xref: /openbmc/linux/drivers/thunderbolt/nvm.c (revision 6f2bde9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM helpers
4  *
5  * Copyright (C) 2020, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/idr.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 
13 #include "tb.h"
14 
15 /* Intel specific NVM offsets */
16 #define INTEL_NVM_DEVID			0x05
17 #define INTEL_NVM_VERSION		0x08
18 #define INTEL_NVM_CSS			0x10
19 #define INTEL_NVM_FLASH_SIZE		0x45
20 
21 /* ASMedia specific NVM offsets */
22 #define ASMEDIA_NVM_DATE		0x1c
23 #define ASMEDIA_NVM_VERSION		0x28
24 
25 static DEFINE_IDA(nvm_ida);
26 
27 /**
28  * struct tb_nvm_vendor_ops - Vendor specific NVM operations
29  * @read_version: Reads out NVM version from the flash
30  * @validate: Validates the NVM image before update (optional)
31  * @write_headers: Writes headers before the rest of the image (optional)
32  */
33 struct tb_nvm_vendor_ops {
34 	int (*read_version)(struct tb_nvm *nvm);
35 	int (*validate)(struct tb_nvm *nvm);
36 	int (*write_headers)(struct tb_nvm *nvm);
37 };
38 
39 /**
40  * struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping
41  * @vendor: Vendor ID
42  * @vops: Vendor specific NVM operations
43  *
44  * Maps vendor ID to NVM vendor operations. If there is no mapping then
45  * NVM firmware upgrade is disabled for the device.
46  */
47 struct tb_nvm_vendor {
48 	u16 vendor;
49 	const struct tb_nvm_vendor_ops *vops;
50 };
51 
52 static int intel_switch_nvm_version(struct tb_nvm *nvm)
53 {
54 	struct tb_switch *sw = tb_to_switch(nvm->dev);
55 	u32 val, nvm_size, hdr_size;
56 	int ret;
57 
58 	/*
59 	 * If the switch is in safe-mode the only accessible portion of
60 	 * the NVM is the non-active one where userspace is expected to
61 	 * write new functional NVM.
62 	 */
63 	if (sw->safe_mode)
64 		return 0;
65 
66 	ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val));
67 	if (ret)
68 		return ret;
69 
70 	hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
71 	nvm_size = (SZ_1M << (val & 7)) / 8;
72 	nvm_size = (nvm_size - hdr_size) / 2;
73 
74 	ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val));
75 	if (ret)
76 		return ret;
77 
78 	nvm->major = (val >> 16) & 0xff;
79 	nvm->minor = (val >> 8) & 0xff;
80 	nvm->active_size = nvm_size;
81 
82 	return 0;
83 }
84 
85 static int intel_switch_nvm_validate(struct tb_nvm *nvm)
86 {
87 	struct tb_switch *sw = tb_to_switch(nvm->dev);
88 	unsigned int image_size, hdr_size;
89 	u16 ds_size, device_id;
90 	u8 *buf = nvm->buf;
91 
92 	image_size = nvm->buf_data_size;
93 
94 	/*
95 	 * FARB pointer must point inside the image and must at least
96 	 * contain parts of the digital section we will be reading here.
97 	 */
98 	hdr_size = (*(u32 *)buf) & 0xffffff;
99 	if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size)
100 		return -EINVAL;
101 
102 	/* Digital section start should be aligned to 4k page */
103 	if (!IS_ALIGNED(hdr_size, SZ_4K))
104 		return -EINVAL;
105 
106 	/*
107 	 * Read digital section size and check that it also fits inside
108 	 * the image.
109 	 */
110 	ds_size = *(u16 *)(buf + hdr_size);
111 	if (ds_size >= image_size)
112 		return -EINVAL;
113 
114 	if (sw->safe_mode)
115 		return 0;
116 
117 	/*
118 	 * Make sure the device ID in the image matches the one
119 	 * we read from the switch config space.
