xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21 
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25 
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27 
28 #define RING_FIRST_USABLE_HOPID	1
29 
30 /*
31  * Minimal number of vectors when we use MSI-X. Two for control channel
32  * Rx/Tx and the rest four are for cross domain DMA paths.
33  */
34 #define MSIX_MIN_VECS		6
35 #define MSIX_MAX_VECS		16
36 
37 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
38 
39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41 	int bit = ring->hop;
42 	if (!ring->is_tx)
43 		bit += ring->nhi->hop_count;
44 	return bit;
45 }
46 
47 /**
48  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49  *
50  * ring->nhi->lock must be held.
51  */
52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54 	int reg = REG_RING_INTERRUPT_BASE +
55 		  ring_interrupt_index(ring) / 32 * 4;
56 	int bit = ring_interrupt_index(ring) & 31;
57 	int mask = 1 << bit;
58 	u32 old, new;
59 
60 	if (ring->irq > 0) {
61 		u32 step, shift, ivr, misc;
62 		void __iomem *ivr_base;
63 		int index;
64 
65 		if (ring->is_tx)
66 			index = ring->hop;
67 		else
68 			index = ring->hop + ring->nhi->hop_count;
69 
70 		/*
71 		 * Ask the hardware to clear interrupt status bits automatically
72 		 * since we already know which interrupt was triggered.
73 		 */
74 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75 		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76 			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77 			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78 		}
79 
80 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83 		ivr = ioread32(ivr_base + step);
84 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85 		if (active)
86 			ivr |= ring->vector << shift;
87 		iowrite32(ivr, ivr_base + step);
88 	}
89 
90 	old = ioread32(ring->nhi->iobase + reg);
91 	if (active)
92 		new = old | mask;
93 	else
94 		new = old & ~mask;
95 
96 	dev_dbg(&ring->nhi->pdev->dev,
97 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98 		active ? "enabling" : "disabling", reg, bit, old, new);
99 
100 	if (new == old)
101 		dev_WARN(&ring->nhi->pdev->dev,
102 					 "interrupt for %s %d is already %s\n",
103 					 RING_TYPE(ring), ring->hop,
104 					 active ? "enabled" : "disabled");
105 	iowrite32(new, ring->nhi->iobase + reg);
106 }
107 
108 /**
109  * nhi_disable_interrupts() - disable interrupts for all rings
110  *
111  * Use only during init and shutdown.
112  */
113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115 	int i = 0;
116 	/* disable interrupts */
117 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119 
120 	/* clear interrupt status bits */
121 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124 
125 /* ring helper methods */
126 
127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129 	void __iomem *io = ring->nhi->iobase;
130 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131 	io += ring->hop * 16;
132 	return io;
133 }
134 
135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137 	void __iomem *io = ring->nhi->iobase;
138 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139 	io += ring->hop * 32;
140 	return io;
141 }
142 
143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145 	/*
146 	 * The other 16-bits in the register is read-only and writes to it
147 	 * are ignored by the hardware so we can save one ioread32() by
148 	 * filling the read-only bits with zeroes.
149 	 */
150 	iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152 
153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155 	/* See ring_iowrite_cons() above for explanation */
156 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158 
159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161 	iowrite32(value, ring_desc_base(ring) + offset);
162 }
163 
164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166 	iowrite32(value, ring_desc_base(ring) + offset);
167 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169 
170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172 	iowrite32(value, ring_options_base(ring) + offset);
173 }
174 
175 static bool ring_full(struct tb_ring *ring)
176 {
177 	return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179 
180 static bool ring_empty(struct tb_ring *ring)
181 {
182 	return ring->head == ring->tail;
183 }
184 
185 /**
186  * ring_write_descriptors() - post frames from ring->queue to the controller
187  *
188  * ring->lock is held.
189  */
190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192 	struct ring_frame *frame, *n;
193 	struct ring_desc *descriptor;
194 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
195 		if (ring_full(ring))
196 			break;
197 		list_move_tail(&frame->list, &ring->in_flight);
198 		descriptor = &ring->descriptors[ring->head];
199 		descriptor->phys = frame->buffer_phy;
200 		descriptor->time = 0;
201 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202 		if (ring->is_tx) {
203 			descriptor->length = frame->size;
204 			descriptor->eof = frame->eof;
205 			descriptor->sof = frame->sof;
206 		}
207 		ring->head = (ring->head + 1) % ring->size;
208 		if (ring->is_tx)
209 			ring_iowrite_prod(ring, ring->head);
210 		else
211 			ring_iowrite_cons(ring, ring->head);
212 	}
213 }
214 
215 /**
216  * ring_work() - progress completed frames
217  *
218  * If the ring is shutting down then all frames are marked as canceled and
219  * their callbacks are invoked.
