1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/delay.h> 21 #include <linux/property.h> 22 #include <linux/string_helpers.h> 23 24 #include "nhi.h" 25 #include "nhi_regs.h" 26 #include "tb.h" 27 28 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 29 30 #define RING_FIRST_USABLE_HOPID 1 31 /* 32 * Used with QUIRK_E2E to specify an unused HopID the Rx credits are 33 * transferred. 34 */ 35 #define RING_E2E_RESERVED_HOPID RING_FIRST_USABLE_HOPID 36 /* 37 * Minimal number of vectors when we use MSI-X. Two for control channel 38 * Rx/Tx and the rest four are for cross domain DMA paths. 39 */ 40 #define MSIX_MIN_VECS 6 41 #define MSIX_MAX_VECS 16 42 43 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 44 45 /* Host interface quirks */ 46 #define QUIRK_AUTO_CLEAR_INT BIT(0) 47 #define QUIRK_E2E BIT(1) 48 49 static int ring_interrupt_index(const struct tb_ring *ring) 50 { 51 int bit = ring->hop; 52 if (!ring->is_tx) 53 bit += ring->nhi->hop_count; 54 return bit; 55 } 56 57 static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring) 58 { 59 if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) { 60 u32 val; 61 62 val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring); 63 iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring); 64 } else { 65 iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring); 66 } 67 } 68 69 static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring) 70 { 71 if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) 72 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring); 73 else 74 iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring); 75 } 76 77 /* 78 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 79 * 80 * ring->nhi->lock must be held. 81 */ 82 static void ring_interrupt_active(struct tb_ring *ring, bool active) 83 { 84 int index = ring_interrupt_index(ring) / 32 * 4; 85 int reg = REG_RING_INTERRUPT_BASE + index; 86 int interrupt_bit = ring_interrupt_index(ring) & 31; 87 int mask = 1 << interrupt_bit; 88 u32 old, new; 89 90 if (ring->irq > 0) { 91 u32 step, shift, ivr, misc; 92 void __iomem *ivr_base; 93 int auto_clear_bit; 94 int index; 95 96 if (ring->is_tx) 97 index = ring->hop; 98 else 99 index = ring->hop + ring->nhi->hop_count; 100 101 /* 102 * Intel routers support a bit that isn't part of 103 * the USB4 spec to ask the hardware to clear 104 * interrupt status bits automatically since 105 * we already know which interrupt was triggered. 106 * 107 * Other routers explicitly disable auto-clear 108 * to prevent conditions that may occur where two 109 * MSIX interrupts are simultaneously active and 110 * reading the register clears both of them. 111 */ 112 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 113 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) 114 auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR; 115 else 116 auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR; 117 if (!(misc & auto_clear_bit)) 118 iowrite32(misc | auto_clear_bit, 119 ring->nhi->iobase + REG_DMA_MISC); 120 121 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 122 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 123 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 124 ivr = ioread32(ivr_base + step); 125 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 126 if (active) 127 ivr |= ring->vector << shift; 128 iowrite32(ivr, ivr_base + step); 129 } 130 131 old = ioread32(ring->nhi->iobase + reg); 132 if (active) 133 new = old | mask; 134 else 135 new = old & ~mask; 136 137 dev_dbg(&ring->nhi->pdev->dev, 138 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 139 active ? "enabling" : "disabling", reg, interrupt_bit, old, new); 140 141 if (new == old) 142 dev_WARN(&ring->nhi->pdev->dev, 143 "interrupt for %s %d is already %s\n", 144 RING_TYPE(ring), ring->hop, 145 active ? "enabled" : "disabled"); 146 147 if (active) 148 iowrite32(new, ring->nhi->iobase + reg); 149 else 150 nhi_mask_interrupt(ring->nhi, mask, index); 151 } 152 153 /* 154 * nhi_disable_interrupts() - disable interrupts for all rings 155 * 156 * Use only during init and shutdown. 157 */ 158 static void nhi_disable_interrupts(struct tb_nhi *nhi) 159 { 160 int i = 0; 161 /* disable interrupts */ 162 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 163 nhi_mask_interrupt(nhi, ~0, 4 * i); 164 165 /* clear interrupt status bits */ 166 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 167 nhi_clear_interrupt(nhi, 4 * i); 168 } 169 170 /* ring helper methods */ 171 172 static void __iomem *ring_desc_base(struct tb_ring *ring) 173 { 174 void __iomem *io = ring->nhi->iobase; 175 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 176 io += ring->hop * 16; 177 return io; 178 } 179 180 static void __iomem *ring_options_base(struct tb_ring *ring) 181 { 182 void __iomem *io = ring->nhi->iobase; 183 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 184 io += ring->hop * 32; 185 return io; 186 } 187 188 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 189 { 190 /* 191 * The other 16-bits in the register is read-only and writes to it 192 * are ignored by the hardware so we can save one ioread32() by 193 * filling the read-only bits with zeroes. 