
384 {
385 	struct tb_switch_nvm *nvm;
386 
387 	mutex_lock(&switch_lock);
388 	nvm = sw->nvm;
389 	sw->nvm = NULL;
390 	mutex_unlock(&switch_lock);
391 
392 	if (!nvm)
393 		return;
394 
395 	/* Remove authentication status in case the switch is unplugged */
396 	if (!nvm->authenticating)
397 		nvm_clear_auth_status(sw);
398 
399 	nvmem_unregister(nvm->non_active);
400 	if (nvm->active)
401 		nvmem_unregister(nvm->active);
402 	ida_simple_remove(&nvm_ida, nvm->id);
403 	vfree(nvm->buf);
404 	kfree(nvm);
405 }
406 
407 /* port utility functions */
408 
409 static const char *tb_port_type(struct tb_regs_port_header *port)
410 {
411 	switch (port->type >> 16) {
412 	case 0:
413 		switch ((u8) port->type) {
414 		case 0:
415 			return "Inactive";
416 		case 1:
417 			return "Port";
418 		case 2:
419 			return "NHI";
420 		default:
421 			return "unknown";
422 		}
423 	case 0x2:
424 		return "Ethernet";
425 	case 0x8:
426 		return "SATA";
427 	case 0xe:
428 		return "DP/HDMI";
429 	case 0x10:
430 		return "PCIe";
431 	case 0x20:
432 		return "USB";
433 	default:
434 		return "unknown";
435 	}
436 }
437 
438 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
439 {
440 	tb_dbg(tb,
441 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
442 	       port->port_number, port->vendor_id, port->device_id,
443 	       port->revision, port->thunderbolt_version, tb_port_type(port),
444 	       port->type);
445 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
446 	       port->max_in_hop_id, port->max_out_hop_id);
447 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
448 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
449 }
450 
451 /**
452  * tb_port_state() - get connectedness state of a port
453  *
454  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
455  *
456  * Return: Returns an enum tb_port_state on success or an error code on failure.
457  */
458 static int tb_port_state(struct tb_port *port)
459 {
460 	struct tb_cap_phy phy;
461 	int res;
462 	if (port->cap_phy == 0) {
463 		tb_port_WARN(port, "does not have a PHY\n");
464 		return -EINVAL;
465 	}
466 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
467 	if (res)
468 		return res;
469 	return phy.state;
470 }
471 
472 /**
473  * tb_wait_for_port() - wait for a port to become ready
474  *
475  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
476  * wait_if_unplugged is set then we also wait if the port is in state
477  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
478  * switch resume). Otherwise we only wait if a device is registered but the link
479  * has not yet been established.
480  *
481  * Return: Returns an error code on failure. Returns 0 if the port is not
482  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
483  * if the port is connected and in state TB_PORT_UP.
484  */
485 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
486 {
487 	int retries = 10;
488 	int state;
489 	if (!port->cap_phy) {
490 		tb_port_WARN(port, "does not have PHY\n");
491 		return -EINVAL;
492 	}
493 	if (tb_is_upstream_port(port)) {
494 		tb_port_WARN(port, "is the upstream port\n");
495 		return -EINVAL;
496 	}
497 
498 	while (retries--) {
499 		state = tb_port_state(port);
500 		if (state < 0)
501 			return state;
502 		if (state == TB_PORT_DISABLED) {
503 			tb_port_info(port, "is disabled (state: 0)\n");
504 			return 0;
505 		}
506 		if (state == TB_PORT_UNPLUGGED) {
507 			if (wait_if_unplugged) {
508 				/* used during resume */
509 				tb_port_info(port,
510 					     "is unplugged (state: 7), retrying...\n");
511 				msleep(100);
512 				continue;
513 			}
514 			tb_port_info(port, "is unplugged (state: 7)\n");
515 			return 0;
516 		}
517 		if (state == TB_PORT_UP) {
518 			tb_port_info(port,
519 				     "is connected, link is up (state: 2)\n");
520 			return 1;
521 		}
522 
523 		/*
524 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
525 		 * time.
526 		 */
527 		tb_port_info(port,
528 			     "is connected, link is not up (state: %d), retrying...\n",
529 			     state);
530 		msleep(100);
531 	}
532 	tb_port_warn(port,
533 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
534 	return 0;
535 }
536 
537 /**
538  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
539  *
540  * Change the number of NFC credits allocated to @port by @credits. To remove
541  * NFC credits pass a negative amount of credits.
542  *
543  * Return: Returns 0 on success or an error code on failure.
544  */
545 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
546 {
547 	if (credits == 0)
548 		return 0;
549 	tb_port_info(port,
550 		     "adding %#x NFC credits (%#x -> %#x)",
551 		     credits,
552 		     port->config.nfc_credits,
553 		     port->config.nfc_credits + credits);
554 	port->config.nfc_credits += credits;
555 	return tb_port_write(port, &port->config.nfc_credits,
556 			     TB_CFG_PORT, 4, 1);
557 }
558 
559 /**
560  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
561  *
562  * Return: Returns 0 on success or an error code on failure.
