xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24 
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26 
27 /*
28  * Used to enable end-to-end workaround for missing RX packets. Do not
29  * use this ring for anything else.
30  */
31 #define RING_E2E_UNUSED_HOPID	2
32 #define RING_FIRST_USABLE_HOPID	TB_PATH_MIN_HOPID
33 
34 /*
35  * Minimal number of vectors when we use MSI-X. Two for control channel
36  * Rx/Tx and the rest four are for cross domain DMA paths.
37  */
38 #define MSIX_MIN_VECS		6
39 #define MSIX_MAX_VECS		16
40 
41 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
42 
43 static int ring_interrupt_index(struct tb_ring *ring)
44 {
45 	int bit = ring->hop;
46 	if (!ring->is_tx)
47 		bit += ring->nhi->hop_count;
48 	return bit;
49 }
50 
51 /**
52  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
53  *
54  * ring->nhi->lock must be held.
55  */
56 static void ring_interrupt_active(struct tb_ring *ring, bool active)
57 {
58 	int reg = REG_RING_INTERRUPT_BASE +
59 		  ring_interrupt_index(ring) / 32 * 4;
60 	int bit = ring_interrupt_index(ring) & 31;
61 	int mask = 1 << bit;
62 	u32 old, new;
63 
64 	if (ring->irq > 0) {
65 		u32 step, shift, ivr, misc;
66 		void __iomem *ivr_base;
67 		int index;
68 
69 		if (ring->is_tx)
70 			index = ring->hop;
71 		else
72 			index = ring->hop + ring->nhi->hop_count;
73 
74 		/*
75 		 * Ask the hardware to clear interrupt status bits automatically
76 		 * since we already know which interrupt was triggered.
77 		 */
78 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
79 		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
80 			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
81 			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
82 		}
83 
84 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
85 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
86 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
87 		ivr = ioread32(ivr_base + step);
88 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
89 		if (active)
90 			ivr |= ring->vector << shift;
91 		iowrite32(ivr, ivr_base + step);
92 	}
93 
94 	old = ioread32(ring->nhi->iobase + reg);
95 	if (active)
96 		new = old | mask;
97 	else
98 		new = old & ~mask;
99 
100 	dev_dbg(&ring->nhi->pdev->dev,
101 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
102 		active ? "enabling" : "disabling", reg, bit, old, new);
103 
104 	if (new == old)
105 		dev_WARN(&ring->nhi->pdev->dev,
106 					 "interrupt for %s %d is already %s\n",
107 					 RING_TYPE(ring), ring->hop,
108 					 active ? "enabled" : "disabled");
109 	iowrite32(new, ring->nhi->iobase + reg);
110 }
111 
112 /**
113  * nhi_disable_interrupts() - disable interrupts for all rings
114  *
115  * Use only during init and shutdown.
116  */
117 static void nhi_disable_interrupts(struct tb_nhi *nhi)
118 {
119 	int i = 0;
120 	/* disable interrupts */
121 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
122 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
123 
124 	/* clear interrupt status bits */
125 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
126 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
127 }
128 
129 /* ring helper methods */
130 
131 static void __iomem *ring_desc_base(struct tb_ring *ring)
132 {
133 	void __iomem *io = ring->nhi->iobase;
134 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
135 	io += ring->hop * 16;
136 	return io;
137 }
138 
139 static void __iomem *ring_options_base(struct tb_ring *ring)
140 {
141 	void __iomem *io = ring->nhi->iobase;
142 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
143 	io += ring->hop * 32;
144 	return io;
145 }
146 
147 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
148 {
149 	/*
150 	 * The other 16-bits in the register is read-only and writes to it
151 	 * are ignored by the hardware so we can save one ioread32() by
152 	 * filling the read-only bits with zeroes.
153 	 */
154 	iowrite32(cons, ring_desc_base(ring) + 8);
155 }
156 
157 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
158 {
159 	/* See ring_iowrite_cons() above for explanation */
160 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
161 }
162 
163 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
164 {
165 	iowrite32(value, ring_desc_base(ring) + offset);
166 }
167 
168 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
169 {
170 	iowrite32(value, ring_desc_base(ring) + offset);
171 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
172 }
173 
174 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
175 {
176 	iowrite32(value, ring_options_base(ring) + offset);
177 }
178 
179 static bool ring_full(struct tb_ring *ring)
180 {
181 	return ((ring->head + 1) % ring->size) == ring->tail;
182 }
183 
184 static bool ring_empty(struct tb_ring *ring)
185 {
186 	return ring->head == ring->tail;
187 }
188 
189 /**
190  * ring_write_descriptors() - post frames from ring->queue to the controller
191  *
192  * ring->lock is held.