194 */ 195 iowrite32(cons, ring_desc_base(ring) + 8); 196 } 197 198 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 199 { 200 /* See ring_iowrite_cons() above for explanation */ 201 iowrite32(prod << 16, ring_desc_base(ring) + 8); 202 } 203 204 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 205 { 206 iowrite32(value, ring_desc_base(ring) + offset); 207 } 208 209 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 210 { 211 iowrite32(value, ring_desc_base(ring) + offset); 212 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 213 } 214 215 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 216 { 217 iowrite32(value, ring_options_base(ring) + offset); 218 } 219 220 static bool ring_full(struct tb_ring *ring) 221 { 222 return ((ring->head + 1) % ring->size) == ring->tail; 223 } 224 225 static bool ring_empty(struct tb_ring *ring) 226 { 227 return ring->head == ring->tail; 228 } 229 230 /* 231 * ring_write_descriptors() - post frames from ring->queue to the controller 232 * 233 * ring->lock is held. 234 */ 235 static void ring_write_descriptors(struct tb_ring *ring) 236 { 237 struct ring_frame *frame, *n; 238 struct ring_desc *descriptor; 239 list_for_each_entry_safe(frame, n, &ring->queue, list) { 240 if (ring_full(ring)) 241 break; 242 list_move_tail(&frame->list, &ring->in_flight); 243 descriptor = &ring->descriptors[ring->head]; 244 descriptor->phys = frame->buffer_phy; 245 descriptor->time = 0; 246 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 247 if (ring->is_tx) { 248 descriptor->length = frame->size; 249 descriptor->eof = frame->eof; 250 descriptor->sof = frame->sof; 251 } 252 ring->head = (ring->head + 1) % ring->size; 253 if (ring->is_tx) 254 ring_iowrite_prod(ring, ring->head); 255 else 256 ring_iowrite_cons(ring, ring->head); 257 } 258 } 259 260 /* 261 * ring_work() - progress completed frames 262 * 263 * If the ring is shutting down then all frames are marked as canceled and 264 * their callbacks are invoked. 265 * 266 * Otherwise we collect all completed frame from the ring buffer, write new 267 * frame to the ring buffer and invoke the callbacks for the completed frames. 268 */ 269 static void ring_work(struct work_struct *work) 270 { 271 struct tb_ring *ring = container_of(work, typeof(*ring), work); 272 struct ring_frame *frame; 273 bool canceled = false; 274 unsigned long flags; 275 LIST_HEAD(done); 276 277 spin_lock_irqsave(&ring->lock, flags); 278 279 if (!ring->running) { 280 /* Move all frames to done and mark them as canceled. */ 281 list_splice_tail_init(&ring->in_flight, &done); 282 list_splice_tail_init(&ring->queue, &done); 283 canceled = true; 284 goto invoke_callback; 285 } 286 287 while (!ring_empty(ring)) { 288 if (!(ring->descriptors[ring->tail].flags 289 & RING_DESC_COMPLETED)) 290 break; 291 frame = list_first_entry(&ring->in_flight, typeof(*frame), 292 list); 293 list_move_tail(&frame->list, &done); 294 if (!ring->is_tx) { 295 frame->size = ring->descriptors[ring->tail].length; 296 frame->eof = ring->descriptors[ring->tail].eof; 297 frame->sof = ring->descriptors[ring->tail].sof; 298 frame->flags = ring->descriptors[ring->tail].flags; 299 } 300 ring->tail = (ring->tail + 1) % ring->size; 301 } 302 ring_write_descriptors(ring); 303 304 invoke_callback: 305 /* allow callbacks to schedule new work */ 306 spin_unlock_irqrestore(&ring->lock, flags); 307 while (!list_empty(&done)) { 308 frame = list_first_entry(&done, typeof(*frame), list); 309 /* 310 * The callback may reenqueue or delete frame. 311 * Do not hold on to it. 312 */ 313 list_del_init(&frame->list); 314 if (frame->callback) 315 frame->callback(ring, frame, canceled); 316 } 317 } 318 319 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 320 { 321 unsigned long flags; 322 int ret = 0; 323 324 spin_lock_irqsave(&ring->lock, flags); 325 if (ring->running) { 326 list_add_tail(&frame->list, &ring->queue); 327 ring_write_descriptors(ring); 328 } else { 329 ret = -ESHUTDOWN; 330 } 331 spin_unlock_irqrestore(&ring->lock, flags); 332 return ret; 333 } 334 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 335 336 /** 337 * tb_ring_poll() - Poll one completed frame from the ring 338 * @ring: Ring to poll 339 * 340 * This function can be called when @start_poll callback of the @ring 341 * has been called. It will read one completed frame from the ring and 342 * return it to the caller. Returns %NULL if there is no more completed 343 * frames. 344 */ 345 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 346 { 347 struct ring_frame *frame = NULL; 348 unsigned long flags; 349 350 spin_lock_irqsave(&ring->lock, flags); 351 if (!ring->running) 352 goto unlock; 353 if (ring_empty(ring)) 354 goto unlock; 355 356 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 357 frame = list_first_entry(&ring->in_flight, typeof(*frame), 358 list); 359 list_del_init(&frame->list); 360 361 if (!ring->is_tx) { 362 frame->size = ring->descriptors[ring->tail].length; 363 frame->eof = ring->descriptors[ring->tail].eof; 364 frame->sof = ring->descriptors[ring->tail].sof; 365 frame->flags = ring->descriptors[ring->tail].flags; 366 } 367 368 ring->tail = (ring->tail + 1) % ring->size; 369 } 370 371 unlock: 372 spin_unlock_irqrestore(&ring->lock, flags); 373 return frame; 374 } 375 EXPORT_SYMBOL_GPL(tb_ring_poll); 376 377 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 378 { 379 int idx = ring_interrupt_index(ring); 380 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 381 int bit = idx % 32; 382 u32 val; 383 384 val = ioread32(ring->nhi->iobase + reg); 385 if (mask) 386 val &= ~BIT(bit); 387 else 388 val |= BIT(bit); 389 iowrite32(val, ring->nhi->iobase + reg); 390 } 391 392 /* Both @nhi->lock and @ring->lock should be held */ 393 static void __ring_interrupt(struct tb_ring *ring) 394 { 395 if (!ring->running) 396 return; 397 398 if (ring->start_poll) { 399 __ring_interrupt_mask(ring, true); 400 ring->start_poll(ring->poll_data); 401 } else { 402 schedule_work(&ring->work); 403 } 404 } 405 406 /** 407 * tb_ring_poll_complete() - Re-start interrupt for the ring 408 * @ring: Ring to re-start the interrupt 409 * 410 * This will re-start (unmask) the ring interrupt once the user is done 411 * with polling. 