563  */
564 int tb_port_clear_counter(struct tb_port *port, int counter)
565 {
566 	u32 zero[3] = { 0, 0, 0 };
567 	tb_port_info(port, "clearing counter %d\n", counter);
568 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
569 }
570 
571 /**
572  * tb_init_port() - initialize a port
573  *
574  * This is a helper method for tb_switch_alloc. Does not check or initialize
575  * any downstream switches.
576  *
577  * Return: Returns 0 on success or an error code on failure.
578  */
579 static int tb_init_port(struct tb_port *port)
580 {
581 	int res;
582 	int cap;
583 
584 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
585 	if (res)
586 		return res;
587 
588 	/* Port 0 is the switch itself and has no PHY. */
589 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
590 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
591 
592 		if (cap > 0)
593 			port->cap_phy = cap;
594 		else
595 			tb_port_WARN(port, "non switch port without a PHY\n");
596 	}
597 
598 	tb_dump_port(port->sw->tb, &port->config);
599 
600 	/* TODO: Read dual link port, DP port and more from EEPROM. */
601 	return 0;
602 
603 }
604 
605 /* switch utility functions */
606 
607 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
608 {
609 	tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
610 	       sw->vendor_id, sw->device_id, sw->revision,
611 	       sw->thunderbolt_version);
612 	tb_dbg(tb, "  Max Port Number: %d\n", sw->max_port_number);
613 	tb_dbg(tb, "  Config:\n");
614 	tb_dbg(tb,
615 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
616 	       sw->upstream_port_number, sw->depth,
617 	       (((u64) sw->route_hi) << 32) | sw->route_lo,
618 	       sw->enabled, sw->plug_events_delay);
619 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
620 	       sw->__unknown1, sw->__unknown4);
621 }
622 
623 /**
624  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
625  *
626  * Return: Returns 0 on success or an error code on failure.
627  */
628 int tb_switch_reset(struct tb *tb, u64 route)
629 {
630 	struct tb_cfg_result res;
631 	struct tb_regs_switch_header header = {
632 		header.route_hi = route >> 32,
633 		header.route_lo = route,
634 		header.enabled = true,
635 	};
636 	tb_dbg(tb, "resetting switch at %llx\n", route);
637 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
638 			0, 2, 2, 2);
639 	if (res.err)
640 		return res.err;
641 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
642 	if (res.err > 0)
643 		return -EIO;
644 	return res.err;
645 }
646 
647 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route)
648 {
649 	u8 next_port = route; /*
650 			       * Routes use a stride of 8 bits,
651 			       * eventhough a port index has 6 bits at most.
652 			       * */
653 	if (route == 0)
654 		return sw;
655 	if (next_port > sw->config.max_port_number)
656 		return NULL;
657 	if (tb_is_upstream_port(&sw->ports[next_port]))
658 		return NULL;
659 	if (!sw->ports[next_port].remote)
660 		return NULL;
661 	return get_switch_at_route(sw->ports[next_port].remote->sw,
662 				   route >> TB_ROUTE_SHIFT);
663 }
664 
665 /**
666  * tb_plug_events_active() - enable/disable plug events on a switch
667  *
668  * Also configures a sane plug_events_delay of 255ms.
669  *
670  * Return: Returns 0 on success or an error code on failure.
671  */
672 static int tb_plug_events_active(struct tb_switch *sw, bool active)
673 {
674 	u32 data;
675 	int res;
676 
677 	if (!sw->config.enabled)
678 		return 0;
679 
680 	sw->config.plug_events_delay = 0xff;
681 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
682 	if (res)
683 		return res;
684 
685 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
686 	if (res)
687 		return res;
688 
689 	if (active) {
690 		data = data & 0xFFFFFF83;
691 		switch (sw->config.device_id) {
692 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
693 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
694 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
695 			break;
696 		default:
697 			data |= 4;
698 		}
699 	} else {
700 		data = data | 0x7c;
701 	}
702 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
703 			   sw->cap_plug_events + 1, 1);
704 }
705 
706 static ssize_t authorized_show(struct device *dev,
707 			       struct device_attribute *attr,
708 			       char *buf)
709 {
710 	struct tb_switch *sw = tb_to_switch(dev);
711 
712 	return sprintf(buf, "%u\n", sw->authorized);
713 }
714 
715 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
716 {
717 	int ret = -EINVAL;
718 
719 	if (mutex_lock_interruptible(&switch_lock))
720 		return -ERESTARTSYS;
721 
722 	if (sw->authorized)
723 		goto unlock;
724 
725 	/*
726 	 * Make sure there is no PCIe rescan ongoing when a new PCIe
727 	 * tunnel is created. Otherwise the PCIe rescan code might find
728 	 * the new tunnel too early.