193  */
194 static void ring_write_descriptors(struct tb_ring *ring)
195 {
196 	struct ring_frame *frame, *n;
197 	struct ring_desc *descriptor;
198 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
199 		if (ring_full(ring))
200 			break;
201 		list_move_tail(&frame->list, &ring->in_flight);
202 		descriptor = &ring->descriptors[ring->head];
203 		descriptor->phys = frame->buffer_phy;
204 		descriptor->time = 0;
205 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
206 		if (ring->is_tx) {
207 			descriptor->length = frame->size;
208 			descriptor->eof = frame->eof;
209 			descriptor->sof = frame->sof;
210 		}
211 		ring->head = (ring->head + 1) % ring->size;
212 		if (ring->is_tx)
213 			ring_iowrite_prod(ring, ring->head);
214 		else
215 			ring_iowrite_cons(ring, ring->head);
216 	}
217 }
218 
219 /**
220  * ring_work() - progress completed frames
221  *
222  * If the ring is shutting down then all frames are marked as canceled and
223  * their callbacks are invoked.
224  *
225  * Otherwise we collect all completed frame from the ring buffer, write new
226  * frame to the ring buffer and invoke the callbacks for the completed frames.
227  */
228 static void ring_work(struct work_struct *work)
229 {
230 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
231 	struct ring_frame *frame;
232 	bool canceled = false;
233 	unsigned long flags;
234 	LIST_HEAD(done);
235 
236 	spin_lock_irqsave(&ring->lock, flags);
237 
238 	if (!ring->running) {
239 		/*  Move all frames to done and mark them as canceled. */
240 		list_splice_tail_init(&ring->in_flight, &done);
241 		list_splice_tail_init(&ring->queue, &done);
242 		canceled = true;
243 		goto invoke_callback;
244 	}
245 
246 	while (!ring_empty(ring)) {
247 		if (!(ring->descriptors[ring->tail].flags
248 				& RING_DESC_COMPLETED))
249 			break;
250 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
251 					 list);
252 		list_move_tail(&frame->list, &done);
253 		if (!ring->is_tx) {
254 			frame->size = ring->descriptors[ring->tail].length;
255 			frame->eof = ring->descriptors[ring->tail].eof;
256 			frame->sof = ring->descriptors[ring->tail].sof;
257 			frame->flags = ring->descriptors[ring->tail].flags;
258 		}
259 		ring->tail = (ring->tail + 1) % ring->size;
260 	}
261 	ring_write_descriptors(ring);
262 
263 invoke_callback:
264 	/* allow callbacks to schedule new work */
265 	spin_unlock_irqrestore(&ring->lock, flags);
266 	while (!list_empty(&done)) {
267 		frame = list_first_entry(&done, typeof(*frame), list);
268 		/*
269 		 * The callback may reenqueue or delete frame.
270 		 * Do not hold on to it.
271 		 */
272 		list_del_init(&frame->list);
273 		if (frame->callback)
274 			frame->callback(ring, frame, canceled);
275 	}
276 }
277 
278 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
279 {
280 	unsigned long flags;
281 	int ret = 0;
282 
283 	spin_lock_irqsave(&ring->lock, flags);
284 	if (ring->running) {
285 		list_add_tail(&frame->list, &ring->queue);
286 		ring_write_descriptors(ring);
287 	} else {
288 		ret = -ESHUTDOWN;
289 	}
290 	spin_unlock_irqrestore(&ring->lock, flags);
291 	return ret;
292 }
293 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
294 
295 /**
296  * tb_ring_poll() - Poll one completed frame from the ring
297  * @ring: Ring to poll
298  *
299  * This function can be called when @start_poll callback of the @ring
300  * has been called. It will read one completed frame from the ring and
301  * return it to the caller. Returns %NULL if there is no more completed
302  * frames.
303  */
304 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
305 {
306 	struct ring_frame *frame = NULL;
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&ring->lock, flags);
310 	if (!ring->running)
311 		goto unlock;
312 	if (ring_empty(ring))
313 		goto unlock;
314 
315 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
316 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
317 					 list);
318 		list_del_init(&frame->list);
319 
320 		if (!ring->is_tx) {
321 			frame->size = ring->descriptors[ring->tail].length;
322 			frame->eof = ring->descriptors[ring->tail].eof;
323 			frame->sof = ring->descriptors[ring->tail].sof;
324 			frame->flags = ring->descriptors[ring->tail].flags;
325 		}
326 
327 		ring->tail = (ring->tail + 1) % ring->size;
328 	}
329 
330 unlock:
331 	spin_unlock_irqrestore(&ring->lock, flags);
332 	return frame;
333 }
334 EXPORT_SYMBOL_GPL(tb_ring_poll);
335 
336 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
337 {
338 	int idx = ring_interrupt_index(ring);
339 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
340 	int bit = idx % 32;
341 	u32 val;
342 
343 	val = ioread32(ring->nhi->iobase + reg);
344 	if (mask)
345 		val &= ~BIT(bit);
346 	else
347 		val |= BIT(bit);
348 	iowrite32(val, ring->nhi->iobase + reg);
349 }
350 
351 /* Both @nhi->lock and @ring->lock should be held */
352 static void __ring_interrupt(struct tb_ring *ring)
353 {
354 	if (!ring->running)
355 		return;
356 
357 	if (ring->start_poll) {
358 		__ring_interrupt_mask(ring, true);
359 		ring->start_poll(ring->poll_data);
360 	} else {
361 		schedule_work(&ring->work);
362 	}
363 }
364 
365 /**
366  * tb_ring_poll_complete() - Re-start interrupt for the ring
367  * @ring: Ring to re-start the interrupt
368  *
369  * This will re-start (unmask) the ring interrupt once the user is done
370  * with polling.