412 */ 413 void tb_ring_poll_complete(struct tb_ring *ring) 414 { 415 unsigned long flags; 416 417 spin_lock_irqsave(&ring->nhi->lock, flags); 418 spin_lock(&ring->lock); 419 if (ring->start_poll) 420 __ring_interrupt_mask(ring, false); 421 spin_unlock(&ring->lock); 422 spin_unlock_irqrestore(&ring->nhi->lock, flags); 423 } 424 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 425 426 static void ring_clear_msix(const struct tb_ring *ring) 427 { 428 int bit; 429 430 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) 431 return; 432 433 bit = ring_interrupt_index(ring) & 31; 434 if (ring->is_tx) 435 iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR); 436 else 437 iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR + 438 4 * (ring->nhi->hop_count / 32)); 439 } 440 441 static irqreturn_t ring_msix(int irq, void *data) 442 { 443 struct tb_ring *ring = data; 444 445 spin_lock(&ring->nhi->lock); 446 ring_clear_msix(ring); 447 spin_lock(&ring->lock); 448 __ring_interrupt(ring); 449 spin_unlock(&ring->lock); 450 spin_unlock(&ring->nhi->lock); 451 452 return IRQ_HANDLED; 453 } 454 455 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 456 { 457 struct tb_nhi *nhi = ring->nhi; 458 unsigned long irqflags; 459 int ret; 460 461 if (!nhi->pdev->msix_enabled) 462 return 0; 463 464 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 465 if (ret < 0) 466 return ret; 467 468 ring->vector = ret; 469 470 ret = pci_irq_vector(ring->nhi->pdev, ring->vector); 471 if (ret < 0) 472 goto err_ida_remove; 473 474 ring->irq = ret; 475 476 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 477 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 478 if (ret) 479 goto err_ida_remove; 480 481 return 0; 482 483 err_ida_remove: 484 ida_simple_remove(&nhi->msix_ida, ring->vector); 485 486 return ret; 487 } 488 489 static void ring_release_msix(struct tb_ring *ring) 490 { 491 if (ring->irq <= 0) 492 return; 493 494 free_irq(ring->irq, ring); 495 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 496 ring->vector = 0; 497 ring->irq = 0; 498 } 499 500 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 501 { 502 unsigned int start_hop = RING_FIRST_USABLE_HOPID; 503 int ret = 0; 504 505 if (nhi->quirks & QUIRK_E2E) { 506 start_hop = RING_FIRST_USABLE_HOPID + 1; 507 if (ring->flags & RING_FLAG_E2E && !ring->is_tx) { 508 dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n", 509 ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID); 510 ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID; 511 } 512 } 513 514 spin_lock_irq(&nhi->lock); 515 516 if (ring->hop < 0) { 517 unsigned int i; 518 519 /* 520 * Automatically allocate HopID from the non-reserved 521 * range 1 .. hop_count - 1. 522 */ 523 for (i = start_hop; i < nhi->hop_count; i++) { 524 if (ring->is_tx) { 525 if (!nhi->tx_rings[i]) { 526 ring->hop = i; 527 break; 528 } 529 } else { 530 if (!nhi->rx_rings[i]) { 531 ring->hop = i; 532 break; 533 } 534 } 535 } 536 } 537 538 if (ring->hop > 0 && ring->hop < start_hop) { 539 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 540 ret = -EINVAL; 541 goto err_unlock; 542 } 543 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 544 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 545 ret = -EINVAL; 546 goto err_unlock; 547 } 548 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 549 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 550 ring->hop); 551 ret = -EBUSY; 552 goto err_unlock; 553 } 554 if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 555 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 556 ring->hop); 557 ret = -EBUSY; 558 goto err_unlock; 559 } 560 561 if (ring->is_tx) 562 nhi->tx_rings[ring->hop] = ring; 563 else 564 nhi->rx_rings[ring->hop] = ring; 565 566 err_unlock: 567 spin_unlock_irq(&nhi->lock); 568 569 return ret; 570 } 571 572 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 573 bool transmit, unsigned int flags, 574 int e2e_tx_hop, u16 sof_mask, u16 eof_mask, 575 void (*start_poll)(void *), 576 void *poll_data) 577 { 578 struct tb_ring *ring = NULL; 579 580 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 581 transmit ? "TX" : "RX", hop, size); 582 583 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 584 if (!ring) 585 return NULL; 586 587 spin_lock_init(&ring->lock); 588 INIT_LIST_HEAD(&ring->queue); 589 INIT_LIST_HEAD(&ring->in_flight); 590 INIT_WORK(&ring->work, ring_work); 591 592 ring->nhi = nhi; 593 ring->hop = hop; 594 ring->is_tx = transmit; 595 ring->size = size; 596 ring->flags = flags; 597 ring->e2e_tx_hop = e2e_tx_hop; 598 ring->sof_mask = sof_mask; 599 ring->eof_mask = eof_mask; 600 ring->head = 0; 601 ring->tail = 0; 602 ring->running = false; 603 ring->start_poll = start_poll; 604 ring->poll_data = poll_data; 605 606 