729 	 */
730 	pci_lock_rescan_remove();
731 	pm_runtime_get_sync(&sw->dev);
732 
733 	switch (val) {
734 	/* Approve switch */
735 	case 1:
736 		if (sw->key)
737 			ret = tb_domain_approve_switch_key(sw->tb, sw);
738 		else
739 			ret = tb_domain_approve_switch(sw->tb, sw);
740 		break;
741 
742 	/* Challenge switch */
743 	case 2:
744 		if (sw->key)
745 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
746 		break;
747 
748 	default:
749 		break;
750 	}
751 
752 	pm_runtime_mark_last_busy(&sw->dev);
753 	pm_runtime_put_autosuspend(&sw->dev);
754 	pci_unlock_rescan_remove();
755 
756 	if (!ret) {
757 		sw->authorized = val;
758 		/* Notify status change to the userspace */
759 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
760 	}
761 
762 unlock:
763 	mutex_unlock(&switch_lock);
764 	return ret;
765 }
766 
767 static ssize_t authorized_store(struct device *dev,
768 				struct device_attribute *attr,
769 				const char *buf, size_t count)
770 {
771 	struct tb_switch *sw = tb_to_switch(dev);
772 	unsigned int val;
773 	ssize_t ret;
774 
775 	ret = kstrtouint(buf, 0, &val);
776 	if (ret)
777 		return ret;
778 	if (val > 2)
779 		return -EINVAL;
780 
781 	ret = tb_switch_set_authorized(sw, val);
782 
783 	return ret ? ret : count;
784 }
785 static DEVICE_ATTR_RW(authorized);
786 
787 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
788 			 char *buf)
789 {
790 	struct tb_switch *sw = tb_to_switch(dev);
791 
792 	return sprintf(buf, "%u\n", sw->boot);
793 }
794 static DEVICE_ATTR_RO(boot);
795 
796 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
797 			   char *buf)
798 {
799 	struct tb_switch *sw = tb_to_switch(dev);
800 
801 	return sprintf(buf, "%#x\n", sw->device);
802 }
803 static DEVICE_ATTR_RO(device);
804 
805 static ssize_t
806 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
807 {
808 	struct tb_switch *sw = tb_to_switch(dev);
809 
810 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
811 }
812 static DEVICE_ATTR_RO(device_name);
813 
814 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
815 			char *buf)
816 {
817 	struct tb_switch *sw = tb_to_switch(dev);
818 	ssize_t ret;
819 
820 	if (mutex_lock_interruptible(&switch_lock))
821 		return -ERESTARTSYS;
822 
823 	if (sw->key)
824 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
825 	else
826 		ret = sprintf(buf, "\n");
827 
828 	mutex_unlock(&switch_lock);
829 	return ret;
830 }
831 
832 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
833 			 const char *buf, size_t count)
834 {
835 	struct tb_switch *sw = tb_to_switch(dev);
836 	u8 key[TB_SWITCH_KEY_SIZE];
837 	ssize_t ret = count;
838 	bool clear = false;
839 
840 	if (!strcmp(buf, "\n"))
841 		clear = true;
842 	else if (hex2bin(key, buf, sizeof(key)))
843 		return -EINVAL;
844 
845 	if (mutex_lock_interruptible(&switch_lock))
846 		return -ERESTARTSYS;
847 
848 	if (sw->authorized) {
849 		ret = -EBUSY;
850 	} else {
851 		kfree(sw->key);
852 		if (clear) {
853 			sw->key = NULL;
854 		} else {
855 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
856 			if (!sw->key)
857 				ret = -ENOMEM;
858 		}
859 	}
860 
861 	mutex_unlock(&switch_lock);
862 	return ret;
863 }
864 static DEVICE_ATTR(key, 0600, key_show, key_store);
865 
866 static void nvm_authenticate_start(struct tb_switch *sw)
867 {
868 	struct pci_dev *root_port;
869 
870 	/*
871 	 * During host router NVM upgrade we should not allow root port to
872 	 * go into D3cold because some root ports cannot trigger PME
873 	 * itself. To be on the safe side keep the root port in D0 during
874 	 * the whole upgrade process.
