xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision b285d2ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24 
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26 
27 #define RING_FIRST_USABLE_HOPID	1
28 
29 /*
30  * Minimal number of vectors when we use MSI-X. Two for control channel
31  * Rx/Tx and the rest four are for cross domain DMA paths.
32  */
33 #define MSIX_MIN_VECS		6
34 #define MSIX_MAX_VECS		16
35 
36 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
37 
38 static int ring_interrupt_index(struct tb_ring *ring)
39 {
40 	int bit = ring->hop;
41 	if (!ring->is_tx)
42 		bit += ring->nhi->hop_count;
43 	return bit;
44 }
45 
46 /**
47  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
48  *
49  * ring->nhi->lock must be held.
50  */
51 static void ring_interrupt_active(struct tb_ring *ring, bool active)
52 {
53 	int reg = REG_RING_INTERRUPT_BASE +
54 		  ring_interrupt_index(ring) / 32 * 4;
55 	int bit = ring_interrupt_index(ring) & 31;
56 	int mask = 1 << bit;
57 	u32 old, new;
58 
59 	if (ring->irq > 0) {
60 		u32 step, shift, ivr, misc;
61 		void __iomem *ivr_base;
62 		int index;
63 
64 		if (ring->is_tx)
65 			index = ring->hop;
66 		else
67 			index = ring->hop + ring->nhi->hop_count;
68 
69 		/*
70 		 * Ask the hardware to clear interrupt status bits automatically
71 		 * since we already know which interrupt was triggered.
72 		 */
73 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
74 		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
75 			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
76 			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
77 		}
78 
79 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
80 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
81 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82 		ivr = ioread32(ivr_base + step);
83 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
84 		if (active)
85 			ivr |= ring->vector << shift;
86 		iowrite32(ivr, ivr_base + step);
87 	}
88 
89 	old = ioread32(ring->nhi->iobase + reg);
90 	if (active)
91 		new = old | mask;
92 	else
93 		new = old & ~mask;
94 
95 	dev_dbg(&ring->nhi->pdev->dev,
96 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
97 		active ? "enabling" : "disabling", reg, bit, old, new);
98 
99 	if (new == old)
100 		dev_WARN(&ring->nhi->pdev->dev,
101 					 "interrupt for %s %d is already %s\n",
102 					 RING_TYPE(ring), ring->hop,
103 					 active ? "enabled" : "disabled");
104 	iowrite32(new, ring->nhi->iobase + reg);
105 }
106 
107 /**
108  * nhi_disable_interrupts() - disable interrupts for all rings
109  *
110  * Use only during init and shutdown.
111  */
112 static void nhi_disable_interrupts(struct tb_nhi *nhi)
113 {
114 	int i = 0;
115 	/* disable interrupts */
116 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
117 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
118 
119 	/* clear interrupt status bits */
120 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
121 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
122 }
123 
124 /* ring helper methods */
125 
126 static void __iomem *ring_desc_base(struct tb_ring *ring)
127 {
128 	void __iomem *io = ring->nhi->iobase;
129 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
130 	io += ring->hop * 16;
131 	return io;
132 }
133 
134 static void __iomem *ring_options_base(struct tb_ring *ring)
135 {
136 	void __iomem *io = ring->nhi->iobase;
137 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
138 	io += ring->hop * 32;
139 	return io;
140 }
141 
142 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
143 {
144 	/*
145 	 * The other 16-bits in the register is read-only and writes to it
146 	 * are ignored by the hardware so we can save one ioread32() by
147 	 * filling the read-only bits with zeroes.