220  *
221  * Otherwise we collect all completed frame from the ring buffer, write new
222  * frame to the ring buffer and invoke the callbacks for the completed frames.
223  */
224 static void ring_work(struct work_struct *work)
225 {
226 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
227 	struct ring_frame *frame;
228 	bool canceled = false;
229 	unsigned long flags;
230 	LIST_HEAD(done);
231 
232 	spin_lock_irqsave(&ring->lock, flags);
233 
234 	if (!ring->running) {
235 		/*  Move all frames to done and mark them as canceled. */
236 		list_splice_tail_init(&ring->in_flight, &done);
237 		list_splice_tail_init(&ring->queue, &done);
238 		canceled = true;
239 		goto invoke_callback;
240 	}
241 
242 	while (!ring_empty(ring)) {
243 		if (!(ring->descriptors[ring->tail].flags
244 				& RING_DESC_COMPLETED))
245 			break;
246 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
247 					 list);
248 		list_move_tail(&frame->list, &done);
249 		if (!ring->is_tx) {
250 			frame->size = ring->descriptors[ring->tail].length;
251 			frame->eof = ring->descriptors[ring->tail].eof;
252 			frame->sof = ring->descriptors[ring->tail].sof;
253 			frame->flags = ring->descriptors[ring->tail].flags;
254 		}
255 		ring->tail = (ring->tail + 1) % ring->size;
256 	}
257 	ring_write_descriptors(ring);
258 
259 invoke_callback:
260 	/* allow callbacks to schedule new work */
261 	spin_unlock_irqrestore(&ring->lock, flags);
262 	while (!list_empty(&done)) {
263 		frame = list_first_entry(&done, typeof(*frame), list);
264 		/*
265 		 * The callback may reenqueue or delete frame.
266 		 * Do not hold on to it.
267 		 */
268 		list_del_init(&frame->list);
269 		if (frame->callback)
270 			frame->callback(ring, frame, canceled);
271 	}
272 }
273 
274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276 	unsigned long flags;
277 	int ret = 0;
278 
279 	spin_lock_irqsave(&ring->lock, flags);
280 	if (ring->running) {
281 		list_add_tail(&frame->list, &ring->queue);
282 		ring_write_descriptors(ring);
283 	} else {
284 		ret = -ESHUTDOWN;
285 	}
286 	spin_unlock_irqrestore(&ring->lock, flags);
287 	return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290 
291 /**
292  * tb_ring_poll() - Poll one completed frame from the ring
293  * @ring: Ring to poll
294  *
295  * This function can be called when @start_poll callback of the @ring
296  * has been called. It will read one completed frame from the ring and
297  * return it to the caller. Returns %NULL if there is no more completed
298  * frames.
299  */
300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302 	struct ring_frame *frame = NULL;
303 	unsigned long flags;
304 
305 	spin_lock_irqsave(&ring->lock, flags);
306 	if (!ring->running)
307 		goto unlock;
308 	if (ring_empty(ring))
309 		goto unlock;
310 
311 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
313 					 list);
314 		list_del_init(&frame->list);
315 
316 		if (!ring->is_tx) {
317 			frame->size = ring->descriptors[ring->tail].length;
318 			frame->eof = ring->descriptors[ring->tail].eof;
319 			frame->sof = ring->descriptors[ring->tail].sof;
320 			frame->flags = ring->descriptors[ring->tail].flags;
321 		}
322 
323 		ring->tail = (ring->tail + 1) % ring->size;
324 	}
325 
326 unlock:
327 	spin_unlock_irqrestore(&ring->lock, flags);
328 	return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331 
332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334 	int idx = ring_interrupt_index(ring);
335 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336 	int bit = idx % 32;
337 	u32 val;
338 
339 	val = ioread32(ring->nhi->iobase + reg);
340 	if (mask)
341 		val &= ~BIT(bit);
342 	else
343 		val |= BIT(bit);
344 	iowrite32(val, ring->nhi->iobase + reg);
345 }
346 
347 /* Both @nhi->lock and @ring->lock should be held */
348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350 	if (!ring->running)
351 		return;
352 
353 	if (ring->start_poll) {
354 		__ring_interrupt_mask(ring, true);
355 		ring->start_poll(ring->poll_data);
356 	} else {
357 		schedule_work(&ring->work);
358 	}
359 }
360 
361 /**
362  * tb_ring_poll_complete() - Re-start interrupt for the ring
363  * @ring: Ring to re-start the interrupt
364  *
365  * This will re-start (unmask) the ring interrupt once the user is done
366  * with polling.