875 	 */
876 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
877 	if (root_port)
878 		pm_runtime_get_noresume(&root_port->dev);
879 }
880 
881 static void nvm_authenticate_complete(struct tb_switch *sw)
882 {
883 	struct pci_dev *root_port;
884 
885 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
886 	if (root_port)
887 		pm_runtime_put(&root_port->dev);
888 }
889 
890 static ssize_t nvm_authenticate_show(struct device *dev,
891 	struct device_attribute *attr, char *buf)
892 {
893 	struct tb_switch *sw = tb_to_switch(dev);
894 	u32 status;
895 
896 	nvm_get_auth_status(sw, &status);
897 	return sprintf(buf, "%#x\n", status);
898 }
899 
900 static ssize_t nvm_authenticate_store(struct device *dev,
901 	struct device_attribute *attr, const char *buf, size_t count)
902 {
903 	struct tb_switch *sw = tb_to_switch(dev);
904 	bool val;
905 	int ret;
906 
907 	if (mutex_lock_interruptible(&switch_lock))
908 		return -ERESTARTSYS;
909 
910 	/* If NVMem devices are not yet added */
911 	if (!sw->nvm) {
912 		ret = -EAGAIN;
913 		goto exit_unlock;
914 	}
915 
916 	ret = kstrtobool(buf, &val);
917 	if (ret)
918 		goto exit_unlock;
919 
920 	/* Always clear the authentication status */
921 	nvm_clear_auth_status(sw);
922 
923 	if (val) {
924 		if (!sw->nvm->buf) {
925 			ret = -EINVAL;
926 			goto exit_unlock;
927 		}
928 
929 		pm_runtime_get_sync(&sw->dev);
930 		ret = nvm_validate_and_write(sw);
931 		if (ret) {
932 			pm_runtime_mark_last_busy(&sw->dev);
933 			pm_runtime_put_autosuspend(&sw->dev);
934 			goto exit_unlock;
935 		}
936 
937 		sw->nvm->authenticating = true;
938 
939 		if (!tb_route(sw)) {
940 			/*
941 			 * Keep root port from suspending as long as the
942 			 * NVM upgrade process is running.
943 			 */
944 			nvm_authenticate_start(sw);
945 			ret = nvm_authenticate_host(sw);
946 			if (ret)
947 				nvm_authenticate_complete(sw);
948 		} else {
949 			ret = nvm_authenticate_device(sw);
950 		}
951 		pm_runtime_mark_last_busy(&sw->dev);
952 		pm_runtime_put_autosuspend(&sw->dev);
953 	}
954 
955 exit_unlock:
956 	mutex_unlock(&switch_lock);
957 
958 	if (ret)
959 		return ret;
960 	return count;
961 }
962 static DEVICE_ATTR_RW(nvm_authenticate);
963 
964 static ssize_t nvm_version_show(struct device *dev,
965 				struct device_attribute *attr, char *buf)
966 {
967 	struct tb_switch *sw = tb_to_switch(dev);
968 	int ret;
969 
970 	if (mutex_lock_interruptible(&switch_lock))
971 		return -ERESTARTSYS;
972 
973 	if (sw->safe_mode)
974 		ret = -ENODATA;
975 	else if (!sw->nvm)
976 		ret = -EAGAIN;
977 	else
978 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
979 
980 	mutex_unlock(&switch_lock);
981 
982 	return ret;
983 }
984 static DEVICE_ATTR_RO(nvm_version);
985 
986 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
987 			   char *buf)
988 {
989 	struct tb_switch *sw = tb_to_switch(dev);
990 
991 	return sprintf(buf, "%#x\n", sw->vendor);
992 }
993 static DEVICE_ATTR_RO(vendor);
994 
995 static ssize_t
996 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
997 {
998 	struct tb_switch *sw = tb_to_switch(dev);
999 
1000 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1001 }
1002 static DEVICE_ATTR_RO(vendor_name);
1003 
1004 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1005 			      char *buf)
1006 {
1007 	struct tb_switch *sw = tb_to_switch(dev);
1008 
1009 	return sprintf(buf, "%pUb\n", sw->uuid);
1010 }
1011 static DEVICE_ATTR_RO(unique_id);
1012 
1013 static struct attribute *switch_attrs[] = {
1014 	&dev_attr_authorized.attr,
1015 	&dev_attr_boot.attr,
1016 	&dev_attr_device.attr,
1017 	&dev_attr_device_name.attr,
1018 	&dev_attr_key.attr,
1019 	&dev_attr_nvm_authenticate.attr,
1020 	&dev_attr_nvm_version.attr,
1021 	&dev_attr_vendor.attr,
1022 	&dev_attr_vendor_name.attr,
1023 	&dev_attr_unique_id.attr,
1024 	NULL,
1025 };
1026 
1027 static umode_t switch_attr_is_visible(struct kobject *kobj,
1028 				      struct attribute *attr, int n)
1029 {
1030 	struct device *dev = container_of(kobj, struct device, kobj);
1031 	struct tb_switch *sw = tb_to_switch(dev);
1032 
1033 	if (attr == &dev_attr_key.attr) {
1034 		if (tb_route(sw) &&
1035 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1036 		    sw->security_level == TB_SECURITY_SECURE)
1037 			return attr->mode;
1038 		return 0;
1039 	} else if (attr == &dev_attr_nvm_authenticate.attr ||
1040 		   attr == &dev_attr_nvm_version.attr) {
1041 		if (sw->dma_port)
1042 			return attr->mode;
1043 		return 0;
1044 	} else if (attr == &dev_attr_boot.attr) {
1045 		if (tb_route(sw))
1046 			return attr->mode;
1047 		return 0;
1048 	}
1049 
1050 	return sw->safe_mode ? 0 : attr->mode;
1051 }
1052 
1053 static struct attribute_group switch_group = {
1054 	.is_visible = switch_attr_is_visible,
1055 	.attrs = switch_attrs,
1056 };
1057 
1058 static const struct attribute_group *switch_groups[] = {
1059 	&switch_group,
1060 	NULL,
1061 };
1062 
1063 static void tb_switch_release(struct device *dev)
1064 {
1065 	struct tb_switch *sw = tb_to_switch(dev);
1066 
1067 	dma_port_free(sw->dma_port);
1068 
1069 	kfree(sw->uuid);
1070 	kfree(sw->device_name);
1071 	kfree(sw->vendor_name);
1072 	kfree(sw->ports);
1073 	kfree(sw->drom);
1074 	kfree(sw->key);
1075 	kfree(sw);
1076 }
1077 
1078 /*
1079  * Currently only need to provide the callbacks. Everything else is handled
1080  * in the connection manager.