120 	 */
121 	device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID);
122 	if (device_id != sw->config.device_id)
123 		return -EINVAL;
124 
125 	/* Skip headers in the image */
126 	nvm->buf_data_start = buf + hdr_size;
127 	nvm->buf_data_size = image_size - hdr_size;
128 
129 	return 0;
130 }
131 
132 static int intel_switch_nvm_write_headers(struct tb_nvm *nvm)
133 {
134 	struct tb_switch *sw = tb_to_switch(nvm->dev);
135 
136 	if (sw->generation < 3) {
137 		int ret;
138 
139 		/* Write CSS headers first */
140 		ret = dma_port_flash_write(sw->dma_port,
141 			DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS,
142 			DMA_PORT_CSS_MAX_SIZE);
143 		if (ret)
144 			return ret;
145 	}
146 
147 	return 0;
148 }
149 
150 static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = {
151 	.read_version = intel_switch_nvm_version,
152 	.validate = intel_switch_nvm_validate,
153 	.write_headers = intel_switch_nvm_write_headers,
154 };
155 
156 static int asmedia_switch_nvm_version(struct tb_nvm *nvm)
157 {
158 	struct tb_switch *sw = tb_to_switch(nvm->dev);
159 	u32 val;
160 	int ret;
161 
162 	ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val));
163 	if (ret)
164 		return ret;
165 
166 	nvm->major = (val << 16) & 0xff0000;
167 	nvm->major |= val & 0x00ff00;
168 	nvm->major |= (val >> 16) & 0x0000ff;
169 
170 	ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val));
171 	if (ret)
172 		return ret;
173 
174 	nvm->minor = (val << 16) & 0xff0000;
175 	nvm->minor |= val & 0x00ff00;
176 	nvm->minor |= (val >> 16) & 0x0000ff;
177 
178 	/* ASMedia NVM size is fixed to 512k */
179 	nvm->active_size = SZ_512K;
180 
181 	return 0;
182 }
183 
184 static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = {
185 	.read_version = asmedia_switch_nvm_version,
186 };
187 
188 /* Router vendor NVM support table */
189 static const struct tb_nvm_vendor switch_nvm_vendors[] = {
190 	{ 0x174c, &asmedia_switch_nvm_ops },
191 	{ PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops },
192 	{ 0x8087, &intel_switch_nvm_ops },
193 };
194 
195 static int intel_retimer_nvm_version(struct tb_nvm *nvm)
196 {
197 	struct tb_retimer *rt = tb_to_retimer(nvm->dev);
198 	u32 val, nvm_size;
199 	int ret;
200 
201 	ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val));
202 	if (ret)
203 		return ret;
204 
205 	nvm->major = (val >> 16) & 0xff;
206 	nvm->minor = (val >> 8) & 0xff;
207 
208 	ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val));
209 	if (ret)
210 		return ret;
211 
212 	nvm_size = (SZ_1M << (val & 7)) / 8;
213 	nvm_size = (nvm_size - SZ_16K) / 2;
214 	nvm->active_size = nvm_size;
215 
216 	return 0;
217 }
218 
219 static int intel_retimer_nvm_validate(struct tb_nvm *nvm)
220 {
221 	struct tb_retimer *rt = tb_to_retimer(nvm->dev);
222 	unsigned int image_size, hdr_size;
223 	u8 *buf = nvm->buf;
224 	u16 ds_size, device;
225 
226 	image_size = nvm->buf_data_size;
227 
228 	/*
229 	 * FARB pointer must point inside the image and must at least
230 	 * contain parts of the digital section we will be reading here.
231 	 */
232 	hdr_size = (*(u32 *)buf) & 0xffffff;
233 	if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size)
234 		return -EINVAL;
235 
236 	/* Digital section start should be aligned to 4k page */
237 	if (!IS_ALIGNED(hdr_size, SZ_4K))
238 		return -EINVAL;
239 
240 	/*
241 	 * Read digital section size and check that it also fits inside
242 	 * the image.
243 	 */
244 	ds_size = *(u16 *)(buf + hdr_size);
245 	if (ds_size >= image_size)
246 		return -EINVAL;
247 
248 	/*
249 	 * Make sure the device ID in the image matches the retimer
250 	 * hardware.