148 	 */
149 	iowrite32(cons, ring_desc_base(ring) + 8);
150 }
151 
152 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
153 {
154 	/* See ring_iowrite_cons() above for explanation */
155 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
156 }
157 
158 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
159 {
160 	iowrite32(value, ring_desc_base(ring) + offset);
161 }
162 
163 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
164 {
165 	iowrite32(value, ring_desc_base(ring) + offset);
166 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
167 }
168 
169 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
170 {
171 	iowrite32(value, ring_options_base(ring) + offset);
172 }
173 
174 static bool ring_full(struct tb_ring *ring)
175 {
176 	return ((ring->head + 1) % ring->size) == ring->tail;
177 }
178 
179 static bool ring_empty(struct tb_ring *ring)
180 {
181 	return ring->head == ring->tail;
182 }
183 
184 /**
185  * ring_write_descriptors() - post frames from ring->queue to the controller
186  *
187  * ring->lock is held.
188  */
189 static void ring_write_descriptors(struct tb_ring *ring)
190 {
191 	struct ring_frame *frame, *n;
192 	struct ring_desc *descriptor;
193 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
194 		if (ring_full(ring))
195 			break;
196 		list_move_tail(&frame->list, &ring->in_flight);
197 		descriptor = &ring->descriptors[ring->head];
198 		descriptor->phys = frame->buffer_phy;
199 		descriptor->time = 0;
200 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
201 		if (ring->is_tx) {
202 			descriptor->length = frame->size;
203 			descriptor->eof = frame->eof;
204 			descriptor->sof = frame->sof;
205 		}
206 		ring->head = (ring->head + 1) % ring->size;
207 		if (ring->is_tx)
208 			ring_iowrite_prod(ring, ring->head);
209 		else
210 			ring_iowrite_cons(ring, ring->head);
211 	}
212 }
213 
214 /**
215  * ring_work() - progress completed frames
216  *
217  * If the ring is shutting down then all frames are marked as canceled and
218  * their callbacks are invoked.
219  *
220  * Otherwise we collect all completed frame from the ring buffer, write new
221  * frame to the ring buffer and invoke the callbacks for the completed frames.
222  */
223 static void ring_work(struct work_struct *work)
224 {
225 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
226 	struct ring_frame *frame;
227 	bool canceled = false;
228 	unsigned long flags;
229 	LIST_HEAD(done);
230 
231 	spin_lock_irqsave(&ring->lock, flags);
232 
233 	if (!ring->running) {
234 		/*  Move all frames to done and mark them as canceled. */
235 		list_splice_tail_init(&ring->in_flight, &done);
236 		list_splice_tail_init(&ring->queue, &done);
237 		canceled = true;
238 		goto invoke_callback;
239 	}
240 
241 	while (!ring_empty(ring)) {
242 		if (!(ring->descriptors[ring->tail].flags
243 				& RING_DESC_COMPLETED))
244 			break;
245 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
246 					 list);
247 		list_move_tail(&frame->list, &done);
248 		if (!ring->is_tx) {
249 			frame->size = ring->descriptors[ring->tail].length;
250 			frame->eof = ring->descriptors[ring->tail].eof;
251 			frame->sof = ring->descriptors[ring->tail].sof;
252 			frame->flags = ring->descriptors[ring->tail].flags;
253 		}
254 		ring->tail = (ring->tail + 1) % ring->size;
255 	}
256 	ring_write_descriptors(ring);
257 
258 invoke_callback:
259 	/* allow callbacks to schedule new work */
260 	spin_unlock_irqrestore(&ring->lock, flags);
261 	while (!list_empty(&done)) {
262 		frame = list_first_entry(&done, typeof(*frame), list);
263 		/*
264 		 * The callback may reenqueue or delete frame.
265 		 * Do not hold on to it.
