xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/property.h>
21 
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25 
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27 
28 #define RING_FIRST_USABLE_HOPID	1
29 
30 /*
31  * Minimal number of vectors when we use MSI-X. Two for control channel
32  * Rx/Tx and the rest four are for cross domain DMA paths.
33  */
34 #define MSIX_MIN_VECS		6
35 #define MSIX_MAX_VECS		16
36 
37 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
38 
39 #define QUIRK_AUTO_CLEAR_INT	BIT(0)
40 
41 static int ring_interrupt_index(struct tb_ring *ring)
42 {
43 	int bit = ring->hop;
44 	if (!ring->is_tx)
45 		bit += ring->nhi->hop_count;
46 	return bit;
47 }
48 
49 /*
50  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
51  *
52  * ring->nhi->lock must be held.
53  */
54 static void ring_interrupt_active(struct tb_ring *ring, bool active)
55 {
56 	int reg = REG_RING_INTERRUPT_BASE +
57 		  ring_interrupt_index(ring) / 32 * 4;
58 	int bit = ring_interrupt_index(ring) & 31;
59 	int mask = 1 << bit;
60 	u32 old, new;
61 
62 	if (ring->irq > 0) {
63 		u32 step, shift, ivr, misc;
64 		void __iomem *ivr_base;
65 		int index;
66 
67 		if (ring->is_tx)
68 			index = ring->hop;
69 		else
70 			index = ring->hop + ring->nhi->hop_count;
71 
72 		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
73 			/*
74 			 * Ask the hardware to clear interrupt status
75 			 * bits automatically since we already know
76 			 * which interrupt was triggered.
77 			 */
78 			misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
79 			if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
80 				misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
81 				iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
82 			}
83 		}
84 
85 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
86 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
87 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
88 		ivr = ioread32(ivr_base + step);
89 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
90 		if (active)
91 			ivr |= ring->vector << shift;
92 		iowrite32(ivr, ivr_base + step);
93 	}
94 
95 	old = ioread32(ring->nhi->iobase + reg);
96 	if (active)
97 		new = old | mask;
98 	else
99 		new = old & ~mask;
100 
101 	dev_dbg(&ring->nhi->pdev->dev,
102 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
103 		active ? "enabling" : "disabling", reg, bit, old, new);
104 
105 	if (new == old)
106 		dev_WARN(&ring->nhi->pdev->dev,
107 					 "interrupt for %s %d is already %s\n",
108 					 RING_TYPE(ring), ring->hop,
109 					 active ? "enabled" : "disabled");
110 	iowrite32(new, ring->nhi->iobase + reg);
111 }
112 
113 /*
114  * nhi_disable_interrupts() - disable interrupts for all rings
115  *
116  * Use only during init and shutdown.
117  */
118 static void nhi_disable_interrupts(struct tb_nhi *nhi)
119 {
120 	int i = 0;
121 	/* disable interrupts */
122 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
123 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
124 
125 	/* clear interrupt status bits */
126 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
127 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
128 }
129 
130 /* ring helper methods */
131 
132 static void __iomem *ring_desc_base(struct tb_ring *ring)
133 {
134 	void __iomem *io = ring->nhi->iobase;
135 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
136 	io += ring->hop * 16;
137 	return io;
138 }
139 
140 static void __iomem *ring_options_base(struct tb_ring *ring)
141 {
142 	void __iomem *io = ring->nhi->iobase;
143 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
144 	io += ring->hop * 32;
145 	return io;
146 }
147 
148 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
149 {
150 	/*
151 	 * The other 16-bits in the register is read-only and writes to it
152 	 * are ignored by the hardware so we can save one ioread32() by
153 	 * filling the read-only bits with zeroes.
154 	 */
155 	iowrite32(cons, ring_desc_base(ring) + 8);
156 }
157 
158 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
159 {
160 	/* See ring_iowrite_cons() above for explanation */
161 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
162 }
163 
164 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
165 {
166 	iowrite32(value, ring_desc_base(ring) + offset);
167 }
168 
169 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
170 {
171 	iowrite32(value, ring_desc_base(ring) + offset);
172 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
173 }
174 
175 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
176 {
177 	iowrite32(value, ring_options_base(ring) + offset);
178 }
179 
180 static bool ring_full(struct tb_ring *ring)
181 {
182 	return ((ring->head + 1) % ring->size) == ring->tail;
183 }
184 
185 static bool ring_empty(struct tb_ring *ring)
186 {
187 	return ring->head == ring->tail;
188 }
189 
190 /*
191  * ring_write_descriptors() - post frames from ring->queue to the controller
192  *
193  * ring->lock is held.