371  */
372 void tb_ring_poll_complete(struct tb_ring *ring)
373 {
374 	unsigned long flags;
375 
376 	spin_lock_irqsave(&ring->nhi->lock, flags);
377 	spin_lock(&ring->lock);
378 	if (ring->start_poll)
379 		__ring_interrupt_mask(ring, false);
380 	spin_unlock(&ring->lock);
381 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
382 }
383 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
384 
385 static irqreturn_t ring_msix(int irq, void *data)
386 {
387 	struct tb_ring *ring = data;
388 
389 	spin_lock(&ring->nhi->lock);
390 	spin_lock(&ring->lock);
391 	__ring_interrupt(ring);
392 	spin_unlock(&ring->lock);
393 	spin_unlock(&ring->nhi->lock);
394 
395 	return IRQ_HANDLED;
396 }
397 
398 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
399 {
400 	struct tb_nhi *nhi = ring->nhi;
401 	unsigned long irqflags;
402 	int ret;
403 
404 	if (!nhi->pdev->msix_enabled)
405 		return 0;
406 
407 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
408 	if (ret < 0)
409 		return ret;
410 
411 	ring->vector = ret;
412 
413 	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
414 	if (ring->irq < 0)
415 		return ring->irq;
416 
417 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
418 	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
419 }
420 
421 static void ring_release_msix(struct tb_ring *ring)
422 {
423 	if (ring->irq <= 0)
424 		return;
425 
426 	free_irq(ring->irq, ring);
427 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
428 	ring->vector = 0;
429 	ring->irq = 0;
430 }
431 
432 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
433 {
434 	int ret = 0;
435 
436 	spin_lock_irq(&nhi->lock);
437 
438 	if (ring->hop < 0) {
439 		unsigned int i;
440 
441 		/*
442 		 * Automatically allocate HopID from the non-reserved
443 		 * range 8 .. hop_count - 1.
444 		 */
445 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
446 			if (ring->is_tx) {
447 				if (!nhi->tx_rings[i]) {
448 					ring->hop = i;
449 					break;
450 				}
451 			} else {
452 				if (!nhi->rx_rings[i]) {
453 					ring->hop = i;
454 					break;
455 				}
456 			}
457 		}
458 	}
459 
460 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
461 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
462 		ret = -EINVAL;
463 		goto err_unlock;
464 	}
465 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
466 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
467 			 ring->hop);
468 		ret = -EBUSY;
469 		goto err_unlock;
470 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
471 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
472 			 ring->hop);
473 		ret = -EBUSY;
474 		goto err_unlock;
475 	}
476 
477 	if (ring->is_tx)
478 		nhi->tx_rings[ring->hop] = ring;
479 	else
480 		nhi->rx_rings[ring->hop] = ring;
481 
482 err_unlock:
483 	spin_unlock_irq(&nhi->lock);
484 
485 	return ret;
486 }
487 
488 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
489 				     bool transmit, unsigned int flags,
490 				     u16 sof_mask, u16 eof_mask,
491 				     void (*start_poll)(void *),
492 				     void *poll_data)
493 {
494 	struct tb_ring *ring = NULL;
495 
496 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
497 		transmit ? "TX" : "RX", hop, size);
498 
499 	/* Tx Ring 2 is reserved for E2E workaround */
500 	if (transmit && hop == RING_E2E_UNUSED_HOPID)
501 		return NULL;
502 
503 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
504 	if (!ring)
505 		return NULL;
506 
507 	spin_lock_init(&ring->lock);
508 	INIT_LIST_HEAD(&ring->queue);
509 	INIT_LIST_HEAD(&ring->in_flight);
510 	INIT_WORK(&ring->work, ring_work);
511 
512 	ring->nhi = nhi;
513 	ring->hop = hop;
514 	ring->is_tx = transmit;
515 	ring->size = size;
516 	ring->flags = flags;
517 	ring->sof_mask = sof_mask;
518 	ring->eof_mask = eof_mask;
519 	ring->head = 0;
520 	ring->tail = 0;
521 	ring->running = false;
522 	ring->start_poll = start_poll;
523 	ring->poll_data = poll_data;
524 
525 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
526 			size * sizeof(*ring->descriptors),
527 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
528 	if (!ring->descriptors)
529 		goto err_free_ring;
530 
531 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