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 607 size * sizeof(*ring->descriptors), 608 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 609 if (!ring->descriptors) 610 goto err_free_ring; 611 612 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 613 goto err_free_descs; 614 615 if (nhi_alloc_hop(nhi, ring)) 616 goto err_release_msix; 617 618 return ring; 619 620 err_release_msix: 621 ring_release_msix(ring); 622 err_free_descs: 623 dma_free_coherent(&ring->nhi->pdev->dev, 624 ring->size * sizeof(*ring->descriptors), 625 ring->descriptors, ring->descriptors_dma); 626 err_free_ring: 627 kfree(ring); 628 629 return NULL; 630 } 631 632 /** 633 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 634 * @nhi: Pointer to the NHI the ring is to be allocated 635 * @hop: HopID (ring) to allocate 636 * @size: Number of entries in the ring 637 * @flags: Flags for the ring 638 */ 639 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 640 unsigned int flags) 641 { 642 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL); 643 } 644 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 645 646 /** 647 * tb_ring_alloc_rx() - Allocate DMA ring for receive 648 * @nhi: Pointer to the NHI the ring is to be allocated 649 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 650 * @size: Number of entries in the ring 651 * @flags: Flags for the ring 652 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags 653 * @sof_mask: Mask of PDF values that start a frame 654 * @eof_mask: Mask of PDF values that end a frame 655 * @start_poll: If not %NULL the ring will call this function when an 656 * interrupt is triggered and masked, instead of callback 657 * in each Rx frame. 658 * @poll_data: Optional data passed to @start_poll 659 */ 660 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 661 unsigned int flags, int e2e_tx_hop, 662 u16 sof_mask, u16 eof_mask, 663 void (*start_poll)(void *), void *poll_data) 664 { 665 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask, 666 start_poll, poll_data); 667 } 668 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 669 670 /** 671 * tb_ring_start() - enable a ring 672 * @ring: Ring to start 673 * 674 * Must not be invoked in parallel with tb_ring_stop(). 675 */ 676 void tb_ring_start(struct tb_ring *ring) 677 { 678 u16 frame_size; 679 u32 flags; 680 681 spin_lock_irq(&ring->nhi->lock); 682 spin_lock(&ring->lock); 683 if (ring->nhi->going_away) 684 goto err; 685 if (ring->running) { 686 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 687 goto err; 688 } 689 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 690 RING_TYPE(ring), ring->hop); 691 692 if (ring->flags & RING_FLAG_FRAME) { 693 /* Means 4096 */ 694 frame_size = 0; 695 flags = RING_FLAG_ENABLE; 696 } else { 697 frame_size = TB_FRAME_SIZE; 698 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 699 } 700 701 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 702 if (ring->is_tx) { 703 ring_iowrite32desc(ring, ring->size, 12); 704 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 705 ring_iowrite32options(ring, flags, 0); 706 } else { 707 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 708 709 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 710 ring_iowrite32options(ring, sof_eof_mask, 4); 711 ring_iowrite32options(ring, flags, 0); 712 } 713 714 /* 715 * Now that the ring valid bit is set we can configure E2E if 716 * enabled for the ring. 717 */ 718 if (ring->flags & RING_FLAG_E2E) { 719 if (!ring->is_tx) { 720 u32 hop; 721 722 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT; 723 hop &= REG_RX_OPTIONS_E2E_HOP_MASK; 724 flags |= hop; 725 726 dev_dbg(&ring->nhi->pdev->dev, 727 "enabling E2E for %s %d with TX HopID %d\n", 728 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop); 729 } else { 730 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n", 731 RING_TYPE(ring), ring->hop); 732 } 733 734 flags |= RING_FLAG_E2E_FLOW_CONTROL; 735 ring_iowrite32options(ring, flags, 0); 736 } 737 738 ring_interrupt_active(ring, true); 739 ring->running = true; 740 err: 741 spin_unlock(&ring->lock); 742 spin_unlock_irq(&ring->nhi->lock); 743 } 744 EXPORT_SYMBOL_GPL(tb_ring_start); 745 746 /** 747 * tb_ring_stop() - shutdown a ring 748 * @ring: Ring to stop 749 * 750 * Must not be invoked from a callback. 751 * 752 * This method will disable the ring. Further calls to 753 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 754 * called. 755 * 756 * All enqueued frames will be canceled and their callbacks will be executed 757 * with frame->canceled set to true (on the callback thread). This method 758 * returns only after all callback invocations have finished. 759 */ 760 void tb_ring_stop(struct tb_ring *ring) 761 { 762 spin_lock_irq(&ring->nhi->lock); 763 spin_lock(&ring->lock); 764 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 765 RING_TYPE(ring), ring->hop); 766 if (ring->nhi->going_away) 767 goto err; 768 if (!ring->running) { 769 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 770 RING_TYPE(ring), ring->hop); 771 goto err; 772 } 773 ring_interrupt_active(ring, false); 774 775 ring_iowrite32options(ring, 0, 0); 776 ring_iowrite64desc(ring, 0, 0); 777 ring_iowrite32desc(ring, 0, 8); 778 ring_iowrite32desc(ring, 0, 12); 779 ring->head = 0; 780 ring->tail = 0; 781 ring->running = false; 782 783 err: 784 spin_unlock(&ring->lock); 785 spin_unlock_irq(&ring->nhi->lock); 786 787 /* 788 * schedule ring->work to invoke callbacks on all remaining frames. 