194  */
195 static void ring_write_descriptors(struct tb_ring *ring)
196 {
197 	struct ring_frame *frame, *n;
198 	struct ring_desc *descriptor;
199 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
200 		if (ring_full(ring))
201 			break;
202 		list_move_tail(&frame->list, &ring->in_flight);
203 		descriptor = &ring->descriptors[ring->head];
204 		descriptor->phys = frame->buffer_phy;
205 		descriptor->time = 0;
206 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
207 		if (ring->is_tx) {
208 			descriptor->length = frame->size;
209 			descriptor->eof = frame->eof;
210 			descriptor->sof = frame->sof;
211 		}
212 		ring->head = (ring->head + 1) % ring->size;
213 		if (ring->is_tx)
214 			ring_iowrite_prod(ring, ring->head);
215 		else
216 			ring_iowrite_cons(ring, ring->head);
217 	}
218 }
219 
220 /*
221  * ring_work() - progress completed frames
222  *
223  * If the ring is shutting down then all frames are marked as canceled and
224  * their callbacks are invoked.
225  *
226  * Otherwise we collect all completed frame from the ring buffer, write new
227  * frame to the ring buffer and invoke the callbacks for the completed frames.
228  */
229 static void ring_work(struct work_struct *work)
230 {
231 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
232 	struct ring_frame *frame;
233 	bool canceled = false;
234 	unsigned long flags;
235 	LIST_HEAD(done);
236 
237 	spin_lock_irqsave(&ring->lock, flags);
238 
239 	if (!ring->running) {
240 		/*  Move all frames to done and mark them as canceled. */
241 		list_splice_tail_init(&ring->in_flight, &done);
242 		list_splice_tail_init(&ring->queue, &done);
243 		canceled = true;
244 		goto invoke_callback;
245 	}
246 
247 	while (!ring_empty(ring)) {
248 		if (!(ring->descriptors[ring->tail].flags
249 				& RING_DESC_COMPLETED))
250 			break;
251 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
252 					 list);
253 		list_move_tail(&frame->list, &done);
254 		if (!ring->is_tx) {
255 			frame->size = ring->descriptors[ring->tail].length;
256 			frame->eof = ring->descriptors[ring->tail].eof;
257 			frame->sof = ring->descriptors[ring->tail].sof;
258 			frame->flags = ring->descriptors[ring->tail].flags;
259 		}
260 		ring->tail = (ring->tail + 1) % ring->size;
261 	}
262 	ring_write_descriptors(ring);
263 
264 invoke_callback:
265 	/* allow callbacks to schedule new work */
266 	spin_unlock_irqrestore(&ring->lock, flags);
267 	while (!list_empty(&done)) {
268 		frame = list_first_entry(&done, typeof(*frame), list);
269 		/*
270 		 * The callback may reenqueue or delete frame.
271 		 * Do not hold on to it.
272 		 */
273 		list_del_init(&frame->list);
274 		if (frame->callback)
275 			frame->callback(ring, frame, canceled);
276 	}
277 }
278 
279 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
280 {
281 	unsigned long flags;
282 	int ret = 0;
283 
284 	spin_lock_irqsave(&ring->lock, flags);
285 	if (ring->running) {
286 		list_add_tail(&frame->list, &ring->queue);
287 		ring_write_descriptors(ring);
288 	} else {
289 		ret = -ESHUTDOWN;
290 	}
291 	spin_unlock_irqrestore(&ring->lock, flags);
292 	return ret;
293 }
294 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
295 
296 /**
297  * tb_ring_poll() - Poll one completed frame from the ring
298  * @ring: Ring to poll
299  *
300  * This function can be called when @start_poll callback of the @ring
301  * has been called. It will read one completed frame from the ring and
302  * return it to the caller. Returns %NULL if there is no more completed
303  * frames.
304  */
305 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
306 {
307 	struct ring_frame *frame = NULL;
308 	unsigned long flags;
309 
310 	spin_lock_irqsave(&ring->lock, flags);
311 	if (!ring->running)
312 		goto unlock;
313 	if (ring_empty(ring))
314 		goto unlock;
315 
316 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
317 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
318 					 list);
319 		list_del_init(&frame->list);
320 
321 		if (!ring->is_tx) {
322 			frame->size = ring->descriptors[ring->tail].length;
323 			frame->eof = ring->descriptors[ring->tail].eof;
324 			frame->sof = ring->descriptors[ring->tail].sof;
325 			frame->flags = ring->descriptors[ring->tail].flags;
326 		}
327 
328 		ring->tail = (ring->tail + 1) % ring->size;
329 	}
330 
331 unlock:
332 	spin_unlock_irqrestore(&ring->lock, flags);
333 	return frame;
334 }
335 EXPORT_SYMBOL_GPL(tb_ring_poll);
336 
337 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
338 {
339 	int idx = ring_interrupt_index(ring);
340 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
341 	int bit = idx % 32;
342 	u32 val;
343 
344 	val = ioread32(ring->nhi->iobase + reg);
345 	if (mask)
346 		val &= ~BIT(bit);
347 	else
348 		val |= BIT(bit);
349 	iowrite32(val, ring->nhi->iobase + reg);
350 }
351 
352 /* Both @nhi->lock and @ring->lock should be held */
353 static void __ring_interrupt(struct tb_ring *ring)
354 {
355 	if (!ring->running)
356 		return;
357 
358 	if (ring->start_poll) {
359 		__ring_interrupt_mask(ring, true);
360 		ring->start_poll(ring->poll_data);
361 	} else {
362 		schedule_work(&ring->work);
363 	}
364 }
365 
366 /**
367  * tb_ring_poll_complete() - Re-start interrupt for the ring
368  * @ring: Ring to re-start the interrupt
369  *
370  * This will re-start (unmask) the ring interrupt once the user is done
371  * with polling.