532 		goto err_free_descs;
533 
534 	if (nhi_alloc_hop(nhi, ring))
535 		goto err_release_msix;
536 
537 	return ring;
538 
539 err_release_msix:
540 	ring_release_msix(ring);
541 err_free_descs:
542 	dma_free_coherent(&ring->nhi->pdev->dev,
543 			  ring->size * sizeof(*ring->descriptors),
544 			  ring->descriptors, ring->descriptors_dma);
545 err_free_ring:
546 	kfree(ring);
547 
548 	return NULL;
549 }
550 
551 /**
552  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
553  * @nhi: Pointer to the NHI the ring is to be allocated
554  * @hop: HopID (ring) to allocate
555  * @size: Number of entries in the ring
556  * @flags: Flags for the ring
557  */
558 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
559 				 unsigned int flags)
560 {
561 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
562 }
563 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
564 
565 /**
566  * tb_ring_alloc_rx() - Allocate DMA ring for receive
567  * @nhi: Pointer to the NHI the ring is to be allocated
568  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
569  * @size: Number of entries in the ring
570  * @flags: Flags for the ring
571  * @sof_mask: Mask of PDF values that start a frame
572  * @eof_mask: Mask of PDF values that end a frame
573  * @start_poll: If not %NULL the ring will call this function when an
574  *		interrupt is triggered and masked, instead of callback
575  *		in each Rx frame.
576  * @poll_data: Optional data passed to @start_poll
577  */
578 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
579 				 unsigned int flags, u16 sof_mask, u16 eof_mask,
580 				 void (*start_poll)(void *), void *poll_data)
581 {
582 	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
583 			     start_poll, poll_data);
584 }
585 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
586 
587 /**
588  * tb_ring_start() - enable a ring
589  *
590  * Must not be invoked in parallel with tb_ring_stop().
591  */
592 void tb_ring_start(struct tb_ring *ring)
593 {
594 	u16 frame_size;
595 	u32 flags;
596 
597 	spin_lock_irq(&ring->nhi->lock);
598 	spin_lock(&ring->lock);
599 	if (ring->nhi->going_away)
600 		goto err;
601 	if (ring->running) {
602 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
603 		goto err;
604 	}
605 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
606 		RING_TYPE(ring), ring->hop);
607 
608 	if (ring->flags & RING_FLAG_FRAME) {
609 		/* Means 4096 */
610 		frame_size = 0;
611 		flags = RING_FLAG_ENABLE;
612 	} else {
613 		frame_size = TB_FRAME_SIZE;
614 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
615 	}
616 
617 	if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
618 		u32 hop;
619 
620 		/*
621 		 * In order not to lose Rx packets we enable end-to-end
622 		 * workaround which transfers Rx credits to an unused Tx
623 		 * HopID.
624 		 */
625 		hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
626 		hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
627 		flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
628 	}
629 
630 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
631 	if (ring->is_tx) {
632 		ring_iowrite32desc(ring, ring->size, 12);
633 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
634 		ring_iowrite32options(ring, flags, 0);
635 	} else {
636 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
637 
638 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
639 		ring_iowrite32options(ring, sof_eof_mask, 4);
640 		ring_iowrite32options(ring, flags, 0);
641 	}
642 	ring_interrupt_active(ring, true);
643 	ring->running = true;
644 err:
645 	spin_unlock(&ring->lock);
646 	spin_unlock_irq(&ring->nhi->lock);
647 }
648 EXPORT_SYMBOL_GPL(tb_ring_start);
649 
650 /**
651  * tb_ring_stop() - shutdown a ring
652  *
653  * Must not be invoked from a callback.
654  *
655  * This method will disable the ring. Further calls to
656  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
657  * called.
658  *
659  * All enqueued frames will be canceled and their callbacks will be executed
660  * with frame->canceled set to true (on the callback thread). This method
661  * returns only after all callback invocations have finished.