266 		 */
267 		list_del_init(&frame->list);
268 		if (frame->callback)
269 			frame->callback(ring, frame, canceled);
270 	}
271 }
272 
273 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
274 {
275 	unsigned long flags;
276 	int ret = 0;
277 
278 	spin_lock_irqsave(&ring->lock, flags);
279 	if (ring->running) {
280 		list_add_tail(&frame->list, &ring->queue);
281 		ring_write_descriptors(ring);
282 	} else {
283 		ret = -ESHUTDOWN;
284 	}
285 	spin_unlock_irqrestore(&ring->lock, flags);
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
289 
290 /**
291  * tb_ring_poll() - Poll one completed frame from the ring
292  * @ring: Ring to poll
293  *
294  * This function can be called when @start_poll callback of the @ring
295  * has been called. It will read one completed frame from the ring and
296  * return it to the caller. Returns %NULL if there is no more completed
297  * frames.
298  */
299 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
300 {
301 	struct ring_frame *frame = NULL;
302 	unsigned long flags;
303 
304 	spin_lock_irqsave(&ring->lock, flags);
305 	if (!ring->running)
306 		goto unlock;
307 	if (ring_empty(ring))
308 		goto unlock;
309 
310 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
311 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
312 					 list);
313 		list_del_init(&frame->list);
314 
315 		if (!ring->is_tx) {
316 			frame->size = ring->descriptors[ring->tail].length;
317 			frame->eof = ring->descriptors[ring->tail].eof;
318 			frame->sof = ring->descriptors[ring->tail].sof;
319 			frame->flags = ring->descriptors[ring->tail].flags;
320 		}
321 
322 		ring->tail = (ring->tail + 1) % ring->size;
323 	}
324 
325 unlock:
326 	spin_unlock_irqrestore(&ring->lock, flags);
327 	return frame;
328 }
329 EXPORT_SYMBOL_GPL(tb_ring_poll);
330 
331 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
332 {
333 	int idx = ring_interrupt_index(ring);
334 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
335 	int bit = idx % 32;
336 	u32 val;
337 
338 	val = ioread32(ring->nhi->iobase + reg);
339 	if (mask)
340 		val &= ~BIT(bit);
341 	else
342 		val |= BIT(bit);
343 	iowrite32(val, ring->nhi->iobase + reg);
344 }
345 
346 /* Both @nhi->lock and @ring->lock should be held */
347 static void __ring_interrupt(struct tb_ring *ring)
348 {
349 	if (!ring->running)
350 		return;
351 
352 	if (ring->start_poll) {
353 		__ring_interrupt_mask(ring, true);
354 		ring->start_poll(ring->poll_data);
355 	} else {
356 		schedule_work(&ring->work);
357 	}
358 }
359 
360 /**
361  * tb_ring_poll_complete() - Re-start interrupt for the ring
362  * @ring: Ring to re-start the interrupt
363  *
364  * This will re-start (unmask) the ring interrupt once the user is done
365  * with polling.
366  */
367 void tb_ring_poll_complete(struct tb_ring *ring)
368 {
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&ring->nhi->lock, flags);
372 	spin_lock(&ring->lock);
373 	if (ring->start_poll)
374 		__ring_interrupt_mask(ring, false);
375 	spin_unlock(&ring->lock);
376 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
377 }
378 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
379 
380 static irqreturn_t ring_msix(int irq, void *data)
381 {
382 	struct tb_ring *ring = data;
383 
384 	spin_lock(&ring->nhi->lock);
385 	spin_lock(&ring->lock);
386 	__ring_interrupt(ring);
387 	spin_unlock(&ring->lock);
388 	spin_unlock(&ring->nhi->lock);
389 
390 	return IRQ_HANDLED;
391 }
392 
393 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
394 {
395 	struct tb_nhi *nhi = ring->nhi;
396 	unsigned long irqflags;
397 	int ret;
398 
399 	if (!nhi->pdev->msix_enabled)
400 		return 0;
401 
402 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
403 	if (ret < 0)
404 		return ret;
405 
406 	ring->vector = ret;
407 
408 	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
409 	if (ring->irq < 0)
410 		return ring->irq;
411 
412 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
413 	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
414 }
415 
416 static void ring_release_msix(struct tb_ring *ring)
417 {
418 	if (ring->irq <= 0)
419 		return;
420 
421 	free_irq(ring->irq, ring);
422 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
423 	ring->vector = 0;
424 	ring->irq = 0;
425 }
426 
427 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
428 {
429 	int ret = 0;
430 
431 	spin_lock_irq(&nhi->lock);
432 
433 	if (ring->hop < 0) {
434 		unsigned int i;
435 
436 		/*
437 		 * Automatically allocate HopID from the non-reserved
438 		 * range 1 .. hop_count - 1.