372  */
373 void tb_ring_poll_complete(struct tb_ring *ring)
374 {
375 	unsigned long flags;
376 
377 	spin_lock_irqsave(&ring->nhi->lock, flags);
378 	spin_lock(&ring->lock);
379 	if (ring->start_poll)
380 		__ring_interrupt_mask(ring, false);
381 	spin_unlock(&ring->lock);
382 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
383 }
384 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
385 
386 static void ring_clear_msix(const struct tb_ring *ring)
387 {
388 	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
389 		return;
390 
391 	if (ring->is_tx)
392 		ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE);
393 	else
394 		ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE +
395 			 4 * (ring->nhi->hop_count / 32));
396 }
397 
398 static irqreturn_t ring_msix(int irq, void *data)
399 {
400 	struct tb_ring *ring = data;
401 
402 	spin_lock(&ring->nhi->lock);
403 	ring_clear_msix(ring);
404 	spin_lock(&ring->lock);
405 	__ring_interrupt(ring);
406 	spin_unlock(&ring->lock);
407 	spin_unlock(&ring->nhi->lock);
408 
409 	return IRQ_HANDLED;
410 }
411 
412 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
413 {
414 	struct tb_nhi *nhi = ring->nhi;
415 	unsigned long irqflags;
416 	int ret;
417 
418 	if (!nhi->pdev->msix_enabled)
419 		return 0;
420 
421 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
422 	if (ret < 0)
423 		return ret;
424 
425 	ring->vector = ret;
426 
427 	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
428 	if (ret < 0)
429 		goto err_ida_remove;
430 
431 	ring->irq = ret;
432 
433 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
434 	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
435 	if (ret)
436 		goto err_ida_remove;
437 
438 	return 0;
439 
440 err_ida_remove:
441 	ida_simple_remove(&nhi->msix_ida, ring->vector);
442 
443 	return ret;
444 }
445 
446 static void ring_release_msix(struct tb_ring *ring)
447 {
448 	if (ring->irq <= 0)
449 		return;
450 
451 	free_irq(ring->irq, ring);
452 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
453 	ring->vector = 0;
454 	ring->irq = 0;
455 }
456 
457 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
458 {
459 	int ret = 0;
460 
461 	spin_lock_irq(&nhi->lock);
462 
463 	if (ring->hop < 0) {
464 		unsigned int i;
465 
466 		/*
467 		 * Automatically allocate HopID from the non-reserved
468 		 * range 1 .. hop_count - 1.
469 		 */
470 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
471 			if (ring->is_tx) {
472 				if (!nhi->tx_rings[i]) {
473 					ring->hop = i;
474 					break;
475 				}
476 			} else {
477 				if (!nhi->rx_rings[i]) {
478 					ring->hop = i;
479 					break;
480 				}
481 			}
482 		}
483 	}
484 
485 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
486 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
487 		ret = -EINVAL;
488 		goto err_unlock;
489 	}
490 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
491 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
492 			 ring->hop);
493 		ret = -EBUSY;
494 		goto err_unlock;
495 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
496 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
497 			 ring->hop);
498 		ret = -EBUSY;
499 		goto err_unlock;
500 	}
501 
502 	if (ring->is_tx)
503 		nhi->tx_rings[ring->hop] = ring;
504 	else
505 		nhi->rx_rings[ring->hop] = ring;
506 
507 err_unlock:
508 	spin_unlock_irq(&nhi->lock);
509 
510 	return ret;
511 }
512 
513 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
514 				     bool transmit, unsigned int flags,
515 				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
516 				     void (*start_poll)(void *),
517 				     void *poll_data)
518 {
519 	struct tb_ring *ring = NULL;
520 
521 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
522 		transmit ? "TX" : "RX", hop, size);
523 
524 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
525 	if (!ring)
526 		return NULL;
527 
528 	spin_lock_init(&ring->lock);
529 	INIT_LIST_HEAD(&ring->queue);
530 	INIT_LIST_HEAD(&ring->in_flight);
531 	INIT_WORK(&ring->work, ring_work);
532 
533 	ring->nhi = nhi;
534 	ring->hop = hop;
535 	ring->is_tx = transmit;
536 	ring->size = size;
537 	ring->flags = flags;
538 	ring->e2e_tx_hop = e2e_tx_hop;
539 	ring->sof_mask = sof_mask;
540 	ring->eof_mask = eof_mask;
541 	ring->head = 0;
542 	ring->tail = 0;
543 	ring->running = false;
544 	ring->start_poll = start_poll;
545 	ring->poll_data = poll_data;
546 
547 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
548 			size * sizeof(*ring->descriptors),
549 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
550 	if (!ring->descriptors)
551 		goto err_free_ring;
552 
553 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
554 		goto err_free_descs;
555 
556 	if (nhi_alloc_hop(nhi, ring))
557 		goto err_release_msix;
558 
559 	return ring;
560 
561 err_release_msix:
562 	ring_release_msix(ring);
563 err_free_descs:
564 	dma_free_coherent(&ring->nhi->pdev->dev,
565 			  ring->size * sizeof(*ring->descriptors),
566 			  ring->descriptors, ring->descriptors_dma);
567 err_free_ring:
568 	kfree(ring);
569 
570 	return NULL;
571 }
572 
573 /**
574  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
575  * @nhi: Pointer to the NHI the ring is to be allocated
576  * @hop: HopID (ring) to allocate
577  * @size: Number of entries in the ring
578  * @flags: Flags for the ring
579  */
580 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
581 				 unsigned int flags)
582 {
583 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
584 }
585 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
586 
587 /**
588  * tb_ring_alloc_rx() - Allocate DMA ring for receive
589  * @nhi: Pointer to the NHI the ring is to be allocated
590  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
591  * @size: Number of entries in the ring
592  * @flags: Flags for the ring
593  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
594  * @sof_mask: Mask of PDF values that start a frame
595  * @eof_mask: Mask of PDF values that end a frame
596  * @start_poll: If not %NULL the ring will call this function when an
597  *		interrupt is triggered and masked, instead of callback
598  *		in each Rx frame.