662  */
663 void tb_ring_stop(struct tb_ring *ring)
664 {
665 	spin_lock_irq(&ring->nhi->lock);
666 	spin_lock(&ring->lock);
667 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
668 		RING_TYPE(ring), ring->hop);
669 	if (ring->nhi->going_away)
670 		goto err;
671 	if (!ring->running) {
672 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
673 			 RING_TYPE(ring), ring->hop);
674 		goto err;
675 	}
676 	ring_interrupt_active(ring, false);
677 
678 	ring_iowrite32options(ring, 0, 0);
679 	ring_iowrite64desc(ring, 0, 0);
680 	ring_iowrite32desc(ring, 0, 8);
681 	ring_iowrite32desc(ring, 0, 12);
682 	ring->head = 0;
683 	ring->tail = 0;
684 	ring->running = false;
685 
686 err:
687 	spin_unlock(&ring->lock);
688 	spin_unlock_irq(&ring->nhi->lock);
689 
690 	/*
691 	 * schedule ring->work to invoke callbacks on all remaining frames.
692 	 */
693 	schedule_work(&ring->work);
694 	flush_work(&ring->work);
695 }
696 EXPORT_SYMBOL_GPL(tb_ring_stop);
697 
698 /*
699  * tb_ring_free() - free ring
700  *
701  * When this method returns all invocations of ring->callback will have
702  * finished.
703  *
704  * Ring must be stopped.
705  *
706  * Must NOT be called from ring_frame->callback!
707  */
708 void tb_ring_free(struct tb_ring *ring)
709 {
710 	spin_lock_irq(&ring->nhi->lock);
711 	/*
712 	 * Dissociate the ring from the NHI. This also ensures that
713 	 * nhi_interrupt_work cannot reschedule ring->work.
714 	 */
715 	if (ring->is_tx)
716 		ring->nhi->tx_rings[ring->hop] = NULL;
717 	else
718 		ring->nhi->rx_rings[ring->hop] = NULL;
719 
720 	if (ring->running) {
721 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
722 			 RING_TYPE(ring), ring->hop);
723 	}
724 	spin_unlock_irq(&ring->nhi->lock);
725 
726 	ring_release_msix(ring);
727 
728 	dma_free_coherent(&ring->nhi->pdev->dev,
729 			  ring->size * sizeof(*ring->descriptors),
730 			  ring->descriptors, ring->descriptors_dma);
731 
732 	ring->descriptors = NULL;
733 	ring->descriptors_dma = 0;
734 
735 
736 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
737 		ring->hop);
738 
739 	/**
740 	 * ring->work can no longer be scheduled (it is scheduled only
741 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
742 	 * to finish before freeing the ring.
743 	 */
744 	flush_work(&ring->work);
745 	kfree(ring);
746 }
747 EXPORT_SYMBOL_GPL(tb_ring_free);
748 
749 /**
750  * nhi_mailbox_cmd() - Send a command through NHI mailbox
751  * @nhi: Pointer to the NHI structure
752  * @cmd: Command to send
753  * @data: Data to be send with the command
754  *
755  * Sends mailbox command to the firmware running on NHI. Returns %0 in
756  * case of success and negative errno in case of failure.
757  */
758 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
759 {
760 	ktime_t timeout;
761 	u32 val;
762 
763 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
764 
765 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
766 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
767 	val |= REG_INMAIL_OP_REQUEST | cmd;
768 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
769 
770 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
771 	do {
772 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
773 		if (!(val & REG_INMAIL_OP_REQUEST))
774 			break;
775 		usleep_range(10, 20);
776 	} while (ktime_before(ktime_get(), timeout));
777 
778 	if (val & REG_INMAIL_OP_REQUEST)
779 		return -ETIMEDOUT;
780 	if (val & REG_INMAIL_ERROR)
781 		return -EIO;
782 
783 	return 0;
784 }
785 
786 /**
787  * nhi_mailbox_mode() - Return current firmware operation mode
788  * @nhi: Pointer to the NHI structure
789  *
790  * The function reads current firmware operation mode using NHI mailbox
791  * registers and returns it to the caller.
792  */
793 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
794 {
795 	u32 val;
796 
797 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
798 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
799 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
800 
801 	return (enum nhi_fw_mode)val;
802 }
803 
804 static void nhi_interrupt_work(struct work_struct *work)
805 {
806 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
807 	int value = 0; /* Suppress uninitialized usage warning. */
808 	int bit;
809 	int hop = -1;
810 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
811 	struct tb_ring *ring;
812 
813 	spin_lock_irq(&nhi->lock);
814 
815 	/*
816 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
817 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
818 	 * dwords as required. The registers are cleared on read.