439 		 */
440 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
441 			if (ring->is_tx) {
442 				if (!nhi->tx_rings[i]) {
443 					ring->hop = i;
444 					break;
445 				}
446 			} else {
447 				if (!nhi->rx_rings[i]) {
448 					ring->hop = i;
449 					break;
450 				}
451 			}
452 		}
453 	}
454 
455 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
456 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
457 		ret = -EINVAL;
458 		goto err_unlock;
459 	}
460 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
461 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
462 			 ring->hop);
463 		ret = -EBUSY;
464 		goto err_unlock;
465 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
466 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
467 			 ring->hop);
468 		ret = -EBUSY;
469 		goto err_unlock;
470 	}
471 
472 	if (ring->is_tx)
473 		nhi->tx_rings[ring->hop] = ring;
474 	else
475 		nhi->rx_rings[ring->hop] = ring;
476 
477 err_unlock:
478 	spin_unlock_irq(&nhi->lock);
479 
480 	return ret;
481 }
482 
483 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
484 				     bool transmit, unsigned int flags,
485 				     u16 sof_mask, u16 eof_mask,
486 				     void (*start_poll)(void *),
487 				     void *poll_data)
488 {
489 	struct tb_ring *ring = NULL;
490 
491 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
492 		transmit ? "TX" : "RX", hop, size);
493 
494 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
495 	if (!ring)
496 		return NULL;
497 
498 	spin_lock_init(&ring->lock);
499 	INIT_LIST_HEAD(&ring->queue);
500 	INIT_LIST_HEAD(&ring->in_flight);
501 	INIT_WORK(&ring->work, ring_work);
502 
503 	ring->nhi = nhi;
504 	ring->hop = hop;
505 	ring->is_tx = transmit;
506 	ring->size = size;
507 	ring->flags = flags;
508 	ring->sof_mask = sof_mask;
509 	ring->eof_mask = eof_mask;
510 	ring->head = 0;
511 	ring->tail = 0;
512 	ring->running = false;
513 	ring->start_poll = start_poll;
514 	ring->poll_data = poll_data;
515 
516 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
517 			size * sizeof(*ring->descriptors),
518 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
519 	if (!ring->descriptors)
520 		goto err_free_ring;
521 
522 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
523 		goto err_free_descs;
524 
525 	if (nhi_alloc_hop(nhi, ring))
526 		goto err_release_msix;
527 
528 	return ring;
529 
530 err_release_msix:
531 	ring_release_msix(ring);
532 err_free_descs:
533 	dma_free_coherent(&ring->nhi->pdev->dev,
534 			  ring->size * sizeof(*ring->descriptors),
535 			  ring->descriptors, ring->descriptors_dma);
536 err_free_ring:
537 	kfree(ring);
538 
539 	return NULL;
540 }
541 
542 /**
543  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
544  * @nhi: Pointer to the NHI the ring is to be allocated
545  * @hop: HopID (ring) to allocate
546  * @size: Number of entries in the ring
547  * @flags: Flags for the ring
548  */
549 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
550 				 unsigned int flags)
551 {
552 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
553 }
554 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
555 
556 /**
557  * tb_ring_alloc_rx() - Allocate DMA ring for receive
558  * @nhi: Pointer to the NHI the ring is to be allocated
559  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
560  * @size: Number of entries in the ring
561  * @flags: Flags for the ring
562  * @sof_mask: Mask of PDF values that start a frame
563  * @eof_mask: Mask of PDF values that end a frame
564  * @start_poll: If not %NULL the ring will call this function when an
565  *		interrupt is triggered and masked, instead of callback
566  *		in each Rx frame.