599  * @poll_data: Optional data passed to @start_poll
600  */
601 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
602 				 unsigned int flags, int e2e_tx_hop,
603 				 u16 sof_mask, u16 eof_mask,
604 				 void (*start_poll)(void *), void *poll_data)
605 {
606 	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
607 			     start_poll, poll_data);
608 }
609 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
610 
611 /**
612  * tb_ring_start() - enable a ring
613  * @ring: Ring to start
614  *
615  * Must not be invoked in parallel with tb_ring_stop().
616  */
617 void tb_ring_start(struct tb_ring *ring)
618 {
619 	u16 frame_size;
620 	u32 flags;
621 
622 	spin_lock_irq(&ring->nhi->lock);
623 	spin_lock(&ring->lock);
624 	if (ring->nhi->going_away)
625 		goto err;
626 	if (ring->running) {
627 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
628 		goto err;
629 	}
630 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
631 		RING_TYPE(ring), ring->hop);
632 
633 	if (ring->flags & RING_FLAG_FRAME) {
634 		/* Means 4096 */
635 		frame_size = 0;
636 		flags = RING_FLAG_ENABLE;
637 	} else {
638 		frame_size = TB_FRAME_SIZE;
639 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
640 	}
641 
642 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
643 	if (ring->is_tx) {
644 		ring_iowrite32desc(ring, ring->size, 12);
645 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
646 		ring_iowrite32options(ring, flags, 0);
647 	} else {
648 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
649 
650 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
651 		ring_iowrite32options(ring, sof_eof_mask, 4);
652 		ring_iowrite32options(ring, flags, 0);
653 	}
654 
655 	/*
656 	 * Now that the ring valid bit is set we can configure E2E if
657 	 * enabled for the ring.
658 	 */
659 	if (ring->flags & RING_FLAG_E2E) {
660 		if (!ring->is_tx) {
661 			u32 hop;
662 
663 			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
664 			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
665 			flags |= hop;
666 
667 			dev_dbg(&ring->nhi->pdev->dev,
668 				"enabling E2E for %s %d with TX HopID %d\n",
669 				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
670 		} else {
671 			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
672 				RING_TYPE(ring), ring->hop);
673 		}
674 
675 		flags |= RING_FLAG_E2E_FLOW_CONTROL;
676 		ring_iowrite32options(ring, flags, 0);
677 	}
678 
679 	ring_interrupt_active(ring, true);
680 	ring->running = true;
681 err:
682 	spin_unlock(&ring->lock);
683 	spin_unlock_irq(&ring->nhi->lock);
684 }
685 EXPORT_SYMBOL_GPL(tb_ring_start);
686 
687 /**
688  * tb_ring_stop() - shutdown a ring
689  * @ring: Ring to stop
690  *
691  * Must not be invoked from a callback.
692  *
693  * This method will disable the ring. Further calls to
694  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
695  * called.
696  *
697  * All enqueued frames will be canceled and their callbacks will be executed
698  * with frame->canceled set to true (on the callback thread). This method
699  * returns only after all callback invocations have finished.
700  */
701 void tb_ring_stop(struct tb_ring *ring)
702 {
703 	spin_lock_irq(&ring->nhi->lock);
704 	spin_lock(&ring->lock);
705 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
706 		RING_TYPE(ring), ring->hop);
707 	if (ring->nhi->going_away)
708 		goto err;
709 	if (!ring->running) {
710 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
711 			 RING_TYPE(ring), ring->hop);
712 		goto err;
713 	}
714 	ring_interrupt_active(ring, false);
715 
716 	ring_iowrite32options(ring, 0, 0);
717 	ring_iowrite64desc(ring, 0, 0);
718 	ring_iowrite32desc(ring, 0, 8);
719 	ring_iowrite32desc(ring, 0, 12);
720 	ring->head = 0;
721 	ring->tail = 0;
722 	ring->running = false;
723 
724 err:
725 	spin_unlock(&ring->lock);
726 	spin_unlock_irq(&ring->nhi->lock);
727 
728 	/*
729 	 * schedule ring->work to invoke callbacks on all remaining frames.