1081  */
1082 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1083 {
1084 	return 0;
1085 }
1086 
1087 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1088 {
1089 	return 0;
1090 }
1091 
1092 static const struct dev_pm_ops tb_switch_pm_ops = {
1093 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1094 			   NULL)
1095 };
1096 
1097 struct device_type tb_switch_type = {
1098 	.name = "thunderbolt_device",
1099 	.release = tb_switch_release,
1100 	.pm = &tb_switch_pm_ops,
1101 };
1102 
1103 static int tb_switch_get_generation(struct tb_switch *sw)
1104 {
1105 	switch (sw->config.device_id) {
1106 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1107 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1108 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1109 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1110 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1111 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1112 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1113 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1114 		return 1;
1115 
1116 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1117 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1118 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1119 		return 2;
1120 
1121 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1122 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1123 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1124 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1125 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1126 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1127 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1128 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1129 		return 3;
1130 
1131 	default:
1132 		/*
1133 		 * For unknown switches assume generation to be 1 to be
1134 		 * on the safe side.
1135 		 */
1136 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1137 			   sw->config.device_id);
1138 		return 1;
1139 	}
1140 }
1141 
1142 /**
1143  * tb_switch_alloc() - allocate a switch
1144  * @tb: Pointer to the owning domain
1145  * @parent: Parent device for this switch
1146  * @route: Route string for this switch
1147  *
1148  * Allocates and initializes a switch. Will not upload configuration to
1149  * the switch. For that you need to call tb_switch_configure()
1150  * separately. The returned switch should be released by calling
1151  * tb_switch_put().
1152  *
1153  * Return: Pointer to the allocated switch or %NULL in case of failure
1154  */
1155 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1156 				  u64 route)
1157 {
1158 	int i;
1159 	int cap;
1160 	struct tb_switch *sw;
1161 	int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1162 	if (upstream_port < 0)
1163 		return NULL;
1164 
1165 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1166 	if (!sw)
1167 		return NULL;
1168 
1169 	sw->tb = tb;
1170 	if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1171 		goto err_free_sw_ports;
1172 
1173 	tb_dbg(tb, "current switch config:\n");
1174 	tb_dump_switch(tb, &sw->config);
1175 
1176 	/* configure switch */
1177 	sw->config.upstream_port_number = upstream_port;
1178 	sw->config.depth = tb_route_length(route);
1179 	sw->config.route_lo = route;
1180 	sw->config.route_hi = route >> 32;
1181 	sw->config.enabled = 0;
1182 
1183 	/* initialize ports */
1184 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1185 				GFP_KERNEL);
1186 	if (!sw->ports)
1187 		goto err_free_sw_ports;
1188 
1189 	for (i = 0; i <= sw->config.max_port_number; i++) {
1190 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1191 		sw->ports[i].sw = sw;
1192 		sw->ports[i].port = i;
1193 	}
1194 
1195 	sw->generation = tb_switch_get_generation(sw);
1196 
1197 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1198 	if (cap < 0) {
1199 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1200 		goto err_free_sw_ports;
1201 	}
1202 	sw->cap_plug_events = cap;
1203 
1204 	/* Root switch is always authorized */
1205 	if (!route)
1206 		sw->authorized = true;
1207 
1208 	device_initialize(&sw->dev);
1209 	sw->dev.parent = parent;
1210 	sw->dev.bus = &tb_bus_type;
1211 	sw->dev.type = &tb_switch_type;
1212 	sw->dev.groups = switch_groups;
1213 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1214 
1215 	return sw;
1216 
1217 err_free_sw_ports:
1218 	kfree(sw->ports);
1219 	kfree(sw);
1220 
1221 	return NULL;
1222 }
1223 
1224 /**
1225  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1226  * @tb: Pointer to the owning domain
1227  * @parent: Parent device for this switch
1228  * @route: Route string for this switch
1229  *
1230  * This creates a switch in safe mode. This means the switch pretty much
1231  * lacks all capabilities except DMA configuration port before it is
1232  * flashed with a valid NVM firmware.