367  */
368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370 	unsigned long flags;
371 
372 	spin_lock_irqsave(&ring->nhi->lock, flags);
373 	spin_lock(&ring->lock);
374 	if (ring->start_poll)
375 		__ring_interrupt_mask(ring, false);
376 	spin_unlock(&ring->lock);
377 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380 
381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383 	struct tb_ring *ring = data;
384 
385 	spin_lock(&ring->nhi->lock);
386 	spin_lock(&ring->lock);
387 	__ring_interrupt(ring);
388 	spin_unlock(&ring->lock);
389 	spin_unlock(&ring->nhi->lock);
390 
391 	return IRQ_HANDLED;
392 }
393 
394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396 	struct tb_nhi *nhi = ring->nhi;
397 	unsigned long irqflags;
398 	int ret;
399 
400 	if (!nhi->pdev->msix_enabled)
401 		return 0;
402 
403 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404 	if (ret < 0)
405 		return ret;
406 
407 	ring->vector = ret;
408 
409 	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
410 	if (ring->irq < 0)
411 		return ring->irq;
412 
413 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
414 	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
415 }
416 
417 static void ring_release_msix(struct tb_ring *ring)
418 {
419 	if (ring->irq <= 0)
420 		return;
421 
422 	free_irq(ring->irq, ring);
423 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
424 	ring->vector = 0;
425 	ring->irq = 0;
426 }
427 
428 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
429 {
430 	int ret = 0;
431 
432 	spin_lock_irq(&nhi->lock);
433 
434 	if (ring->hop < 0) {
435 		unsigned int i;
436 
437 		/*
438 		 * Automatically allocate HopID from the non-reserved
439 		 * range 1 .. hop_count - 1.
440 		 */
441 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
442 			if (ring->is_tx) {
443 				if (!nhi->tx_rings[i]) {
444 					ring->hop = i;
445 					break;
446 				}
447 			} else {
448 				if (!nhi->rx_rings[i]) {
449 					ring->hop = i;
450 					break;
451 				}
452 			}
453 		}
454 	}
455 
456 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
457 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
458 		ret = -EINVAL;
459 		goto err_unlock;
460 	}
461 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
462 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
463 			 ring->hop);
464 		ret = -EBUSY;
465 		goto err_unlock;
466 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
467 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
468 			 ring->hop);
469 		ret = -EBUSY;
470 		goto err_unlock;
471 	}
472 
473 	if (ring->is_tx)
474 		nhi->tx_rings[ring->hop] = ring;
475 	else
476 		nhi->rx_rings[ring->hop] = ring;
477 
478 err_unlock:
479 	spin_unlock_irq(&nhi->lock);
480 
481 	return ret;
482 }
483 
484 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
485 				     bool transmit, unsigned int flags,
486 				     u16 sof_mask, u16 eof_mask,
487 				     void (*start_poll)(void *),
488 				     void *poll_data)
489 {
490 	struct tb_ring *ring = NULL;
491 
492 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
493 		transmit ? "TX" : "RX", hop, size);
494 
495 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
496 	if (!ring)
497 		return NULL;
498 
499 	spin_lock_init(&ring->lock);
500 	INIT_LIST_HEAD(&ring->queue);
501 	INIT_LIST_HEAD(&ring->in_flight);
502 	INIT_WORK(&ring->work, ring_work);
503 
504 	ring->nhi = nhi;
505 	ring->hop = hop;
506 	ring->is_tx = transmit;
507 	ring->size = size;
508 	ring->flags = flags;
509 	ring->sof_mask = sof_mask;
510 	ring->eof_mask = eof_mask;
511 	ring->head = 0;
512 	ring->tail = 0;
513 	ring->running = false;
514 	ring->start_poll = start_poll;
515 	ring->poll_data = poll_data;
516 
517 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
518 			size * sizeof(*ring->descriptors),
519 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
520 	if (!ring->descriptors)
521 		goto err_free_ring;
522 
523 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
524 		goto err_free_descs;
525 
526 	if (nhi_alloc_hop(nhi, ring))
527 		goto err_release_msix;
528 
529 	return ring;
530 
531 err_release_msix:
532 	ring_release_msix(ring);
533 err_free_descs:
534 	dma_free_coherent(&ring->nhi->pdev->dev,
535 			  ring->size * sizeof(*ring->descriptors),
536 			  ring->descriptors, ring->descriptors_dma);
537 err_free_ring:
538 	kfree(ring);
539 
540 	return NULL;
541 }
542 
543 /**
544  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
545  * @nhi: Pointer to the NHI the ring is to be allocated
546  * @hop: HopID (ring) to allocate
547  * @size: Number of entries in the ring
548  * @flags: Flags for the ring
549  */
550 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
551 				 unsigned int flags)
552 {
553 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
554 }
555 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
556 
557 /**
558  * tb_ring_alloc_rx() - Allocate DMA ring for receive
559  * @nhi: Pointer to the NHI the ring is to be allocated
560  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
561  * @size: Number of entries in the ring
562  * @flags: Flags for the ring
563  * @sof_mask: Mask of PDF values that start a frame
564  * @eof_mask: Mask of PDF values that end a frame
565  * @start_poll: If not %NULL the ring will call this function when an
566  *		interrupt is triggered and masked, instead of callback
567  *		in each Rx frame.