730 	 */
731 	schedule_work(&ring->work);
732 	flush_work(&ring->work);
733 }
734 EXPORT_SYMBOL_GPL(tb_ring_stop);
735 
736 /*
737  * tb_ring_free() - free ring
738  *
739  * When this method returns all invocations of ring->callback will have
740  * finished.
741  *
742  * Ring must be stopped.
743  *
744  * Must NOT be called from ring_frame->callback!
745  */
746 void tb_ring_free(struct tb_ring *ring)
747 {
748 	spin_lock_irq(&ring->nhi->lock);
749 	/*
750 	 * Dissociate the ring from the NHI. This also ensures that
751 	 * nhi_interrupt_work cannot reschedule ring->work.
752 	 */
753 	if (ring->is_tx)
754 		ring->nhi->tx_rings[ring->hop] = NULL;
755 	else
756 		ring->nhi->rx_rings[ring->hop] = NULL;
757 
758 	if (ring->running) {
759 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
760 			 RING_TYPE(ring), ring->hop);
761 	}
762 	spin_unlock_irq(&ring->nhi->lock);
763 
764 	ring_release_msix(ring);
765 
766 	dma_free_coherent(&ring->nhi->pdev->dev,
767 			  ring->size * sizeof(*ring->descriptors),
768 			  ring->descriptors, ring->descriptors_dma);
769 
770 	ring->descriptors = NULL;
771 	ring->descriptors_dma = 0;
772 
773 
774 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
775 		ring->hop);
776 
777 	/*
778 	 * ring->work can no longer be scheduled (it is scheduled only
779 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
780 	 * to finish before freeing the ring.
781 	 */
782 	flush_work(&ring->work);
783 	kfree(ring);
784 }
785 EXPORT_SYMBOL_GPL(tb_ring_free);
786 
787 /**
788  * nhi_mailbox_cmd() - Send a command through NHI mailbox
789  * @nhi: Pointer to the NHI structure
790  * @cmd: Command to send
791  * @data: Data to be send with the command
792  *
793  * Sends mailbox command to the firmware running on NHI. Returns %0 in
794  * case of success and negative errno in case of failure.
795  */
796 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
797 {
798 	ktime_t timeout;
799 	u32 val;
800 
801 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
802 
803 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
804 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
805 	val |= REG_INMAIL_OP_REQUEST | cmd;
806 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
807 
808 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
809 	do {
810 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
811 		if (!(val & REG_INMAIL_OP_REQUEST))
812 			break;
813 		usleep_range(10, 20);
814 	} while (ktime_before(ktime_get(), timeout));
815 
816 	if (val & REG_INMAIL_OP_REQUEST)
817 		return -ETIMEDOUT;
818 	if (val & REG_INMAIL_ERROR)
819 		return -EIO;
820 
821 	return 0;
822 }
823 
824 /**
825  * nhi_mailbox_mode() - Return current firmware operation mode
826  * @nhi: Pointer to the NHI structure
827  *
828  * The function reads current firmware operation mode using NHI mailbox
829  * registers and returns it to the caller.
830  */
831 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
832 {
833 	u32 val;
834 
835 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
836 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
837 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
838 
839 	return (enum nhi_fw_mode)val;
840 }
841 
842 static void nhi_interrupt_work(struct work_struct *work)
843 {
844 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
845 	int value = 0; /* Suppress uninitialized usage warning. */
846 	int bit;
847 	int hop = -1;
848 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
849 	struct tb_ring *ring;
850 
851 	spin_lock_irq(&nhi->lock);
852 
853 	/*
854 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
855 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
856 	 * dwords as required. The registers are cleared on read.