819 	 */
820 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
821 		if (bit % 32 == 0)
822 			value = ioread32(nhi->iobase
823 					 + REG_RING_NOTIFY_BASE
824 					 + 4 * (bit / 32));
825 		if (++hop == nhi->hop_count) {
826 			hop = 0;
827 			type++;
828 		}
829 		if ((value & (1 << (bit % 32))) == 0)
830 			continue;
831 		if (type == 2) {
832 			dev_warn(&nhi->pdev->dev,
833 				 "RX overflow for ring %d\n",
834 				 hop);
835 			continue;
836 		}
837 		if (type == 0)
838 			ring = nhi->tx_rings[hop];
839 		else
840 			ring = nhi->rx_rings[hop];
841 		if (ring == NULL) {
842 			dev_warn(&nhi->pdev->dev,
843 				 "got interrupt for inactive %s ring %d\n",
844 				 type ? "RX" : "TX",
845 				 hop);
846 			continue;
847 		}
848 
849 		spin_lock(&ring->lock);
850 		__ring_interrupt(ring);
851 		spin_unlock(&ring->lock);
852 	}
853 	spin_unlock_irq(&nhi->lock);
854 }
855 
856 static irqreturn_t nhi_msi(int irq, void *data)
857 {
858 	struct tb_nhi *nhi = data;
859 	schedule_work(&nhi->interrupt_work);
860 	return IRQ_HANDLED;
861 }
862 
863 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
864 {
865 	struct pci_dev *pdev = to_pci_dev(dev);
866 	struct tb *tb = pci_get_drvdata(pdev);
867 	struct tb_nhi *nhi = tb->nhi;
868 	int ret;
869 
870 	ret = tb_domain_suspend_noirq(tb);
871 	if (ret)
872 		return ret;
873 
874 	if (nhi->ops && nhi->ops->suspend_noirq) {
875 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
876 		if (ret)
877 			return ret;
878 	}
879 
880 	return 0;
881 }
882 
883 static int nhi_suspend_noirq(struct device *dev)
884 {
885 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
886 }
887 
888 static bool nhi_wake_supported(struct pci_dev *pdev)
889 {
890 	u8 val;
891 
892 	/*
893 	 * If power rails are sustainable for wakeup from S4 this
894 	 * property is set by the BIOS.
895 	 */
896 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
897 		return !!val;
898 
899 	return true;
900 }
901 
902 static int nhi_poweroff_noirq(struct device *dev)
903 {
904 	struct pci_dev *pdev = to_pci_dev(dev);
905 	bool wakeup;
906 
907 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
908 	return __nhi_suspend_noirq(dev, wakeup);
909 }
910 
911 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
912 {
913 	/* Throttling is specified in 256ns increments */
914 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
915 	unsigned int i;
916 
917 	/*
918 	 * Configure interrupt throttling for all vectors even if we
919 	 * only use few.
920 	 */
921 	for (i = 0; i < MSIX_MAX_VECS; i++) {
922 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
923 		iowrite32(throttle, nhi->iobase + reg);
924 	}
925 }
926 
927 static int nhi_resume_noirq(struct device *dev)
928 {
929 	struct pci_dev *pdev = to_pci_dev(dev);
930 	struct tb *tb = pci_get_drvdata(pdev);
931 	struct tb_nhi *nhi = tb->nhi;
932 	int ret;
933 
934 	/*
935 	 * Check that the device is still there. It may be that the user
936 	 * unplugged last device which causes the host controller to go
937 	 * away on PCs.
938 	 */
939 	if (!pci_device_is_present(pdev)) {
940 		nhi->going_away = true;
941 	} else {
942 		if (nhi->ops && nhi->ops->resume_noirq) {
943 			ret = nhi->ops->resume_noirq(nhi);
944 			if (ret)
945 				return ret;
946 		}
947 		nhi_enable_int_throttling(tb->nhi);
948 	}
949 
950 	return tb_domain_resume_noirq(tb);
951 }
952 
953 static int nhi_suspend(struct device *dev)
954 {
955 	struct pci_dev *pdev = to_pci_dev(dev);
956 	struct tb *tb = pci_get_drvdata(pdev);
957 
958 	return tb_domain_suspend(tb);
959 }
960 
961 static void nhi_complete(struct device *dev)
962 {
963 	struct pci_dev *pdev = to_pci_dev(dev);
964 	struct tb *tb = pci_get_drvdata(pdev);
965 
966 	/*
967 	 * If we were runtime suspended when system suspend started,
968 	 * schedule runtime resume now. It should bring the domain back
969 	 * to functional state.