568  * @poll_data: Optional data passed to @start_poll
569  */
570 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
571 				 unsigned int flags, u16 sof_mask, u16 eof_mask,
572 				 void (*start_poll)(void *), void *poll_data)
573 {
574 	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
575 			     start_poll, poll_data);
576 }
577 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
578 
579 /**
580  * tb_ring_start() - enable a ring
581  *
582  * Must not be invoked in parallel with tb_ring_stop().
583  */
584 void tb_ring_start(struct tb_ring *ring)
585 {
586 	u16 frame_size;
587 	u32 flags;
588 
589 	spin_lock_irq(&ring->nhi->lock);
590 	spin_lock(&ring->lock);
591 	if (ring->nhi->going_away)
592 		goto err;
593 	if (ring->running) {
594 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
595 		goto err;
596 	}
597 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
598 		RING_TYPE(ring), ring->hop);
599 
600 	if (ring->flags & RING_FLAG_FRAME) {
601 		/* Means 4096 */
602 		frame_size = 0;
603 		flags = RING_FLAG_ENABLE;
604 	} else {
605 		frame_size = TB_FRAME_SIZE;
606 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
607 	}
608 
609 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
610 	if (ring->is_tx) {
611 		ring_iowrite32desc(ring, ring->size, 12);
612 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
613 		ring_iowrite32options(ring, flags, 0);
614 	} else {
615 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
616 
617 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
618 		ring_iowrite32options(ring, sof_eof_mask, 4);
619 		ring_iowrite32options(ring, flags, 0);
620 	}
621 	ring_interrupt_active(ring, true);
622 	ring->running = true;
623 err:
624 	spin_unlock(&ring->lock);
625 	spin_unlock_irq(&ring->nhi->lock);
626 }
627 EXPORT_SYMBOL_GPL(tb_ring_start);
628 
629 /**
630  * tb_ring_stop() - shutdown a ring
631  *
632  * Must not be invoked from a callback.
633  *
634  * This method will disable the ring. Further calls to
635  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
636  * called.
637  *
638  * All enqueued frames will be canceled and their callbacks will be executed
639  * with frame->canceled set to true (on the callback thread). This method
640  * returns only after all callback invocations have finished.
641  */
642 void tb_ring_stop(struct tb_ring *ring)
643 {
644 	spin_lock_irq(&ring->nhi->lock);
645 	spin_lock(&ring->lock);
646 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
647 		RING_TYPE(ring), ring->hop);
648 	if (ring->nhi->going_away)
649 		goto err;
650 	if (!ring->running) {
651 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
652 			 RING_TYPE(ring), ring->hop);
653 		goto err;
654 	}
655 	ring_interrupt_active(ring, false);
656 
657 	ring_iowrite32options(ring, 0, 0);
658 	ring_iowrite64desc(ring, 0, 0);
659 	ring_iowrite32desc(ring, 0, 8);
660 	ring_iowrite32desc(ring, 0, 12);
661 	ring->head = 0;
662 	ring->tail = 0;
663 	ring->running = false;
664 
665 err:
666 	spin_unlock(&ring->lock);
667 	spin_unlock_irq(&ring->nhi->lock);
668 
669 	/*
670 	 * schedule ring->work to invoke callbacks on all remaining frames.
671 	 */
672 	schedule_work(&ring->work);
673 	flush_work(&ring->work);
674 }
675 EXPORT_SYMBOL_GPL(tb_ring_stop);
676 
677 /*
678  * tb_ring_free() - free ring
679  *
680  * When this method returns all invocations of ring->callback will have
681  * finished.
682  *
683  * Ring must be stopped.
684  *
685  * Must NOT be called from ring_frame->callback!
686  */
687 void tb_ring_free(struct tb_ring *ring)
688 {
689 	spin_lock_irq(&ring->nhi->lock);
690 	/*
691 	 * Dissociate the ring from the NHI. This also ensures that
692 	 * nhi_interrupt_work cannot reschedule ring->work.
693 	 */
694 	if (ring->is_tx)
695 		ring->nhi->tx_rings[ring->hop] = NULL;
696 	else
697 		ring->nhi->rx_rings[ring->hop] = NULL;
698 
699 	if (ring->running) {
700 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
701 			 RING_TYPE(ring), ring->hop);
702 	}
703 	spin_unlock_irq(&ring->nhi->lock);
704 
705 	ring_release_msix(ring);
706 
707 	dma_free_coherent(&ring->nhi->pdev->dev,
708 			  ring->size * sizeof(*ring->descriptors),
709 			  ring->descriptors, ring->descriptors_dma);
710 
711 	ring->descriptors = NULL;
712 	ring->descriptors_dma = 0;
713 
714 
715 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
716 		ring->hop);
717 
718 	/**
719 	 * ring->work can no longer be scheduled (it is scheduled only
720 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
721 	 * to finish before freeing the ring.