857 	 */
858 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
859 		if (bit % 32 == 0)
860 			value = ioread32(nhi->iobase
861 					 + REG_RING_NOTIFY_BASE
862 					 + 4 * (bit / 32));
863 		if (++hop == nhi->hop_count) {
864 			hop = 0;
865 			type++;
866 		}
867 		if ((value & (1 << (bit % 32))) == 0)
868 			continue;
869 		if (type == 2) {
870 			dev_warn(&nhi->pdev->dev,
871 				 "RX overflow for ring %d\n",
872 				 hop);
873 			continue;
874 		}
875 		if (type == 0)
876 			ring = nhi->tx_rings[hop];
877 		else
878 			ring = nhi->rx_rings[hop];
879 		if (ring == NULL) {
880 			dev_warn(&nhi->pdev->dev,
881 				 "got interrupt for inactive %s ring %d\n",
882 				 type ? "RX" : "TX",
883 				 hop);
884 			continue;
885 		}
886 
887 		spin_lock(&ring->lock);
888 		__ring_interrupt(ring);
889 		spin_unlock(&ring->lock);
890 	}
891 	spin_unlock_irq(&nhi->lock);
892 }
893 
894 static irqreturn_t nhi_msi(int irq, void *data)
895 {
896 	struct tb_nhi *nhi = data;
897 	schedule_work(&nhi->interrupt_work);
898 	return IRQ_HANDLED;
899 }
900 
901 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
902 {
903 	struct pci_dev *pdev = to_pci_dev(dev);
904 	struct tb *tb = pci_get_drvdata(pdev);
905 	struct tb_nhi *nhi = tb->nhi;
906 	int ret;
907 
908 	ret = tb_domain_suspend_noirq(tb);
909 	if (ret)
910 		return ret;
911 
912 	if (nhi->ops && nhi->ops->suspend_noirq) {
913 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
914 		if (ret)
915 			return ret;
916 	}
917 
918 	return 0;
919 }
920 
921 static int nhi_suspend_noirq(struct device *dev)
922 {
923 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
924 }
925 
926 static int nhi_freeze_noirq(struct device *dev)
927 {
928 	struct pci_dev *pdev = to_pci_dev(dev);
929 	struct tb *tb = pci_get_drvdata(pdev);
930 
931 	return tb_domain_freeze_noirq(tb);
932 }
933 
934 static int nhi_thaw_noirq(struct device *dev)
935 {
936 	struct pci_dev *pdev = to_pci_dev(dev);
937 	struct tb *tb = pci_get_drvdata(pdev);
938 
939 	return tb_domain_thaw_noirq(tb);
940 }
941 
942 static bool nhi_wake_supported(struct pci_dev *pdev)
943 {
944 	u8 val;
945 
946 	/*
947 	 * If power rails are sustainable for wakeup from S4 this
948 	 * property is set by the BIOS.
949 	 */
950 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
951 		return !!val;
952 
953 	return true;
954 }
955 
956 static int nhi_poweroff_noirq(struct device *dev)
957 {
958 	struct pci_dev *pdev = to_pci_dev(dev);
959 	bool wakeup;
960 
961 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
962 	return __nhi_suspend_noirq(dev, wakeup);
963 }
964 
965 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
966 {
967 	/* Throttling is specified in 256ns increments */
968 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
969 	unsigned int i;
970 
971 	/*
972 	 * Configure interrupt throttling for all vectors even if we
973 	 * only use few.
974 	 */
975 	for (i = 0; i < MSIX_MAX_VECS; i++) {
976 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
977 		iowrite32(throttle, nhi->iobase + reg);
978 	}
979 }
980 
981 static int nhi_resume_noirq(struct device *dev)
982 {
983 	struct pci_dev *pdev = to_pci_dev(dev);
984 	struct tb *tb = pci_get_drvdata(pdev);
985 	struct tb_nhi *nhi = tb->nhi;
986 	int ret;
987 
988 	/*
989 	 * Check that the device is still there. It may be that the user
990 	 * unplugged last device which causes the host controller to go
991 	 * away on PCs.
992 	 */
993 	if (!pci_device_is_present(pdev)) {
994 		nhi->going_away = true;
995 	} else {
996 		if (nhi->ops && nhi->ops->resume_noirq) {
997 			ret = nhi->ops->resume_noirq(nhi);
998 			if (ret)
999 				return ret;
1000 		}
1001 		nhi_enable_int_throttling(tb->nhi);
1002 	}
1003 
1004 	return tb_domain_resume_noirq(tb);
1005 }
1006 
1007 static int nhi_suspend(struct device *dev)
1008 {
1009 	struct pci_dev *pdev = to_pci_dev(dev);
1010 	struct tb *tb = pci_get_drvdata(pdev);
1011 
1012 	return tb_domain_suspend(tb);
1013 }
1014 
1015 static void nhi_complete(struct device *dev)
1016 {
1017 	struct pci_dev *pdev = to_pci_dev(dev);
1018 	struct tb *tb = pci_get_drvdata(pdev);
1019 
1020 	/*
1021 	 * If we were runtime suspended when system suspend started,
1022 	 * schedule runtime resume now. It should bring the domain back
1023 	 * to functional state.