789 */ 790 schedule_work(&ring->work); 791 flush_work(&ring->work); 792 } 793 EXPORT_SYMBOL_GPL(tb_ring_stop); 794 795 /* 796 * tb_ring_free() - free ring 797 * 798 * When this method returns all invocations of ring->callback will have 799 * finished. 800 * 801 * Ring must be stopped. 802 * 803 * Must NOT be called from ring_frame->callback! 804 */ 805 void tb_ring_free(struct tb_ring *ring) 806 { 807 spin_lock_irq(&ring->nhi->lock); 808 /* 809 * Dissociate the ring from the NHI. This also ensures that 810 * nhi_interrupt_work cannot reschedule ring->work. 811 */ 812 if (ring->is_tx) 813 ring->nhi->tx_rings[ring->hop] = NULL; 814 else 815 ring->nhi->rx_rings[ring->hop] = NULL; 816 817 if (ring->running) { 818 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 819 RING_TYPE(ring), ring->hop); 820 } 821 spin_unlock_irq(&ring->nhi->lock); 822 823 ring_release_msix(ring); 824 825 dma_free_coherent(&ring->nhi->pdev->dev, 826 ring->size * sizeof(*ring->descriptors), 827 ring->descriptors, ring->descriptors_dma); 828 829 ring->descriptors = NULL; 830 ring->descriptors_dma = 0; 831 832 833 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 834 ring->hop); 835 836 /* 837 * ring->work can no longer be scheduled (it is scheduled only 838 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 839 * to finish before freeing the ring. 840 */ 841 flush_work(&ring->work); 842 kfree(ring); 843 } 844 EXPORT_SYMBOL_GPL(tb_ring_free); 845 846 /** 847 * nhi_mailbox_cmd() - Send a command through NHI mailbox 848 * @nhi: Pointer to the NHI structure 849 * @cmd: Command to send 850 * @data: Data to be send with the command 851 * 852 * Sends mailbox command to the firmware running on NHI. Returns %0 in 853 * case of success and negative errno in case of failure. 854 */ 855 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 856 { 857 ktime_t timeout; 858 u32 val; 859 860 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 861 862 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 863 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 864 val |= REG_INMAIL_OP_REQUEST | cmd; 865 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 866 867 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 868 do { 869 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 870 if (!(val & REG_INMAIL_OP_REQUEST)) 871 break; 872 usleep_range(10, 20); 873 } while (ktime_before(ktime_get(), timeout)); 874 875 if (val & REG_INMAIL_OP_REQUEST) 876 return -ETIMEDOUT; 877 if (val & REG_INMAIL_ERROR) 878 return -EIO; 879 880 return 0; 881 } 882 883 /** 884 * nhi_mailbox_mode() - Return current firmware operation mode 885 * @nhi: Pointer to the NHI structure 886 * 887 * The function reads current firmware operation mode using NHI mailbox 888 * registers and returns it to the caller. 889 */ 890 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 891 { 892 u32 val; 893 894 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 895 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 896 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 897 898 return (enum nhi_fw_mode)val; 899 } 900 901 static void nhi_interrupt_work(struct work_struct *work) 902 { 903 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 904 int value = 0; /* Suppress uninitialized usage warning. */ 905 int bit; 906 int hop = -1; 907 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 908 struct tb_ring *ring; 909 910 spin_lock_irq(&nhi->lock); 911 912 /* 913 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 914 * (TX, RX, RX overflow). We iterate over the bits and read a new 915 * dwords as required. The registers are cleared on read. 916 */ 917 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 918 if (bit % 32 == 0) 919 value = ioread32(nhi->iobase 920 + REG_RING_NOTIFY_BASE 921 + 4 * (bit / 32)); 922 if (++hop == nhi->hop_count) { 923 hop = 0; 924 type++; 925 } 926 if ((value & (1 << (bit % 32))) == 0) 927 continue; 928 if (type == 2) { 929 dev_warn(&nhi->pdev->dev, 930 "RX overflow for ring %d\n", 931 hop); 932 continue; 933 } 934 if (type == 0) 935 ring = nhi->tx_rings[hop]; 936 else 937 ring = nhi->rx_rings[hop]; 938 if (ring == NULL) { 939 dev_warn(&nhi->pdev->dev, 940 "got interrupt for inactive %s ring %d\n", 941 type ? "RX" : "TX", 942 hop); 943 continue; 944 } 945 946 spin_lock(&ring->lock); 947 __ring_interrupt(ring); 948 spin_unlock(&ring->lock); 949 } 950 spin_unlock_irq(&nhi->lock); 951 } 952 953 static irqreturn_t nhi_msi(int irq, void *data) 954 { 955 struct tb_nhi *nhi = data; 956 schedule_work(&nhi->interrupt_work); 957 return IRQ_HANDLED; 958 } 959 960 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 961 { 962 struct pci_dev *pdev = to_pci_dev(dev); 963 struct tb *tb = pci_get_drvdata(pdev); 964 struct tb_nhi *nhi = tb->nhi; 965 int ret; 966 967 ret = tb_domain_suspend_noirq(tb); 968 if (ret) 969 return ret; 970 971 if (nhi->ops && nhi->ops->suspend_noirq) { 972 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 973 if (ret) 974 return ret; 975 } 976 977 return 0; 978 } 979 980 static int nhi_suspend_noirq(struct device *dev) 981 { 982 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 983 } 984 985 static int nhi_freeze_noirq(struct device *dev) 986 { 987 struct pci_dev *pdev = to_pci_dev(dev); 988 struct tb *tb = pci_get_drvdata(pdev); 