722 	 */
723 	flush_work(&ring->work);
724 	kfree(ring);
725 }
726 EXPORT_SYMBOL_GPL(tb_ring_free);
727 
728 /**
729  * nhi_mailbox_cmd() - Send a command through NHI mailbox
730  * @nhi: Pointer to the NHI structure
731  * @cmd: Command to send
732  * @data: Data to be send with the command
733  *
734  * Sends mailbox command to the firmware running on NHI. Returns %0 in
735  * case of success and negative errno in case of failure.
736  */
737 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
738 {
739 	ktime_t timeout;
740 	u32 val;
741 
742 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
743 
744 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
745 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
746 	val |= REG_INMAIL_OP_REQUEST | cmd;
747 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
748 
749 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
750 	do {
751 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
752 		if (!(val & REG_INMAIL_OP_REQUEST))
753 			break;
754 		usleep_range(10, 20);
755 	} while (ktime_before(ktime_get(), timeout));
756 
757 	if (val & REG_INMAIL_OP_REQUEST)
758 		return -ETIMEDOUT;
759 	if (val & REG_INMAIL_ERROR)
760 		return -EIO;
761 
762 	return 0;
763 }
764 
765 /**
766  * nhi_mailbox_mode() - Return current firmware operation mode
767  * @nhi: Pointer to the NHI structure
768  *
769  * The function reads current firmware operation mode using NHI mailbox
770  * registers and returns it to the caller.
771  */
772 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
773 {
774 	u32 val;
775 
776 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
777 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
778 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
779 
780 	return (enum nhi_fw_mode)val;
781 }
782 
783 static void nhi_interrupt_work(struct work_struct *work)
784 {
785 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
786 	int value = 0; /* Suppress uninitialized usage warning. */
787 	int bit;
788 	int hop = -1;
789 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
790 	struct tb_ring *ring;
791 
792 	spin_lock_irq(&nhi->lock);
793 
794 	/*
795 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
796 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
797 	 * dwords as required. The registers are cleared on read.
798 	 */
799 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
800 		if (bit % 32 == 0)
801 			value = ioread32(nhi->iobase
802 					 + REG_RING_NOTIFY_BASE
803 					 + 4 * (bit / 32));
804 		if (++hop == nhi->hop_count) {
805 			hop = 0;
806 			type++;
807 		}
808 		if ((value & (1 << (bit % 32))) == 0)
809 			continue;
810 		if (type == 2) {
811 			dev_warn(&nhi->pdev->dev,
812 				 "RX overflow for ring %d\n",
813 				 hop);
814 			continue;
815 		}
816 		if (type == 0)
817 			ring = nhi->tx_rings[hop];
818 		else
819 			ring = nhi->rx_rings[hop];
820 		if (ring == NULL) {
821 			dev_warn(&nhi->pdev->dev,
822 				 "got interrupt for inactive %s ring %d\n",
823 				 type ? "RX" : "TX",
824 				 hop);
825 			continue;
826 		}
827 
828 		spin_lock(&ring->lock);
829 		__ring_interrupt(ring);
830 		spin_unlock(&ring->lock);
831 	}
832 	spin_unlock_irq(&nhi->lock);
833 }
834 
835 static irqreturn_t nhi_msi(int irq, void *data)
836 {
837 	struct tb_nhi *nhi = data;
838 	schedule_work(&nhi->interrupt_work);
839 	return IRQ_HANDLED;
840 }
841 
842 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
843 {
844 	struct pci_dev *pdev = to_pci_dev(dev);
845 	struct tb *tb = pci_get_drvdata(pdev);
846 	struct tb_nhi *nhi = tb->nhi;
847 	int ret;
848 
849 	ret = tb_domain_suspend_noirq(tb);
850 	if (ret)
851 		return ret;
852 
853 	if (nhi->ops && nhi->ops->suspend_noirq) {
854 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
855 		if (ret)
856 			return ret;
857 	}
858 
859 	return 0;
860 }
861 
862 static int nhi_suspend_noirq(struct device *dev)
863 {
864 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
865 }
866 
867 static int nhi_freeze_noirq(struct device *dev)
868 {
869 	struct pci_dev *pdev = to_pci_dev(dev);
870 	struct tb *tb = pci_get_drvdata(pdev);
871 
872 	return tb_domain_freeze_noirq(tb);
873 }
874 
875 static int nhi_thaw_noirq(struct device *dev)
876 {
877 	struct pci_dev *pdev = to_pci_dev(dev);
878 	struct tb *tb = pci_get_drvdata(pdev);
879 
880 	return tb_domain_thaw_noirq(tb);
881 }
882 
883 static bool nhi_wake_supported(struct pci_dev *pdev)
884 {
885 	u8 val;
886 
887 	/*
888 	 * If power rails are sustainable for wakeup from S4 this
889 	 * property is set by the BIOS.