1233  *
1234  * The returned switch must be released by calling tb_switch_put().
1235  *
1236  * Return: Pointer to the allocated switch or %NULL in case of failure
1237  */
1238 struct tb_switch *
1239 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1240 {
1241 	struct tb_switch *sw;
1242 
1243 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1244 	if (!sw)
1245 		return NULL;
1246 
1247 	sw->tb = tb;
1248 	sw->config.depth = tb_route_length(route);
1249 	sw->config.route_hi = upper_32_bits(route);
1250 	sw->config.route_lo = lower_32_bits(route);
1251 	sw->safe_mode = true;
1252 
1253 	device_initialize(&sw->dev);
1254 	sw->dev.parent = parent;
1255 	sw->dev.bus = &tb_bus_type;
1256 	sw->dev.type = &tb_switch_type;
1257 	sw->dev.groups = switch_groups;
1258 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1259 
1260 	return sw;
1261 }
1262 
1263 /**
1264  * tb_switch_configure() - Uploads configuration to the switch
1265  * @sw: Switch to configure
1266  *
1267  * Call this function before the switch is added to the system. It will
1268  * upload configuration to the switch and makes it available for the
1269  * connection manager to use.
1270  *
1271  * Return: %0 in case of success and negative errno in case of failure
1272  */
1273 int tb_switch_configure(struct tb_switch *sw)
1274 {
1275 	struct tb *tb = sw->tb;
1276 	u64 route;
1277 	int ret;
1278 
1279 	route = tb_route(sw);
1280 	tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1281 	       route, tb_route_length(route), sw->config.upstream_port_number);
1282 
1283 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1284 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1285 			   sw->config.vendor_id);
1286 
1287 	sw->config.enabled = 1;
1288 
1289 	/* upload configuration */
1290 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1291 	if (ret)
1292 		return ret;
1293 
1294 	return tb_plug_events_active(sw, true);
1295 }
1296 
1297 static void tb_switch_set_uuid(struct tb_switch *sw)
1298 {
1299 	u32 uuid[4];
1300 	int cap;
1301 
1302 	if (sw->uuid)
1303 		return;
1304 
1305 	/*
1306 	 * The newer controllers include fused UUID as part of link
1307 	 * controller specific registers
1308 	 */
1309 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1310 	if (cap > 0) {
1311 		tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1312 	} else {
1313 		/*
1314 		 * ICM generates UUID based on UID and fills the upper
1315 		 * two words with ones. This is not strictly following
1316 		 * UUID format but we want to be compatible with it so
1317 		 * we do the same here.
1318 		 */
1319 		uuid[0] = sw->uid & 0xffffffff;
1320 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1321 		uuid[2] = 0xffffffff;
1322 		uuid[3] = 0xffffffff;
1323 	}
1324 
1325 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1326 }
1327 
1328 static int tb_switch_add_dma_port(struct tb_switch *sw)
1329 {
1330 	u32 status;
1331 	int ret;
1332 
1333 	switch (sw->generation) {
1334 	case 3:
1335 		break;
1336 
1337 	case 2:
1338 		/* Only root switch can be upgraded */
1339 		if (tb_route(sw))
1340 			return 0;
1341 		break;
1342 
1343 	default:
1344 		/*
1345 		 * DMA port is the only thing available when the switch
1346 		 * is in safe mode.
1347 		 */
1348 		if (!sw->safe_mode)
1349 			return 0;
1350 		break;
1351 	}
1352 
1353 	if (sw->no_nvm_upgrade)
1354 		return 0;
1355 
1356 	sw->dma_port = dma_port_alloc(sw);
1357 	if (!sw->dma_port)
1358 		return 0;
1359 
1360 	/*
1361 	 * Check status of the previous flash authentication. If there
1362 	 * is one we need to power cycle the switch in any case to make
1363 	 * it functional again.
1364 	 */
1365 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1366 	if (ret <= 0)
1367 		return ret;
1368 
1369 	/* Now we can allow root port to suspend again */
1370 	if (!tb_route(sw))
1371 		nvm_authenticate_complete(sw);
1372 
1373 	if (status) {
1374 		tb_sw_info(sw, "switch flash authentication failed\n");
1375 		tb_switch_set_uuid(sw);
1376 		nvm_set_auth_status(sw, status);
1377 	}
1378 
1379 	tb_sw_info(sw, "power cycling the switch now\n");
1380 	dma_port_power_cycle(sw->dma_port);
1381 
1382 	/*
1383 	 * We return error here which causes the switch adding failure.
1384 	 * It should appear back after power cycle is complete.
1385 	 */
1386 	return -ESHUTDOWN;
1387 }
1388 
1389 /**
1390  * tb_switch_add() - Add a switch to the domain
1391  * @sw: Switch to add
1392  *
1393  * This is the last step in adding switch to the domain. It will read
1394  * identification information from DROM and initializes ports so that
1395  * they can be used to connect other switches. The switch will be
1396  * exposed to the userspace when this function successfully returns. To
1397  * remove and release the switch, call tb_switch_remove().