567  * @poll_data: Optional data passed to @start_poll
568  */
569 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
570 				 unsigned int flags, u16 sof_mask, u16 eof_mask,
571 				 void (*start_poll)(void *), void *poll_data)
572 {
573 	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
574 			     start_poll, poll_data);
575 }
576 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
577 
578 /**
579  * tb_ring_start() - enable a ring
580  *
581  * Must not be invoked in parallel with tb_ring_stop().
582  */
583 void tb_ring_start(struct tb_ring *ring)
584 {
585 	u16 frame_size;
586 	u32 flags;
587 
588 	spin_lock_irq(&ring->nhi->lock);
589 	spin_lock(&ring->lock);
590 	if (ring->nhi->going_away)
591 		goto err;
592 	if (ring->running) {
593 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
594 		goto err;
595 	}
596 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
597 		RING_TYPE(ring), ring->hop);
598 
599 	if (ring->flags & RING_FLAG_FRAME) {
600 		/* Means 4096 */
601 		frame_size = 0;
602 		flags = RING_FLAG_ENABLE;
603 	} else {
604 		frame_size = TB_FRAME_SIZE;
605 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
606 	}
607 
608 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
609 	if (ring->is_tx) {
610 		ring_iowrite32desc(ring, ring->size, 12);
611 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
612 		ring_iowrite32options(ring, flags, 0);
613 	} else {
614 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
615 
616 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
617 		ring_iowrite32options(ring, sof_eof_mask, 4);
618 		ring_iowrite32options(ring, flags, 0);
619 	}
620 	ring_interrupt_active(ring, true);
621 	ring->running = true;
622 err:
623 	spin_unlock(&ring->lock);
624 	spin_unlock_irq(&ring->nhi->lock);
625 }
626 EXPORT_SYMBOL_GPL(tb_ring_start);
627 
628 /**
629  * tb_ring_stop() - shutdown a ring
630  *
631  * Must not be invoked from a callback.
632  *
633  * This method will disable the ring. Further calls to
634  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
635  * called.
636  *
637  * All enqueued frames will be canceled and their callbacks will be executed
638  * with frame->canceled set to true (on the callback thread). This method
639  * returns only after all callback invocations have finished.
640  */
641 void tb_ring_stop(struct tb_ring *ring)
642 {
643 	spin_lock_irq(&ring->nhi->lock);
644 	spin_lock(&ring->lock);
645 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
646 		RING_TYPE(ring), ring->hop);
647 	if (ring->nhi->going_away)
648 		goto err;
649 	if (!ring->running) {
650 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
651 			 RING_TYPE(ring), ring->hop);
652 		goto err;
653 	}
654 	ring_interrupt_active(ring, false);
655 
656 	ring_iowrite32options(ring, 0, 0);
657 	ring_iowrite64desc(ring, 0, 0);
658 	ring_iowrite32desc(ring, 0, 8);
659 	ring_iowrite32desc(ring, 0, 12);
660 	ring->head = 0;
661 	ring->tail = 0;
662 	ring->running = false;
663 
664 err:
665 	spin_unlock(&ring->lock);
666 	spin_unlock_irq(&ring->nhi->lock);
667 
668 	/*
669 	 * schedule ring->work to invoke callbacks on all remaining frames.
670 	 */
671 	schedule_work(&ring->work);
672 	flush_work(&ring->work);
673 }
674 EXPORT_SYMBOL_GPL(tb_ring_stop);
675 
676 /*
677  * tb_ring_free() - free ring
678  *
679  * When this method returns all invocations of ring->callback will have
680  * finished.
681  *
682  * Ring must be stopped.
683  *
684  * Must NOT be called from ring_frame->callback!