251 	 */
252 	device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID);
253 	if (device != rt->device)
254 		return -EINVAL;
255 
256 	/* Skip headers in the image */
257 	nvm->buf_data_start = buf + hdr_size;
258 	nvm->buf_data_size = image_size - hdr_size;
259 
260 	return 0;
261 }
262 
263 static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = {
264 	.read_version = intel_retimer_nvm_version,
265 	.validate = intel_retimer_nvm_validate,
266 };
267 
268 /* Retimer vendor NVM support table */
269 static const struct tb_nvm_vendor retimer_nvm_vendors[] = {
270 	{ 0x8087, &intel_retimer_nvm_ops },
271 };
272 
273 /**
274  * tb_nvm_alloc() - Allocate new NVM structure
275  * @dev: Device owning the NVM
276  *
277  * Allocates new NVM structure with unique @id and returns it. In case
278  * of error returns ERR_PTR(). Specifically returns %-EOPNOTSUPP if the
279  * NVM format of the @dev is not known by the kernel.
280  */
281 struct tb_nvm *tb_nvm_alloc(struct device *dev)
282 {
283 	const struct tb_nvm_vendor_ops *vops = NULL;
284 	struct tb_nvm *nvm;
285 	int ret, i;
286 
287 	if (tb_is_switch(dev)) {
288 		const struct tb_switch *sw = tb_to_switch(dev);
289 
290 		for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) {
291 			const struct tb_nvm_vendor *v = &switch_nvm_vendors[i];
292 
293 			if (v->vendor == sw->config.vendor_id) {
294 				vops = v->vops;
295 				break;
296 			}
297 		}
298 
299 		if (!vops) {
300 			tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n",
301 				  sw->config.vendor_id);
302 			return ERR_PTR(-EOPNOTSUPP);
303 		}
304 	} else if (tb_is_retimer(dev)) {
305 		const struct tb_retimer *rt = tb_to_retimer(dev);
306 
307 		for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) {
308 			const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i];
309 
310 			if (v->vendor == rt->vendor) {
311 				vops = v->vops;
312 				break;
313 			}
314 		}
315 
316 		if (!vops) {
317 			dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n",
318 				rt->vendor);
319 			return ERR_PTR(-EOPNOTSUPP);
320 		}
321 	} else {
322 		return ERR_PTR(-EOPNOTSUPP);
323 	}
324 
325 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
326 	if (!nvm)
327 		return ERR_PTR(-ENOMEM);
328 
329 	ret = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
330 	if (ret < 0) {
331 		kfree(nvm);
332 		return ERR_PTR(ret);
333 	}
334 
335 	nvm->id = ret;
336 	nvm->dev = dev;
337 	nvm->vops = vops;
338 
339 	return nvm;
340 }
341 
342 /**
343  * tb_nvm_read_version() - Read and populate NVM version
344  * @nvm: NVM structure
345  *
346  * Uses vendor specific means to read out and fill in the existing
347  * active NVM version. Returns %0 in case of success and negative errno
348  * otherwise.
349  */
350 int tb_nvm_read_version(struct tb_nvm *nvm)
351 {
352 	const struct tb_nvm_vendor_ops *vops = nvm->vops;
353 
354 	if (vops && vops->read_version)
355 		return vops->read_version(nvm);
356 
357 	return -EOPNOTSUPP;
358 }
359 
360 /**
361  * tb_nvm_validate() - Validate new NVM image
362  * @nvm: NVM structure
363  *
364  * Runs vendor specific validation over the new NVM image and if all
365  * checks pass returns %0. As side effect updates @nvm->buf_data_start
366  * and @nvm->buf_data_size fields to match the actual data to be written
367  * to the NVM.
368  *
369  * If the validation does not pass then returns negative errno.
370  */
371 int tb_nvm_validate(struct tb_nvm *nvm)
372 {
373 	const struct tb_nvm_vendor_ops *vops = nvm->vops;
374 	unsigned int image_size;
375 	u8 *buf = nvm->buf;
376 
377 	if (!buf)
378 		return -EINVAL;
379 	if (!vops)
380 		return -EOPNOTSUPP;
381 
382 	/* Just do basic image size checks */
383 	image_size = nvm->buf_data_size;
384 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
385 		return -EINVAL;
386 
387 	/*
388 	 * Set the default data start in the buffer. The validate method
389 	 * below can change this if needed.