890 	 */
891 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
892 		return !!val;
893 
894 	return true;
895 }
896 
897 static int nhi_poweroff_noirq(struct device *dev)
898 {
899 	struct pci_dev *pdev = to_pci_dev(dev);
900 	bool wakeup;
901 
902 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
903 	return __nhi_suspend_noirq(dev, wakeup);
904 }
905 
906 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
907 {
908 	/* Throttling is specified in 256ns increments */
909 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
910 	unsigned int i;
911 
912 	/*
913 	 * Configure interrupt throttling for all vectors even if we
914 	 * only use few.
915 	 */
916 	for (i = 0; i < MSIX_MAX_VECS; i++) {
917 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
918 		iowrite32(throttle, nhi->iobase + reg);
919 	}
920 }
921 
922 static int nhi_resume_noirq(struct device *dev)
923 {
924 	struct pci_dev *pdev = to_pci_dev(dev);
925 	struct tb *tb = pci_get_drvdata(pdev);
926 	struct tb_nhi *nhi = tb->nhi;
927 	int ret;
928 
929 	/*
930 	 * Check that the device is still there. It may be that the user
931 	 * unplugged last device which causes the host controller to go
932 	 * away on PCs.
933 	 */
934 	if (!pci_device_is_present(pdev)) {
935 		nhi->going_away = true;
936 	} else {
937 		if (nhi->ops && nhi->ops->resume_noirq) {
938 			ret = nhi->ops->resume_noirq(nhi);
939 			if (ret)
940 				return ret;
941 		}
942 		nhi_enable_int_throttling(tb->nhi);
943 	}
944 
945 	return tb_domain_resume_noirq(tb);
946 }
947 
948 static int nhi_suspend(struct device *dev)
949 {
950 	struct pci_dev *pdev = to_pci_dev(dev);
951 	struct tb *tb = pci_get_drvdata(pdev);
952 
953 	return tb_domain_suspend(tb);
954 }
955 
956 static void nhi_complete(struct device *dev)
957 {
958 	struct pci_dev *pdev = to_pci_dev(dev);
959 	struct tb *tb = pci_get_drvdata(pdev);
960 
961 	/*
962 	 * If we were runtime suspended when system suspend started,
963 	 * schedule runtime resume now. It should bring the domain back
964 	 * to functional state.
965 	 */
966 	if (pm_runtime_suspended(&pdev->dev))
967 		pm_runtime_resume(&pdev->dev);
968 	else
969 		tb_domain_complete(tb);
970 }
971 
972 static int nhi_runtime_suspend(struct device *dev)
973 {
974 	struct pci_dev *pdev = to_pci_dev(dev);
975 	struct tb *tb = pci_get_drvdata(pdev);
976 	struct tb_nhi *nhi = tb->nhi;
977 	int ret;
978 
979 	ret = tb_domain_runtime_suspend(tb);
980 	if (ret)
981 		return ret;
982 
983 	if (nhi->ops && nhi->ops->runtime_suspend) {
984 		ret = nhi->ops->runtime_suspend(tb->nhi);
985 		if (ret)
986 			return ret;
987 	}
988 	return 0;
989 }
990 
991 static int nhi_runtime_resume(struct device *dev)
992 {
993 	struct pci_dev *pdev = to_pci_dev(dev);
994 	struct tb *tb = pci_get_drvdata(pdev);
995 	struct tb_nhi *nhi = tb->nhi;
996 	int ret;
997 
998 	if (nhi->ops && nhi->ops->runtime_resume) {
999 		ret = nhi->ops->runtime_resume(nhi);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	nhi_enable_int_throttling(nhi);
1005 	return tb_domain_runtime_resume(tb);
1006 }
1007 
1008 static void nhi_shutdown(struct tb_nhi *nhi)
1009 {
1010 	int i;
1011 
1012 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1013 
1014 	for (i = 0; i < nhi->hop_count; i++) {
1015 		if (nhi->tx_rings[i])
1016 			dev_WARN(&nhi->pdev->dev,
1017 				 "TX ring %d is still active\n", i);
1018 		if (nhi->rx_rings[i])
1019 			dev_WARN(&nhi->pdev->dev,
1020 				 "RX ring %d is still active\n", i);
1021 	}
1022 	nhi_disable_interrupts(nhi);
1023 	/*
1024 	 * We have to release the irq before calling flush_work. Otherwise an
1025 	 * already executing IRQ handler could call schedule_work again.