970 	 */
971 	if (pm_runtime_suspended(&pdev->dev))
972 		pm_runtime_resume(&pdev->dev);
973 	else
974 		tb_domain_complete(tb);
975 }
976 
977 static int nhi_runtime_suspend(struct device *dev)
978 {
979 	struct pci_dev *pdev = to_pci_dev(dev);
980 	struct tb *tb = pci_get_drvdata(pdev);
981 	struct tb_nhi *nhi = tb->nhi;
982 	int ret;
983 
984 	ret = tb_domain_runtime_suspend(tb);
985 	if (ret)
986 		return ret;
987 
988 	if (nhi->ops && nhi->ops->runtime_suspend) {
989 		ret = nhi->ops->runtime_suspend(tb->nhi);
990 		if (ret)
991 			return ret;
992 	}
993 	return 0;
994 }
995 
996 static int nhi_runtime_resume(struct device *dev)
997 {
998 	struct pci_dev *pdev = to_pci_dev(dev);
999 	struct tb *tb = pci_get_drvdata(pdev);
1000 	struct tb_nhi *nhi = tb->nhi;
1001 	int ret;
1002 
1003 	if (nhi->ops && nhi->ops->runtime_resume) {
1004 		ret = nhi->ops->runtime_resume(nhi);
1005 		if (ret)
1006 			return ret;
1007 	}
1008 
1009 	nhi_enable_int_throttling(nhi);
1010 	return tb_domain_runtime_resume(tb);
1011 }
1012 
1013 static void nhi_shutdown(struct tb_nhi *nhi)
1014 {
1015 	int i;
1016 
1017 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1018 
1019 	for (i = 0; i < nhi->hop_count; i++) {
1020 		if (nhi->tx_rings[i])
1021 			dev_WARN(&nhi->pdev->dev,
1022 				 "TX ring %d is still active\n", i);
1023 		if (nhi->rx_rings[i])
1024 			dev_WARN(&nhi->pdev->dev,
1025 				 "RX ring %d is still active\n", i);
1026 	}
1027 	nhi_disable_interrupts(nhi);
1028 	/*
1029 	 * We have to release the irq before calling flush_work. Otherwise an
1030 	 * already executing IRQ handler could call schedule_work again.
1031 	 */
1032 	if (!nhi->pdev->msix_enabled) {
1033 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1034 		flush_work(&nhi->interrupt_work);
1035 	}
1036 	ida_destroy(&nhi->msix_ida);
1037 
1038 	if (nhi->ops && nhi->ops->shutdown)
1039 		nhi->ops->shutdown(nhi);
1040 }
1041 
1042 static int nhi_init_msi(struct tb_nhi *nhi)
1043 {
1044 	struct pci_dev *pdev = nhi->pdev;
1045 	int res, irq, nvec;
1046 
1047 	/* In case someone left them on. */
1048 	nhi_disable_interrupts(nhi);
1049 
1050 	nhi_enable_int_throttling(nhi);
1051 
1052 	ida_init(&nhi->msix_ida);
1053 
1054 	/*
1055 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1056 	 * get all MSI-X vectors and if we succeed, each ring will have
1057 	 * one MSI-X. If for some reason that does not work out, we
1058 	 * fallback to a single MSI.
1059 	 */
1060 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1061 				     PCI_IRQ_MSIX);
1062 	if (nvec < 0) {
1063 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1064 		if (nvec < 0)
1065 			return nvec;
1066 
1067 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1068 
1069 		irq = pci_irq_vector(nhi->pdev, 0);
1070 		if (irq < 0)
1071 			return irq;
1072 
1073 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1074 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1075 		if (res) {
1076 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1077 			return res;
1078 		}
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static bool nhi_imr_valid(struct pci_dev *pdev)
1085 {
1086 	u8 val;
1087 
1088 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1089 		return !!val;
1090 
1091 	return true;
1092 }
1093 
1094 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1095 {
1096 	struct tb_nhi *nhi;
1097 	struct tb *tb;
1098 	int res;
1099 
1100 	if (!nhi_imr_valid(pdev)) {
1101 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1102 		return -ENODEV;
1103 	}
1104 
1105 	res = pcim_enable_device(pdev);
1106 	if (res) {
1107 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1108 		return res;
1109 	}
1110 
1111 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1112 	if (res) {
1113 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1114 		return res;
1115 	}
1116 
1117 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1118 	if (!nhi)
1119 		return -ENOMEM;
1120 
1121 	nhi->pdev = pdev;
1122 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1123 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1124 	nhi->iobase = pcim_iomap_table(pdev)[0];
1125 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1126 	if (nhi->hop_count != 12 && nhi->hop_count != 32)
1127 		dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1128 			 nhi->hop_count);
1129 
1130 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1131 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1132 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1133 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1134 	if (!nhi->tx_rings || !nhi->rx_rings)
1135 		return -ENOMEM;
1136 
1137 	res = nhi_init_msi(nhi);
1138 	if (res) {
1139 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1140 		return res;
1141 	}
1142 
1143 	spin_lock_init(&nhi->lock);
1144 
1145 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1146 	if (res)
1147 		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1148 	if (res) {
1149 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1150 		return res;
1151 	}
1152 
1153 	pci_set_master(pdev);
1154 
1155 	if (nhi->ops && nhi->ops->init) {
1156 		res = nhi->ops->init(nhi);
1157 		if (res)
1158 			return res;
1159 	}
1160 
1161 	tb = icm_probe(nhi);
1162 	if (!tb)
1163 		tb = tb_probe(nhi);
1164 	if (!tb) {
1165 		dev_err(&nhi->pdev->dev,
1166 			"failed to determine connection manager, aborting\n");
1167 		return -ENODEV;
1168 	}
1169 
1170 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1171 
1172 	res = tb_domain_add(tb);
1173 	if (res) {
1174 		/*
1175 		 * At this point the RX/TX rings might already have been
1176 		 * activated. Do a proper shutdown.