685  */
686 void tb_ring_free(struct tb_ring *ring)
687 {
688 	spin_lock_irq(&ring->nhi->lock);
689 	/*
690 	 * Dissociate the ring from the NHI. This also ensures that
691 	 * nhi_interrupt_work cannot reschedule ring->work.
692 	 */
693 	if (ring->is_tx)
694 		ring->nhi->tx_rings[ring->hop] = NULL;
695 	else
696 		ring->nhi->rx_rings[ring->hop] = NULL;
697 
698 	if (ring->running) {
699 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
700 			 RING_TYPE(ring), ring->hop);
701 	}
702 	spin_unlock_irq(&ring->nhi->lock);
703 
704 	ring_release_msix(ring);
705 
706 	dma_free_coherent(&ring->nhi->pdev->dev,
707 			  ring->size * sizeof(*ring->descriptors),
708 			  ring->descriptors, ring->descriptors_dma);
709 
710 	ring->descriptors = NULL;
711 	ring->descriptors_dma = 0;
712 
713 
714 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
715 		ring->hop);
716 
717 	/**
718 	 * ring->work can no longer be scheduled (it is scheduled only
719 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
720 	 * to finish before freeing the ring.
721 	 */
722 	flush_work(&ring->work);
723 	kfree(ring);
724 }
725 EXPORT_SYMBOL_GPL(tb_ring_free);
726 
727 /**
728  * nhi_mailbox_cmd() - Send a command through NHI mailbox
729  * @nhi: Pointer to the NHI structure
730  * @cmd: Command to send
731  * @data: Data to be send with the command
732  *
733  * Sends mailbox command to the firmware running on NHI. Returns %0 in
734  * case of success and negative errno in case of failure.
735  */
736 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
737 {
738 	ktime_t timeout;
739 	u32 val;
740 
741 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
742 
743 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
744 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
745 	val |= REG_INMAIL_OP_REQUEST | cmd;
746 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
747 
748 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
749 	do {
750 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
751 		if (!(val & REG_INMAIL_OP_REQUEST))
752 			break;
753 		usleep_range(10, 20);
754 	} while (ktime_before(ktime_get(), timeout));
755 
756 	if (val & REG_INMAIL_OP_REQUEST)
757 		return -ETIMEDOUT;
758 	if (val & REG_INMAIL_ERROR)
759 		return -EIO;
760 
761 	return 0;
762 }
763 
764 /**
765  * nhi_mailbox_mode() - Return current firmware operation mode
766  * @nhi: Pointer to the NHI structure
767  *
768  * The function reads current firmware operation mode using NHI mailbox
769  * registers and returns it to the caller.
770  */
771 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
772 {
773 	u32 val;
774 
775 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
776 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
777 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
778 
779 	return (enum nhi_fw_mode)val;
780 }
781 
782 static void nhi_interrupt_work(struct work_struct *work)
783 {
784 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
785 	int value = 0; /* Suppress uninitialized usage warning. */
786 	int bit;
787 	int hop = -1;
788 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
789 	struct tb_ring *ring;
790 
791 	spin_lock_irq(&nhi->lock);
792 
793 	/*
794 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
795 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
796 	 * dwords as required. The registers are cleared on read.