1026 	 */
1027 	if (!nhi->pdev->msix_enabled) {
1028 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1029 		flush_work(&nhi->interrupt_work);
1030 	}
1031 	ida_destroy(&nhi->msix_ida);
1032 
1033 	if (nhi->ops && nhi->ops->shutdown)
1034 		nhi->ops->shutdown(nhi);
1035 }
1036 
1037 static int nhi_init_msi(struct tb_nhi *nhi)
1038 {
1039 	struct pci_dev *pdev = nhi->pdev;
1040 	int res, irq, nvec;
1041 
1042 	/* In case someone left them on. */
1043 	nhi_disable_interrupts(nhi);
1044 
1045 	nhi_enable_int_throttling(nhi);
1046 
1047 	ida_init(&nhi->msix_ida);
1048 
1049 	/*
1050 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1051 	 * get all MSI-X vectors and if we succeed, each ring will have
1052 	 * one MSI-X. If for some reason that does not work out, we
1053 	 * fallback to a single MSI.
1054 	 */
1055 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1056 				     PCI_IRQ_MSIX);
1057 	if (nvec < 0) {
1058 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1059 		if (nvec < 0)
1060 			return nvec;
1061 
1062 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1063 
1064 		irq = pci_irq_vector(nhi->pdev, 0);
1065 		if (irq < 0)
1066 			return irq;
1067 
1068 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1069 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1070 		if (res) {
1071 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1072 			return res;
1073 		}
1074 	}
1075 
1076 	return 0;
1077 }
1078 
1079 static bool nhi_imr_valid(struct pci_dev *pdev)
1080 {
1081 	u8 val;
1082 
1083 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1084 		return !!val;
1085 
1086 	return true;
1087 }
1088 
1089 /*
1090  * During suspend the Thunderbolt controller is reset and all PCIe
1091  * tunnels are lost. The NHI driver will try to reestablish all tunnels
1092  * during resume. This adds device links between the tunneled PCIe
1093  * downstream ports and the NHI so that the device core will make sure
1094  * NHI is resumed first before the rest.
1095  */
1096 static void tb_apple_add_links(struct tb_nhi *nhi)
1097 {
1098 	struct pci_dev *upstream, *pdev;
1099 
1100 	if (!x86_apple_machine)
1101 		return;
1102 
1103 	switch (nhi->pdev->device) {
1104 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1105 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1106 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1107 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1108 		break;
1109 	default:
1110 		return;
1111 	}
1112 
1113 	upstream = pci_upstream_bridge(nhi->pdev);
1114 	while (upstream) {
1115 		if (!pci_is_pcie(upstream))
1116 			return;
1117 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1118 			break;
1119 		upstream = pci_upstream_bridge(upstream);
1120 	}
1121 
1122 	if (!upstream)
1123 		return;
1124 
1125 	/*
1126 	 * For each hotplug downstream port, create add device link
1127 	 * back to NHI so that PCIe tunnels can be re-established after
1128 	 * sleep.
1129 	 */
1130 	for_each_pci_bridge(pdev, upstream->subordinate) {
1131 		const struct device_link *link;
1132 
1133 		if (!pci_is_pcie(pdev))
1134 			continue;
1135 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1136 		    !pdev->is_hotplug_bridge)
1137 			continue;
1138 
1139 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1140 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
1141 				       DL_FLAG_PM_RUNTIME);
1142 		if (link) {
1143 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1144 				dev_name(&pdev->dev));
1145 		} else {
1146 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1147 				 dev_name(&pdev->dev));
1148 		}
1149 	}
1150 }
1151 
1152 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1153 {
1154 	struct tb_nhi *nhi;
1155 	struct tb *tb;
1156 	int res;
1157 
1158 	if (!nhi_imr_valid(pdev)) {
1159 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1160 		return -ENODEV;
1161 	}
1162 
1163 	res = pcim_enable_device(pdev);
1164 	if (res) {
1165 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1166 		return res;
1167 	}
1168 
1169 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1170 	if (res) {
1171 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1172 		return res;
1173 	}
1174 
1175 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1176 	if (!nhi)
1177 		return -ENOMEM;
1178 
1179 	nhi->pdev = pdev;
1180 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1181 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1182 	nhi->iobase = pcim_iomap_table(pdev)[0];
1183 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1184 	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1185 
1186 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1187 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1188 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1189 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1190 	if (!nhi->tx_rings || !nhi->rx_rings)
1191 		return -ENOMEM;
1192 
1193 	res = nhi_init_msi(nhi);
1194 	if (res) {
1195 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1196 		return res;
1197 	}
1198 
1199 	spin_lock_init(&nhi->lock);
1200 
1201 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1202 	if (res)
1203 		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1204 	if (res) {
1205 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1206 		return res;
1207 	}
1208 
1209 	pci_set_master(pdev);
1210 
1211 	if (nhi->ops && nhi->ops->init) {
1212 		res = nhi->ops->init(nhi);
1213 		if (res)
1214 			return res;
1215 	}
1216 
1217 	tb_apple_add_links(nhi);
1218 	tb_acpi_add_links(nhi);
1219 
1220 	tb = icm_probe(nhi);
1221 	if (!tb)
1222 		tb = tb_probe(nhi);
1223 	if (!tb) {
1224 		dev_err(&nhi->pdev->dev,
1225 			"failed to determine connection manager, aborting\n");
1226 		return -ENODEV;
1227 	}
1228 
1229 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1230 
1231 	res = tb_domain_add(tb);
1232 	if (res) {
1233 		/*
1234 		 * At this point the RX/TX rings might already have been
1235 		 * activated. Do a proper shutdown.