1177 		 */
1178 		tb_domain_put(tb);
1179 		nhi_shutdown(nhi);
1180 		return res;
1181 	}
1182 	pci_set_drvdata(pdev, tb);
1183 
1184 	pm_runtime_allow(&pdev->dev);
1185 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1186 	pm_runtime_use_autosuspend(&pdev->dev);
1187 	pm_runtime_put_autosuspend(&pdev->dev);
1188 
1189 	return 0;
1190 }
1191 
1192 static void nhi_remove(struct pci_dev *pdev)
1193 {
1194 	struct tb *tb = pci_get_drvdata(pdev);
1195 	struct tb_nhi *nhi = tb->nhi;
1196 
1197 	pm_runtime_get_sync(&pdev->dev);
1198 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1199 	pm_runtime_forbid(&pdev->dev);
1200 
1201 	tb_domain_remove(tb);
1202 	nhi_shutdown(nhi);
1203 }
1204 
1205 /*
1206  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1207  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1208  * resume_noirq until we are done.
1209  */
1210 static const struct dev_pm_ops nhi_pm_ops = {
1211 	.suspend_noirq = nhi_suspend_noirq,
1212 	.resume_noirq = nhi_resume_noirq,
1213 	.freeze_noirq = nhi_suspend_noirq, /*
1214 					    * we just disable hotplug, the
1215 					    * pci-tunnels stay alive.
1216 					    */
1217 	.thaw_noirq = nhi_resume_noirq,
1218 	.restore_noirq = nhi_resume_noirq,
1219 	.suspend = nhi_suspend,
1220 	.freeze = nhi_suspend,
1221 	.poweroff_noirq = nhi_poweroff_noirq,
1222 	.poweroff = nhi_suspend,
1223 	.complete = nhi_complete,
1224 	.runtime_suspend = nhi_runtime_suspend,
1225 	.runtime_resume = nhi_runtime_resume,
1226 };
1227 
1228 static struct pci_device_id nhi_ids[] = {
1229 	/*
1230 	 * We have to specify class, the TB bridges use the same device and
1231 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1232 	 */
1233 	{
1234 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1235 		.vendor = PCI_VENDOR_ID_INTEL,
1236 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1237 		.subvendor = 0x2222, .subdevice = 0x1111,
1238 	},
1239 	{
1240 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1241 		.vendor = PCI_VENDOR_ID_INTEL,
1242 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1243 		.subvendor = 0x2222, .subdevice = 0x1111,
1244 	},
1245 	{
1246 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1247 		.vendor = PCI_VENDOR_ID_INTEL,
1248 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1249 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1250 	},
1251 	{
1252 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1253 		.vendor = PCI_VENDOR_ID_INTEL,
1254 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1255 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1256 	},
1257 
1258 	/* Thunderbolt 3 */
1259 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1260 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1261 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1262 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1263 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1264 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1265 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1266 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1267 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1268 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1269 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1270 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1271 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1272 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1273 
1274 	/* Any USB4 compliant host */
1275 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1276 
1277 	{ 0,}
1278 };
1279 
1280 MODULE_DEVICE_TABLE(pci, nhi_ids);
1281 MODULE_LICENSE("GPL");
1282 
1283 static struct pci_driver nhi_driver = {
1284 	.name = "thunderbolt",
1285 	.id_table = nhi_ids,
1286 	.probe = nhi_probe,
1287 	.remove = nhi_remove,
1288 	.driver.pm = &nhi_pm_ops,
1289 };
1290 
1291 static int __init nhi_init(void)
1292 {
1293 	int ret;
1294 
1295 	ret = tb_domain_init();
1296 	if (ret)
1297 		return ret;
1298 	ret = pci_register_driver(&nhi_driver);
1299 	if (ret)
1300 		tb_domain_exit();
1301 	return ret;
1302 }
1303 
1304 static void __exit nhi_unload(void)
1305 {
1306 	pci_unregister_driver(&nhi_driver);
1307 	tb_domain_exit();
1308 }
1309 
1310 rootfs_initcall(nhi_init);
1311 module_exit(nhi_unload);
1312