989 990 return tb_domain_freeze_noirq(tb); 991 } 992 993 static int nhi_thaw_noirq(struct device *dev) 994 { 995 struct pci_dev *pdev = to_pci_dev(dev); 996 struct tb *tb = pci_get_drvdata(pdev); 997 998 return tb_domain_thaw_noirq(tb); 999 } 1000 1001 static bool nhi_wake_supported(struct pci_dev *pdev) 1002 { 1003 u8 val; 1004 1005 /* 1006 * If power rails are sustainable for wakeup from S4 this 1007 * property is set by the BIOS. 1008 */ 1009 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 1010 return !!val; 1011 1012 return true; 1013 } 1014 1015 static int nhi_poweroff_noirq(struct device *dev) 1016 { 1017 struct pci_dev *pdev = to_pci_dev(dev); 1018 bool wakeup; 1019 1020 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 1021 return __nhi_suspend_noirq(dev, wakeup); 1022 } 1023 1024 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 1025 { 1026 /* Throttling is specified in 256ns increments */ 1027 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 1028 unsigned int i; 1029 1030 /* 1031 * Configure interrupt throttling for all vectors even if we 1032 * only use few. 1033 */ 1034 for (i = 0; i < MSIX_MAX_VECS; i++) { 1035 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 1036 iowrite32(throttle, nhi->iobase + reg); 1037 } 1038 } 1039 1040 static int nhi_resume_noirq(struct device *dev) 1041 { 1042 struct pci_dev *pdev = to_pci_dev(dev); 1043 struct tb *tb = pci_get_drvdata(pdev); 1044 struct tb_nhi *nhi = tb->nhi; 1045 int ret; 1046 1047 /* 1048 * Check that the device is still there. It may be that the user 1049 * unplugged last device which causes the host controller to go 1050 * away on PCs. 1051 */ 1052 if (!pci_device_is_present(pdev)) { 1053 nhi->going_away = true; 1054 } else { 1055 if (nhi->ops && nhi->ops->resume_noirq) { 1056 ret = nhi->ops->resume_noirq(nhi); 1057 if (ret) 1058 return ret; 1059 } 1060 nhi_enable_int_throttling(tb->nhi); 1061 } 1062 1063 return tb_domain_resume_noirq(tb); 1064 } 1065 1066 static int nhi_suspend(struct device *dev) 1067 { 1068 struct pci_dev *pdev = to_pci_dev(dev); 1069 struct tb *tb = pci_get_drvdata(pdev); 1070 1071 return tb_domain_suspend(tb); 1072 } 1073 1074 static void nhi_complete(struct device *dev) 1075 { 1076 struct pci_dev *pdev = to_pci_dev(dev); 1077 struct tb *tb = pci_get_drvdata(pdev); 1078 1079 /* 1080 * If we were runtime suspended when system suspend started, 1081 * schedule runtime resume now. It should bring the domain back 1082 * to functional state. 1083 */ 1084 if (pm_runtime_suspended(&pdev->dev)) 1085 pm_runtime_resume(&pdev->dev); 1086 else 1087 tb_domain_complete(tb); 1088 } 1089 1090 static int nhi_runtime_suspend(struct device *dev) 1091 { 1092 struct pci_dev *pdev = to_pci_dev(dev); 1093 struct tb *tb = pci_get_drvdata(pdev); 1094 struct tb_nhi *nhi = tb->nhi; 1095 int ret; 1096 1097 ret = tb_domain_runtime_suspend(tb); 1098 if (ret) 1099 return ret; 1100 1101 if (nhi->ops && nhi->ops->runtime_suspend) { 1102 ret = nhi->ops->runtime_suspend(tb->nhi); 1103 if (ret) 1104 return ret; 1105 } 1106 return 0; 1107 } 1108 1109 static int nhi_runtime_resume(struct device *dev) 1110 { 1111 struct pci_dev *pdev = to_pci_dev(dev); 1112 struct tb *tb = pci_get_drvdata(pdev); 1113 struct tb_nhi *nhi = tb->nhi; 1114 int ret; 1115 1116 if (nhi->ops && nhi->ops->runtime_resume) { 1117 ret = nhi->ops->runtime_resume(nhi); 1118 if (ret) 1119 return ret; 1120 } 1121 1122 nhi_enable_int_throttling(nhi); 1123 return tb_domain_runtime_resume(tb); 1124 } 1125 1126 static void nhi_shutdown(struct tb_nhi *nhi) 1127 { 1128 int i; 1129 1130 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1131 1132 for (i = 0; i < nhi->hop_count; i++) { 1133 if (nhi->tx_rings[i]) 1134 dev_WARN(&nhi->pdev->dev, 1135 "TX ring %d is still active\n", i); 1136 if (nhi->rx_rings[i]) 1137 dev_WARN(&nhi->pdev->dev, 1138 "RX ring %d is still active\n", i); 1139 } 1140 nhi_disable_interrupts(nhi); 1141 /* 1142 * We have to release the irq before calling flush_work. Otherwise an 1143 * already executing IRQ handler could call schedule_work again. 1144 */ 1145 if (!nhi->pdev->msix_enabled) { 1146 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1147 flush_work(&nhi->interrupt_work); 1148 } 1149 ida_destroy(&nhi->msix_ida); 1150 1151 if (nhi->ops && nhi->ops->shutdown) 1152 nhi->ops->shutdown(nhi); 1153 } 1154 1155 static void nhi_check_quirks(struct tb_nhi *nhi) 1156 { 1157 if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) { 1158 /* 1159 * Intel hardware supports auto clear of the interrupt 1160 * status register right after interrupt is being 1161 * issued. 1162 */ 1163 nhi->quirks |= QUIRK_AUTO_CLEAR_INT; 1164 1165 switch (nhi->pdev->device) { 1166 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 1167 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 1168 /* 1169 * Falcon Ridge controller needs the end-to-end 1170 * flow control workaround to avoid losing Rx 1171 * packets when RING_FLAG_E2E is set. 1172 */ 1173 nhi->quirks |= QUIRK_E2E; 1174 break; 1175 } 1176 } 1177 } 1178 1179 static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data) 1180 { 1181 if (!pdev->external_facing || 1182 !