390 	 */
391 	nvm->buf_data_start = buf;
392 
393 	return vops->validate ? vops->validate(nvm) : 0;
394 }
395 
396 /**
397  * tb_nvm_write_headers() - Write headers before the rest of the image
398  * @nvm: NVM structure
399  *
400  * If the vendor NVM format requires writing headers before the rest of
401  * the image, this function does that. Can be called even if the device
402  * does not need this.
403  *
404  * Returns %0 in case of success and negative errno otherwise.
405  */
406 int tb_nvm_write_headers(struct tb_nvm *nvm)
407 {
408 	const struct tb_nvm_vendor_ops *vops = nvm->vops;
409 
410 	return vops->write_headers ? vops->write_headers(nvm) : 0;
411 }
412 
413 /**
414  * tb_nvm_add_active() - Adds active NVMem device to NVM
415  * @nvm: NVM structure
416  * @reg_read: Pointer to the function to read the NVM (passed directly to the
417  *	      NVMem device)
418  *
419  * Registers new active NVmem device for @nvm. The @reg_read is called
420  * directly from NVMem so it must handle possible concurrent access if
421  * needed. The first parameter passed to @reg_read is @nvm structure.
422  * Returns %0 in success and negative errno otherwise.
423  */
424 int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read)
425 {
426 	struct nvmem_config config;
427 	struct nvmem_device *nvmem;
428 
429 	memset(&config, 0, sizeof(config));
430 
431 	config.name = "nvm_active";
432 	config.reg_read = reg_read;
433 	config.read_only = true;
434 	config.id = nvm->id;
435 	config.stride = 4;
436 	config.word_size = 4;
437 	config.size = nvm->active_size;
438 	config.dev = nvm->dev;
439 	config.owner = THIS_MODULE;
440 	config.priv = nvm;
441 
442 	nvmem = nvmem_register(&config);
443 	if (IS_ERR(nvmem))
444 		return PTR_ERR(nvmem);
445 
446 	nvm->active = nvmem;
447 	return 0;
448 }
449 
450 /**
451  * tb_nvm_write_buf() - Write data to @nvm buffer
452  * @nvm: NVM structure
453  * @offset: Offset where to write the data
454  * @val: Data buffer to write
455  * @bytes: Number of bytes to write
456  *
457  * Helper function to cache the new NVM image before it is actually
458  * written to the flash. Copies @bytes from @val to @nvm->buf starting
459  * from @offset.
460  */
461 int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val,
462 		     size_t bytes)
463 {
464 	if (!nvm->buf) {
465 		nvm->buf = vmalloc(NVM_MAX_SIZE);
466 		if (!nvm->buf)
467 			return -ENOMEM;
468 	}
469 
470 	nvm->flushed = false;
471 	nvm->buf_data_size = offset + bytes;
472 	memcpy(nvm->buf + offset, val, bytes);
473 	return 0;
474 }
475 
476 /**
477  * tb_nvm_add_non_active() - Adds non-active NVMem device to NVM
478  * @nvm: NVM structure
479  * @reg_write: Pointer to the function to write the NVM (passed directly
480  *	       to the NVMem device)
481  *
482  * Registers new non-active NVmem device for @nvm. The @reg_write is called
483  * directly from NVMem so it must handle possible concurrent access if
484  * needed. The first parameter passed to @reg_write is @nvm structure.
485  * The size of the NVMem device is set to %NVM_MAX_SIZE.
486  *
487  * Returns %0 in success and negative errno otherwise.