1024 	 */
1025 	if (pm_runtime_suspended(&pdev->dev))
1026 		pm_runtime_resume(&pdev->dev);
1027 	else
1028 		tb_domain_complete(tb);
1029 }
1030 
1031 static int nhi_runtime_suspend(struct device *dev)
1032 {
1033 	struct pci_dev *pdev = to_pci_dev(dev);
1034 	struct tb *tb = pci_get_drvdata(pdev);
1035 	struct tb_nhi *nhi = tb->nhi;
1036 	int ret;
1037 
1038 	ret = tb_domain_runtime_suspend(tb);
1039 	if (ret)
1040 		return ret;
1041 
1042 	if (nhi->ops && nhi->ops->runtime_suspend) {
1043 		ret = nhi->ops->runtime_suspend(tb->nhi);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 	return 0;
1048 }
1049 
1050 static int nhi_runtime_resume(struct device *dev)
1051 {
1052 	struct pci_dev *pdev = to_pci_dev(dev);
1053 	struct tb *tb = pci_get_drvdata(pdev);
1054 	struct tb_nhi *nhi = tb->nhi;
1055 	int ret;
1056 
1057 	if (nhi->ops && nhi->ops->runtime_resume) {
1058 		ret = nhi->ops->runtime_resume(nhi);
1059 		if (ret)
1060 			return ret;
1061 	}
1062 
1063 	nhi_enable_int_throttling(nhi);
1064 	return tb_domain_runtime_resume(tb);
1065 }
1066 
1067 static void nhi_shutdown(struct tb_nhi *nhi)
1068 {
1069 	int i;
1070 
1071 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1072 
1073 	for (i = 0; i < nhi->hop_count; i++) {
1074 		if (nhi->tx_rings[i])
1075 			dev_WARN(&nhi->pdev->dev,
1076 				 "TX ring %d is still active\n", i);
1077 		if (nhi->rx_rings[i])
1078 			dev_WARN(&nhi->pdev->dev,
1079 				 "RX ring %d is still active\n", i);
1080 	}
1081 	nhi_disable_interrupts(nhi);
1082 	/*
1083 	 * We have to release the irq before calling flush_work. Otherwise an
1084 	 * already executing IRQ handler could call schedule_work again.
1085 	 */
1086 	if (!nhi->pdev->msix_enabled) {
1087 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1088 		flush_work(&nhi->interrupt_work);
1089 	}
1090 	ida_destroy(&nhi->msix_ida);
1091 
1092 	if (nhi->ops && nhi->ops->shutdown)
1093 		nhi->ops->shutdown(nhi);
1094 }
1095 
1096 static void nhi_check_quirks(struct tb_nhi *nhi)
1097 {
1098 	/*
1099 	 * Intel hardware supports auto clear of the interrupt status
1100 	 * reqister right after interrupt is being issued.
1101 	 */
1102 	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL)
1103 		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1104 }
1105 
1106 static int nhi_init_msi(struct tb_nhi *nhi)
1107 {
1108 	struct pci_dev *pdev = nhi->pdev;
1109 	int res, irq, nvec;
1110 
1111 	/* In case someone left them on. */
1112 	nhi_disable_interrupts(nhi);
1113 
1114 	nhi_enable_int_throttling(nhi);
1115 
1116 	ida_init(&nhi->msix_ida);
1117 
1118 	/*
1119 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1120 	 * get all MSI-X vectors and if we succeed, each ring will have
1121 	 * one MSI-X. If for some reason that does not work out, we
1122 	 * fallback to a single MSI.
1123 	 */
1124 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1125 				     PCI_IRQ_MSIX);
1126 	if (nvec < 0) {
1127 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1128 		if (nvec < 0)
1129 			return nvec;
1130 
1131 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1132 
1133 		irq = pci_irq_vector(nhi->pdev, 0);
1134 		if (irq < 0)
1135 			return irq;
1136 
1137 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1138 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1139 		if (res) {
1140 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1141 			return res;
1142 		}
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static bool nhi_imr_valid(struct pci_dev *pdev)
1149 {
1150 	u8 val;
1151 
1152 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1153 		return !!val;
1154 
1155 	return true;
1156 }
1157 
1158 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1159 {
1160 	struct tb *tb;
1161 
1162 	/*
1163 	 * USB4 case is simple. If we got control of any of the
1164 	 * capabilities, we use software CM.
1165 	 */
1166 	if (tb_acpi_is_native())
1167 		return tb_probe(nhi);
1168 
1169 	/*
1170 	 * Either firmware based CM is running (we did not get control
1171 	 * from the firmware) or this is pre-USB4 PC so try first
1172 	 * firmware CM and then fallback to software CM.
1173 	 */
1174 	tb = icm_probe(nhi);
1175 	if (!tb)
1176 		tb = tb_probe(nhi);
1177 
1178 	return tb;
1179 }
1180 
1181 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1182 {
1183 	struct tb_nhi *nhi;
1184 	struct tb *tb;
1185 	int res;
1186 
1187 	if (!nhi_imr_valid(pdev)) {
1188 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1189 		return -ENODEV;
1190 	}
1191 
1192 	res = pcim_enable_device(pdev);
1193 	if (res) {
1194 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1195 		return res;
1196 	}
1197 
1198 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1199 	if (res) {
1200 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1201 		return res;
1202 	}
1203 
1204 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1205 	if (!nhi)
1206 		return -ENOMEM;
1207 
1208 	nhi->pdev = pdev;
1209 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1210 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1211 	nhi->iobase = pcim_iomap_table(pdev)[0];
1212 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1213 	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1214 
1215 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1216 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1217 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1218 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1219 	if (!nhi->tx_rings || !nhi->rx_rings)
1220 		return -ENOMEM;
1221 
1222 	nhi_check_quirks(nhi);
1223 
1224 	res = nhi_init_msi(nhi);
1225 	if (res) {
1226 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1227 		return res;
1228 	}
1229 
1230 	spin_lock_init(&nhi->lock);
1231 
1232 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1233 	if (res) {
1234 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1235 		return res;
1236 	}
1237 
1238 	pci_set_master(pdev);
1239 
1240 	if (nhi->ops && nhi->ops->init) {
1241 		res = nhi->ops->init(nhi);
1242 		if (res)
1243 			return res;
1244 	}
1245 
1246 	tb = nhi_select_cm(nhi);
1247 	if (!tb) {
1248 		dev_err(&nhi->pdev->dev,
1249 			"failed to determine connection manager, aborting\n");
1250 		return -ENODEV;
1251 	}
1252 
1253 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1254 
1255 	res = tb_domain_add(tb);
1256 	if (res) {
1257 		/*
1258 		 * At this point the RX/TX rings might already have been
1259 		 * activated. Do a proper shutdown.