1398  *
1399  * Return: %0 in case of success and negative errno in case of failure
1400  */
1401 int tb_switch_add(struct tb_switch *sw)
1402 {
1403 	int i, ret;
1404 
1405 	/*
1406 	 * Initialize DMA control port now before we read DROM. Recent
1407 	 * host controllers have more complete DROM on NVM that includes
1408 	 * vendor and model identification strings which we then expose
1409 	 * to the userspace. NVM can be accessed through DMA
1410 	 * configuration based mailbox.
1411 	 */
1412 	ret = tb_switch_add_dma_port(sw);
1413 	if (ret)
1414 		return ret;
1415 
1416 	if (!sw->safe_mode) {
1417 		/* read drom */
1418 		ret = tb_drom_read(sw);
1419 		if (ret) {
1420 			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1421 			return ret;
1422 		}
1423 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1424 
1425 		tb_switch_set_uuid(sw);
1426 
1427 		for (i = 0; i <= sw->config.max_port_number; i++) {
1428 			if (sw->ports[i].disabled) {
1429 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1430 				continue;
1431 			}
1432 			ret = tb_init_port(&sw->ports[i]);
1433 			if (ret)
1434 				return ret;
1435 		}
1436 	}
1437 
1438 	ret = device_add(&sw->dev);
1439 	if (ret)
1440 		return ret;
1441 
1442 	if (tb_route(sw)) {
1443 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1444 			 sw->vendor, sw->device);
1445 		if (sw->vendor_name && sw->device_name)
1446 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1447 				 sw->device_name);
1448 	}
1449 
1450 	ret = tb_switch_nvm_add(sw);
1451 	if (ret) {
1452 		device_del(&sw->dev);
1453 		return ret;
1454 	}
1455 
1456 	pm_runtime_set_active(&sw->dev);
1457 	if (sw->rpm) {
1458 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1459 		pm_runtime_use_autosuspend(&sw->dev);
1460 		pm_runtime_mark_last_busy(&sw->dev);
1461 		pm_runtime_enable(&sw->dev);
1462 		pm_request_autosuspend(&sw->dev);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * tb_switch_remove() - Remove and release a switch
1470  * @sw: Switch to remove
1471  *
1472  * This will remove the switch from the domain and release it after last
1473  * reference count drops to zero. If there are switches connected below
1474  * this switch, they will be removed as well.
1475  */
1476 void tb_switch_remove(struct tb_switch *sw)
1477 {
1478 	int i;
1479 
1480 	if (sw->rpm) {
1481 		pm_runtime_get_sync(&sw->dev);
1482 		pm_runtime_disable(&sw->dev);
1483 	}
1484 
1485 	/* port 0 is the switch itself and never has a remote */
1486 	for (i = 1; i <= sw->config.max_port_number; i++) {
1487 		if (tb_is_upstream_port(&sw->ports[i]))
1488 			continue;
1489 		if (sw->ports[i].remote)
1490 			tb_switch_remove(sw->ports[i].remote->sw);
1491 		sw->ports[i].remote = NULL;
1492 		if (sw->ports[i].xdomain)
1493 			tb_xdomain_remove(sw->ports[i].xdomain);
1494 		sw->ports[i].xdomain = NULL;
1495 	}
1496 
1497 	if (!sw->is_unplugged)
1498 		tb_plug_events_active(sw, false);
1499 
1500 	tb_switch_nvm_remove(sw);
1501 
1502 	if (tb_route(sw))
1503 		dev_info(&sw->dev, "device disconnected\n");
1504 	device_unregister(&sw->dev);
1505 }
1506 
1507 /**
1508  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1509  */
1510 void tb_sw_set_unplugged(struct tb_switch *sw)
1511 {
1512 	int i;
1513 	if (sw == sw->tb->root_switch) {
1514 		tb_sw_WARN(sw, "cannot unplug root switch\n");
1515 		return;
1516 	}
1517 	if (sw->is_unplugged) {
1518 		tb_sw_WARN(sw, "is_unplugged already set\n");
1519 		return;
1520 	}
1521 	sw->is_unplugged = true;
1522 	for (i = 0; i <= sw->config.max_port_number; i++) {
1523 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1524 			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1525 	}
1526 }
1527 
1528 int tb_switch_resume(struct tb_switch *sw)
1529 {
1530 	int i, err;
1531 	tb_sw_dbg(sw, "resuming switch\n");
1532 
1533 	/*
1534 	 * Check for UID of the connected switches except for root
1535 	 * switch which we assume cannot be removed.