1236 		 */
1237 		tb_domain_put(tb);
1238 		nhi_shutdown(nhi);
1239 		return res;
1240 	}
1241 	pci_set_drvdata(pdev, tb);
1242 
1243 	device_wakeup_enable(&pdev->dev);
1244 
1245 	pm_runtime_allow(&pdev->dev);
1246 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1247 	pm_runtime_use_autosuspend(&pdev->dev);
1248 	pm_runtime_put_autosuspend(&pdev->dev);
1249 
1250 	return 0;
1251 }
1252 
1253 static void nhi_remove(struct pci_dev *pdev)
1254 {
1255 	struct tb *tb = pci_get_drvdata(pdev);
1256 	struct tb_nhi *nhi = tb->nhi;
1257 
1258 	pm_runtime_get_sync(&pdev->dev);
1259 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1260 	pm_runtime_forbid(&pdev->dev);
1261 
1262 	tb_domain_remove(tb);
1263 	nhi_shutdown(nhi);
1264 }
1265 
1266 /*
1267  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1268  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1269  * resume_noirq until we are done.
1270  */
1271 static const struct dev_pm_ops nhi_pm_ops = {
1272 	.suspend_noirq = nhi_suspend_noirq,
1273 	.resume_noirq = nhi_resume_noirq,
1274 	.freeze_noirq = nhi_freeze_noirq,  /*
1275 					    * we just disable hotplug, the
1276 					    * pci-tunnels stay alive.
1277 					    */
1278 	.thaw_noirq = nhi_thaw_noirq,
1279 	.restore_noirq = nhi_resume_noirq,
1280 	.suspend = nhi_suspend,
1281 	.poweroff_noirq = nhi_poweroff_noirq,
1282 	.poweroff = nhi_suspend,
1283 	.complete = nhi_complete,
1284 	.runtime_suspend = nhi_runtime_suspend,
1285 	.runtime_resume = nhi_runtime_resume,
1286 };
1287 
1288 static struct pci_device_id nhi_ids[] = {
1289 	/*
1290 	 * We have to specify class, the TB bridges use the same device and
1291 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1292 	 */
1293 	{
1294 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1295 		.vendor = PCI_VENDOR_ID_INTEL,
1296 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1297 		.subvendor = 0x2222, .subdevice = 0x1111,
1298 	},
1299 	{
1300 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1301 		.vendor = PCI_VENDOR_ID_INTEL,
1302 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1303 		.subvendor = 0x2222, .subdevice = 0x1111,
1304 	},
1305 	{
1306 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1307 		.vendor = PCI_VENDOR_ID_INTEL,
1308 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1309 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1310 	},
1311 	{
1312 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1313 		.vendor = PCI_VENDOR_ID_INTEL,
1314 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1315 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1316 	},
1317 
1318 	/* Thunderbolt 3 */
1319 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1320 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1321 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1322 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1323 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1324 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1325 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1326 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1327 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1328 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1329 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1330 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1331 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1332 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1333 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1334 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1335 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1336 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1337 
1338 	/* Any USB4 compliant host */
1339 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1340 
1341 	{ 0,}
1342 };
1343 
1344 MODULE_DEVICE_TABLE(pci, nhi_ids);
1345 MODULE_LICENSE("GPL");
1346 
1347 static struct pci_driver nhi_driver = {
1348 	.name = "thunderbolt",
1349 	.id_table = nhi_ids,
1350 	.probe = nhi_probe,
1351 	.remove = nhi_remove,
1352 	.shutdown = nhi_remove,
1353 	.driver.pm = &nhi_pm_ops,
1354 };
1355 
1356 static int __init nhi_init(void)
1357 {
1358 	int ret;
1359 
1360 	ret = tb_domain_init();
1361 	if (ret)
1362 		return ret;
1363 	ret = pci_register_driver(&nhi_driver);
1364 	if (ret)
1365 		tb_domain_exit();
1366 	return ret;
1367 }
1368 
1369 static void __exit nhi_unload(void)
1370 {
1371 	pci_unregister_driver(&nhi_driver);
1372 	tb_domain_exit();
1373 }
1374 
1375 rootfs_initcall(nhi_init);
1376 module_exit(nhi_unload);
1377