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION)) 1183 return 0; 1184 *(bool *)data = true; 1185 return 1; /* Stop walking */ 1186 } 1187 1188 static void nhi_check_iommu(struct tb_nhi *nhi) 1189 { 1190 struct pci_bus *bus = nhi->pdev->bus; 1191 bool port_ok = false; 1192 1193 /* 1194 * Ideally what we'd do here is grab every PCI device that 1195 * represents a tunnelling adapter for this NHI and check their 1196 * status directly, but unfortunately USB4 seems to make it 1197 * obnoxiously difficult to reliably make any correlation. 1198 * 1199 * So for now we'll have to bodge it... Hoping that the system 1200 * is at least sane enough that an adapter is in the same PCI 1201 * segment as its NHI, if we can find *something* on that segment 1202 * which meets the requirements for Kernel DMA Protection, we'll 1203 * take that to imply that firmware is aware and has (hopefully) 1204 * done the right thing in general. We need to know that the PCI 1205 * layer has seen the ExternalFacingPort property which will then 1206 * inform the IOMMU layer to enforce the complete "untrusted DMA" 1207 * flow, but also that the IOMMU driver itself can be trusted not 1208 * to have been subverted by a pre-boot DMA attack. 1209 */ 1210 while (bus->parent) 1211 bus = bus->parent; 1212 1213 pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok); 1214 1215 nhi->iommu_dma_protection = port_ok; 1216 dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n", 1217 str_enabled_disabled(port_ok)); 1218 } 1219 1220 static int nhi_init_msi(struct tb_nhi *nhi) 1221 { 1222 struct pci_dev *pdev = nhi->pdev; 1223 struct device *dev = &pdev->dev; 1224 int res, irq, nvec; 1225 1226 /* In case someone left them on. */ 1227 nhi_disable_interrupts(nhi); 1228 1229 nhi_enable_int_throttling(nhi); 1230 1231 ida_init(&nhi->msix_ida); 1232 1233 /* 1234 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1235 * get all MSI-X vectors and if we succeed, each ring will have 1236 * one MSI-X. If for some reason that does not work out, we 1237 * fallback to a single MSI. 1238 */ 1239 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1240 PCI_IRQ_MSIX); 1241 if (nvec < 0) { 1242 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1243 if (nvec < 0) 1244 return nvec; 1245 1246 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1247 1248 irq = pci_irq_vector(nhi->pdev, 0); 1249 if (irq < 0) 1250 return irq; 1251 1252 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1253 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1254 if (res) 1255 return dev_err_probe(dev, res, "request_irq failed, aborting\n"); 1256 } 1257 1258 return 0; 1259 } 1260 1261 static bool nhi_imr_valid(struct pci_dev *pdev) 1262 { 1263 u8 val; 1264 1265 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1266 return !!val; 1267 1268 return true; 1269 } 1270 1271 static struct tb *nhi_select_cm(struct tb_nhi *nhi) 1272 { 1273 struct tb *tb; 1274 1275 /* 1276 * USB4 case is simple. If we got control of any of the 1277 * capabilities, we use software CM. 1278 */ 1279 if (tb_acpi_is_native()) 1280 return tb_probe(nhi); 1281 1282 /* 1283 * Either firmware based CM is running (we did not get control 1284 * from the firmware) or this is pre-USB4 PC so try first 1285 * firmware CM and then fallback to software CM. 1286 */ 1287 tb = icm_probe(nhi); 1288 if (!tb) 1289 tb = tb_probe(nhi); 1290 1291 return tb; 1292 } 1293 1294 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1295 { 1296 struct device *dev = &pdev->dev; 1297 struct tb_nhi *nhi; 1298 struct tb *tb; 1299 int res; 1300 1301 if (!nhi_imr_valid(pdev)) 1302 return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n"); 1303 1304 res = pcim_enable_device(pdev); 1305 if (res) 1306 return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n"); 1307 1308 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1309 if (res) 1310 return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n"); 1311 1312 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1313 if (!nhi) 1314 return -ENOMEM; 1315 1316 nhi->pdev = pdev; 1317 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1318 /* cannot fail - table is allocated in pcim_iomap_regions */ 1319 nhi->iobase = pcim_iomap_table(pdev)[0]; 1320 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1321 dev_dbg(dev, "total paths: %d\n", nhi->hop_count); 1322 1323 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1324 sizeof(*nhi->tx_rings), GFP_KERNEL); 1325 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1326 sizeof(*nhi->rx_rings), GFP_KERNEL); 1327 if (!nhi->tx_rings || !nhi->rx_rings) 1328 return -ENOMEM; 1329 1330 nhi_check_quirks(nhi); 1331 nhi_check_iommu(nhi); 1332 1333 res = nhi_init_msi(nhi); 1334 if (res) 1335 return dev_err_probe(dev, res, "cannot enable MSI, aborting\n"); 1336 1337 spin_lock_init(&nhi->lock); 1338 1339 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1340 if (res) 1341 return dev_err_probe(dev, res, "failed to set DMA mask\n"); 1342 1343 pci_set_master(pdev); 1344 1345 if (nhi->ops && nhi->ops->init) { 1346 res = nhi->ops->init(nhi); 1347 if (res) 1348 return res; 1349 } 1350 1351 tb = nhi_select_cm(nhi); 1352 if (!tb) 1353 return dev_err_probe(dev, -ENODEV, 1354 "failed to determine connection manager, aborting\n"); 1355 1356 dev_dbg(dev, "NHI initialized, starting thunderbolt\n"); 1357 1358 res = tb_domain_add(tb); 1359 if (res) { 1360 /* 1361 * At this point the RX/TX rings might already have been 1362 * activated. Do a proper shutdown. 