1536 	 */
1537 	if (tb_route(sw)) {
1538 		u64 uid;
1539 
1540 		err = tb_drom_read_uid_only(sw, &uid);
1541 		if (err) {
1542 			tb_sw_warn(sw, "uid read failed\n");
1543 			return err;
1544 		}
1545 		if (sw->uid != uid) {
1546 			tb_sw_info(sw,
1547 				"changed while suspended (uid %#llx -> %#llx)\n",
1548 				sw->uid, uid);
1549 			return -ENODEV;
1550 		}
1551 	}
1552 
1553 	/* upload configuration */
1554 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1555 	if (err)
1556 		return err;
1557 
1558 	err = tb_plug_events_active(sw, true);
1559 	if (err)
1560 		return err;
1561 
1562 	/* check for surviving downstream switches */
1563 	for (i = 1; i <= sw->config.max_port_number; i++) {
1564 		struct tb_port *port = &sw->ports[i];
1565 		if (tb_is_upstream_port(port))
1566 			continue;
1567 		if (!port->remote)
1568 			continue;
1569 		if (tb_wait_for_port(port, true) <= 0
1570 			|| tb_switch_resume(port->remote->sw)) {
1571 			tb_port_warn(port,
1572 				     "lost during suspend, disconnecting\n");
1573 			tb_sw_set_unplugged(port->remote->sw);
1574 		}
1575 	}
1576 	return 0;
1577 }
1578 
1579 void tb_switch_suspend(struct tb_switch *sw)
1580 {
1581 	int i, err;
1582 	err = tb_plug_events_active(sw, false);
1583 	if (err)
1584 		return;
1585 
1586 	for (i = 1; i <= sw->config.max_port_number; i++) {
1587 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1588 			tb_switch_suspend(sw->ports[i].remote->sw);
1589 	}
1590 	/*
1591 	 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1592 	 * effect?
1593 	 */
1594 }
1595 
1596 struct tb_sw_lookup {
1597 	struct tb *tb;
1598 	u8 link;
1599 	u8 depth;
1600 	const uuid_t *uuid;
1601 	u64 route;
1602 };
1603 
1604 static int tb_switch_match(struct device *dev, void *data)
1605 {
1606 	struct tb_switch *sw = tb_to_switch(dev);
1607 	struct tb_sw_lookup *lookup = data;
1608 
1609 	if (!sw)
1610 		return 0;
1611 	if (sw->tb != lookup->tb)
1612 		return 0;
1613 
1614 	if (lookup->uuid)
1615 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1616 
1617 	if (lookup->route) {
1618 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
1619 		       sw->config.route_hi == upper_32_bits(lookup->route);
1620 	}
1621 
1622 	/* Root switch is matched only by depth */
1623 	if (!lookup->depth)
1624 		return !sw->depth;
1625 
1626 	return sw->link == lookup->link && sw->depth == lookup->depth;
1627 }
1628 
1629 /**
1630  * tb_switch_find_by_link_depth() - Find switch by link and depth
1631  * @tb: Domain the switch belongs
1632  * @link: Link number the switch is connected
1633  * @depth: Depth of the switch in link
1634  *
1635  * Returned switch has reference count increased so the caller needs to
1636  * call tb_switch_put() when done with the switch.
1637  */
1638 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1639 {
1640 	struct tb_sw_lookup lookup;
1641 	struct device *dev;
1642 
1643 	memset(&lookup, 0, sizeof(lookup));
1644 	lookup.tb = tb;
1645 	lookup.link = link;
1646 	lookup.depth = depth;
1647 
1648 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1649 	if (dev)
1650 		return tb_to_switch(dev);
1651 
1652 	return NULL;
1653 }
1654 
1655 /**
1656  * tb_switch_find_by_uuid() - Find switch by UUID
1657  * @tb: Domain the switch belongs
1658  * @uuid: UUID to look for
1659  *
1660  * Returned switch has reference count increased so the caller needs to
1661  * call tb_switch_put() when done with the switch.
1662  */
1663 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1664 {
1665 	struct tb_sw_lookup lookup;
1666 	struct device *dev;
1667 
1668 	memset(&lookup, 0, sizeof(lookup));
1669 	lookup.tb = tb;
1670 	lookup.uuid = uuid;
1671 
1672 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1673 	if (dev)
1674 		return tb_to_switch(dev);
1675 
1676 	return NULL;
1677 }
1678 
1679 /**
1680  * tb_switch_find_by_route() - Find switch by route string
1681  * @tb: Domain the switch belongs
1682  * @route: Route string to look for
1683  *
1684  * Returned switch has reference count increased so the caller needs to
1685  * call tb_switch_put() when done with the switch.
1686  */
1687 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
1688 {
1689 	struct tb_sw_lookup lookup;
1690 	struct device *dev;
1691 
1692 	if (!route)
1693 		return tb_switch_get(tb->root_switch);
1694 
1695 	memset(&lookup, 0, sizeof(lookup));
1696 	lookup.tb = tb;
1697 	lookup.route = route;
1698 
1699 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1700 	if (dev)
1701 		return tb_to_switch(dev);
1702 
1703 	return NULL;
1704 }
1705 
1706 void tb_switch_exit(void)
1707 {
1708 	ida_destroy(&nvm_ida);
1709 }
1710