1260 		 */
1261 		tb_domain_put(tb);
1262 		nhi_shutdown(nhi);
1263 		return res;
1264 	}
1265 	pci_set_drvdata(pdev, tb);
1266 
1267 	device_wakeup_enable(&pdev->dev);
1268 
1269 	pm_runtime_allow(&pdev->dev);
1270 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1271 	pm_runtime_use_autosuspend(&pdev->dev);
1272 	pm_runtime_put_autosuspend(&pdev->dev);
1273 
1274 	return 0;
1275 }
1276 
1277 static void nhi_remove(struct pci_dev *pdev)
1278 {
1279 	struct tb *tb = pci_get_drvdata(pdev);
1280 	struct tb_nhi *nhi = tb->nhi;
1281 
1282 	pm_runtime_get_sync(&pdev->dev);
1283 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1284 	pm_runtime_forbid(&pdev->dev);
1285 
1286 	tb_domain_remove(tb);
1287 	nhi_shutdown(nhi);
1288 }
1289 
1290 /*
1291  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1292  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1293  * resume_noirq until we are done.
1294  */
1295 static const struct dev_pm_ops nhi_pm_ops = {
1296 	.suspend_noirq = nhi_suspend_noirq,
1297 	.resume_noirq = nhi_resume_noirq,
1298 	.freeze_noirq = nhi_freeze_noirq,  /*
1299 					    * we just disable hotplug, the
1300 					    * pci-tunnels stay alive.
1301 					    */
1302 	.thaw_noirq = nhi_thaw_noirq,
1303 	.restore_noirq = nhi_resume_noirq,
1304 	.suspend = nhi_suspend,
1305 	.poweroff_noirq = nhi_poweroff_noirq,
1306 	.poweroff = nhi_suspend,
1307 	.complete = nhi_complete,
1308 	.runtime_suspend = nhi_runtime_suspend,
1309 	.runtime_resume = nhi_runtime_resume,
1310 };
1311 
1312 static struct pci_device_id nhi_ids[] = {
1313 	/*
1314 	 * We have to specify class, the TB bridges use the same device and
1315 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1316 	 */
1317 	{
1318 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1319 		.vendor = PCI_VENDOR_ID_INTEL,
1320 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1321 		.subvendor = 0x2222, .subdevice = 0x1111,
1322 	},
1323 	{
1324 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1325 		.vendor = PCI_VENDOR_ID_INTEL,
1326 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1327 		.subvendor = 0x2222, .subdevice = 0x1111,
1328 	},
1329 	{
1330 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1331 		.vendor = PCI_VENDOR_ID_INTEL,
1332 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1333 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1334 	},
1335 	{
1336 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1337 		.vendor = PCI_VENDOR_ID_INTEL,
1338 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1339 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1340 	},
1341 
1342 	/* Thunderbolt 3 */
1343 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1344 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1345 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1346 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1347 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1348 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1349 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1350 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1351 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1352 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1353 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1354 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1355 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1356 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1357 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1358 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1359 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1360 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1361 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1362 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1363 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1364 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1365 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1366 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1367 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1368 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1369 
1370 	/* Any USB4 compliant host */
1371 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1372 
1373 	{ 0,}
1374 };
1375 
1376 MODULE_DEVICE_TABLE(pci, nhi_ids);
1377 MODULE_LICENSE("GPL");
1378 
1379 static struct pci_driver nhi_driver = {
1380 	.name = "thunderbolt",
1381 	.id_table = nhi_ids,
1382 	.probe = nhi_probe,
1383 	.remove = nhi_remove,
1384 	.shutdown = nhi_remove,
1385 	.driver.pm = &nhi_pm_ops,
1386 };
1387 
1388 static int __init nhi_init(void)
1389 {
1390 	int ret;
1391 
1392 	ret = tb_domain_init();
1393 	if (ret)
1394 		return ret;
1395 	ret = pci_register_driver(&nhi_driver);
1396 	if (ret)
1397 		tb_domain_exit();
1398 	return ret;
1399 }
1400 
1401 static void __exit nhi_unload(void)
1402 {
1403 	pci_unregister_driver(&nhi_driver);
1404 	tb_domain_exit();
1405 }
1406 
1407 rootfs_initcall(nhi_init);
1408 module_exit(nhi_unload);
1409