488  */
489 int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write)
490 {
491 	struct nvmem_config config;
492 	struct nvmem_device *nvmem;
493 
494 	memset(&config, 0, sizeof(config));
495 
496 	config.name = "nvm_non_active";
497 	config.reg_write = reg_write;
498 	config.root_only = true;
499 	config.id = nvm->id;
500 	config.stride = 4;
501 	config.word_size = 4;
502 	config.size = NVM_MAX_SIZE;
503 	config.dev = nvm->dev;
504 	config.owner = THIS_MODULE;
505 	config.priv = nvm;
506 
507 	nvmem = nvmem_register(&config);
508 	if (IS_ERR(nvmem))
509 		return PTR_ERR(nvmem);
510 
511 	nvm->non_active = nvmem;
512 	return 0;
513 }
514 
515 /**
516  * tb_nvm_free() - Release NVM and its resources
517  * @nvm: NVM structure to release
518  *
519  * Releases NVM and the NVMem devices if they were registered.
520  */
521 void tb_nvm_free(struct tb_nvm *nvm)
522 {
523 	if (nvm) {
524 		nvmem_unregister(nvm->non_active);
525 		nvmem_unregister(nvm->active);
526 		vfree(nvm->buf);
527 		ida_simple_remove(&nvm_ida, nvm->id);
528 	}
529 	kfree(nvm);
530 }
531 
532 /**
533  * tb_nvm_read_data() - Read data from NVM
534  * @address: Start address on the flash
535  * @buf: Buffer where the read data is copied
536  * @size: Size of the buffer in bytes
537  * @retries: Number of retries if block read fails
538  * @read_block: Function that reads block from the flash
539  * @read_block_data: Data passsed to @read_block
540  *
541  * This is a generic function that reads data from NVM or NVM like
542  * device.
543  *
544  * Returns %0 on success and negative errno otherwise.
545  */
546 int tb_nvm_read_data(unsigned int address, void *buf, size_t size,
547 		     unsigned int retries, read_block_fn read_block,
548 		     void *read_block_data)
549 {
550 	do {
551 		unsigned int dwaddress, dwords, offset;
552 		u8 data[NVM_DATA_DWORDS * 4];
553 		size_t nbytes;
554 		int ret;
555 
556 		offset = address & 3;
557 		nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4);
558 
559 		dwaddress = address / 4;
560 		dwords = ALIGN(nbytes, 4) / 4;
561 
562 		ret = read_block(read_block_data, dwaddress, data, dwords);
563 		if (ret) {
564 			if (ret != -ENODEV && retries--)
565 				continue;
566 			return ret;
567 		}
568 
569 		nbytes -= offset;
570 		memcpy(buf, data + offset, nbytes);
571 
572 		size -= nbytes;
573 		address += nbytes;
574 		buf += nbytes;
575 	} while (size > 0);
576 
577 	return 0;
578 }
579 
580 /**
581  * tb_nvm_write_data() - Write data to NVM
582  * @address: Start address on the flash
583  * @buf: Buffer where the data is copied from
584  * @size: Size of the buffer in bytes
585  * @retries: Number of retries if the block write fails
586  * @write_block: Function that writes block to the flash
587  * @write_block_data: Data passwd to @write_block
588  *
589  * This is generic function that writes data to NVM or NVM like device.
590  *
591  * Returns %0 on success and negative errno otherwise.
592  */
593 int tb_nvm_write_data(unsigned int address, const void *buf, size_t size,
594 		      unsigned int retries, write_block_fn write_block,
595 		      void *write_block_data)
596 {
597 	do {
598 		unsigned int offset, dwaddress;
599 		u8 data[NVM_DATA_DWORDS * 4];
600 		size_t nbytes;
601 		int ret;
602 
603 		offset = address & 3;
604 		nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4);
605 
606 		memcpy(data + offset, buf, nbytes);
607 
608 		dwaddress = address / 4;
609 		ret = write_block(write_block_data, dwaddress, data, nbytes / 4);
610 		if (ret) {
611 			if (ret == -ETIMEDOUT) {
612 				if (retries--)
613 					continue;
614 				ret = -EIO;
615 			}
616 			return ret;
617 		}
618 
619 		size -= nbytes;
620 		address += nbytes;
621 		buf += nbytes;
622 	} while (size > 0);
623 
624 	return 0;
625 }
626 
627 void tb_nvm_exit(void)
628 {
629 	ida_destroy(&nvm_ida);
630 }
631