1363 */ 1364 tb_domain_put(tb); 1365 nhi_shutdown(nhi); 1366 return res; 1367 } 1368 pci_set_drvdata(pdev, tb); 1369 1370 device_wakeup_enable(&pdev->dev); 1371 1372 pm_runtime_allow(&pdev->dev); 1373 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1374 pm_runtime_use_autosuspend(&pdev->dev); 1375 pm_runtime_put_autosuspend(&pdev->dev); 1376 1377 return 0; 1378 } 1379 1380 static void nhi_remove(struct pci_dev *pdev) 1381 { 1382 struct tb *tb = pci_get_drvdata(pdev); 1383 struct tb_nhi *nhi = tb->nhi; 1384 1385 pm_runtime_get_sync(&pdev->dev); 1386 pm_runtime_dont_use_autosuspend(&pdev->dev); 1387 pm_runtime_forbid(&pdev->dev); 1388 1389 tb_domain_remove(tb); 1390 nhi_shutdown(nhi); 1391 } 1392 1393 /* 1394 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1395 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1396 * resume_noirq until we are done. 1397 */ 1398 static const struct dev_pm_ops nhi_pm_ops = { 1399 .suspend_noirq = nhi_suspend_noirq, 1400 .resume_noirq = nhi_resume_noirq, 1401 .freeze_noirq = nhi_freeze_noirq, /* 1402 * we just disable hotplug, the 1403 * pci-tunnels stay alive. 1404 */ 1405 .thaw_noirq = nhi_thaw_noirq, 1406 .restore_noirq = nhi_resume_noirq, 1407 .suspend = nhi_suspend, 1408 .poweroff_noirq = nhi_poweroff_noirq, 1409 .poweroff = nhi_suspend, 1410 .complete = nhi_complete, 1411 .runtime_suspend = nhi_runtime_suspend, 1412 .runtime_resume = nhi_runtime_resume, 1413 }; 1414 1415 static struct pci_device_id nhi_ids[] = { 1416 /* 1417 * We have to specify class, the TB bridges use the same device and 1418 * vendor (sub)id on gen 1 and gen 2 controllers. 1419 */ 1420 { 1421 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1422 .vendor = PCI_VENDOR_ID_INTEL, 1423 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1424 .subvendor = 0x2222, .subdevice = 0x1111, 1425 }, 1426 { 1427 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1428 .vendor = PCI_VENDOR_ID_INTEL, 1429 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1430 .subvendor = 0x2222, .subdevice = 0x1111, 1431 }, 1432 { 1433 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1434 .vendor = PCI_VENDOR_ID_INTEL, 1435 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1436 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1437 }, 1438 { 1439 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1440 .vendor = PCI_VENDOR_ID_INTEL, 1441 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1442 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1443 }, 1444 1445 /* Thunderbolt 3 */ 1446 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1447 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1448 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1449 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1450 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1451 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1452 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1453 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1454 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1455 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1456 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1457 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1458 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1459 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1460 /* Thunderbolt 4 */ 1461 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1462 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1463 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1464 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1465 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0), 1466 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1467 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1), 1468 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1469 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0), 1470 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1471 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1), 1472 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1473 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0), 1474 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1475 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1), 1476 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1477 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0), 1478 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1479 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0), 1480 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1481 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1), 1482 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1483 1484 /* Any USB4 compliant host */ 1485 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1486 1487 { 0,} 1488 }; 1489 1490 MODULE_DEVICE_TABLE(pci, nhi_ids); 1491 MODULE_LICENSE("GPL"); 1492 1493 static struct pci_driver nhi_driver = { 1494 .name = "thunderbolt", 1495 .id_table = nhi_ids, 1496 .probe = nhi_probe, 1497 .remove = nhi_remove, 1498 .shutdown = nhi_remove, 1499 .driver.pm = &nhi_pm_ops, 1500 }; 1501 1502 static int __init nhi_init(void) 1503 { 1504 int ret; 1505 1506 ret = tb_domain_init(); 1507 if (ret) 1508 return ret; 1509 ret = pci_register_driver(&nhi_driver); 1510 if (ret) 1511 tb_domain_exit(); 1512 return ret; 1513 } 1514 1515 static void __exit nhi_unload(void) 1516 { 1517 pci_unregister_driver(&nhi_driver); 1518 tb_domain_exit(); 1519 } 1520 1521 rootfs_initcall(nhi_init); 1522 module_exit(nhi_unload); 1523