797 	 */
798 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
799 		if (bit % 32 == 0)
800 			value = ioread32(nhi->iobase
801 					 + REG_RING_NOTIFY_BASE
802 					 + 4 * (bit / 32));
803 		if (++hop == nhi->hop_count) {
804 			hop = 0;
805 			type++;
806 		}
807 		if ((value & (1 << (bit % 32))) == 0)
808 			continue;
809 		if (type == 2) {
810 			dev_warn(&nhi->pdev->dev,
811 				 "RX overflow for ring %d\n",
812 				 hop);
813 			continue;
814 		}
815 		if (type == 0)
816 			ring = nhi->tx_rings[hop];
817 		else
818 			ring = nhi->rx_rings[hop];
819 		if (ring == NULL) {
820 			dev_warn(&nhi->pdev->dev,
821 				 "got interrupt for inactive %s ring %d\n",
822 				 type ? "RX" : "TX",
823 				 hop);
824 			continue;
825 		}
826 
827 		spin_lock(&ring->lock);
828 		__ring_interrupt(ring);
829 		spin_unlock(&ring->lock);
830 	}
831 	spin_unlock_irq(&nhi->lock);
832 }
833 
834 static irqreturn_t nhi_msi(int irq, void *data)
835 {
836 	struct tb_nhi *nhi = data;
837 	schedule_work(&nhi->interrupt_work);
838 	return IRQ_HANDLED;
839 }
840 
841 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
842 {
843 	struct pci_dev *pdev = to_pci_dev(dev);
844 	struct tb *tb = pci_get_drvdata(pdev);
845 	struct tb_nhi *nhi = tb->nhi;
846 	int ret;
847 
848 	ret = tb_domain_suspend_noirq(tb);
849 	if (ret)
850 		return ret;
851 
852 	if (nhi->ops && nhi->ops->suspend_noirq) {
853 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
854 		if (ret)
855 			return ret;
856 	}
857 
858 	return 0;
859 }
860 
861 static int nhi_suspend_noirq(struct device *dev)
862 {
863 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
864 }
865 
866 static bool nhi_wake_supported(struct pci_dev *pdev)
867 {
868 	u8 val;
869 
870 	/*
871 	 * If power rails are sustainable for wakeup from S4 this
872 	 * property is set by the BIOS.
873 	 */
874 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
875 		return !!val;
876 
877 	return true;
878 }
879 
880 static int nhi_poweroff_noirq(struct device *dev)
881 {
882 	struct pci_dev *pdev = to_pci_dev(dev);
883 	bool wakeup;
884 
885 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
886 	return __nhi_suspend_noirq(dev, wakeup);
887 }
888 
889 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
890 {
891 	/* Throttling is specified in 256ns increments */
892 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
893 	unsigned int i;
894 
895 	/*
896 	 * Configure interrupt throttling for all vectors even if we
897 	 * only use few.
898 	 */
899 	for (i = 0; i < MSIX_MAX_VECS; i++) {
900 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
901 		iowrite32(throttle, nhi->iobase + reg);
902 	}
903 }
904 
905 static int nhi_resume_noirq(struct device *dev)
906 {
907 	struct pci_dev *pdev = to_pci_dev(dev);
908 	struct tb *tb = pci_get_drvdata(pdev);
909 	struct tb_nhi *nhi = tb->nhi;
910 	int ret;
911 
912 	/*
913 	 * Check that the device is still there. It may be that the user
914 	 * unplugged last device which causes the host controller to go
915 	 * away on PCs.
916 	 */
917 	if (!pci_device_is_present(pdev)) {
918 		nhi->going_away = true;
919 	} else {
920 		if (nhi->ops && nhi->ops->resume_noirq) {
921 			ret = nhi->ops->resume_noirq(nhi);
922 			if (ret)
923 				return ret;
924 		}
925 		nhi_enable_int_throttling(tb->nhi);
926 	}
927 
928 	return tb_domain_resume_noirq(tb);
929 }
930 
931 static int nhi_suspend(struct device *dev)
932 {
933 	struct pci_dev *pdev = to_pci_dev(dev);
934 	struct tb *tb = pci_get_drvdata(pdev);
935 
936 	return tb_domain_suspend(tb);
937 }
938 
939 static void nhi_complete(struct device *dev)
940 {
941 	struct pci_dev *pdev = to_pci_dev(dev);
942 	struct tb *tb = pci_get_drvdata(pdev);
943 
944 	/*
945 	 * If we were runtime suspended when system suspend started,
946 	 * schedule runtime resume now. It should bring the domain back
947 	 * to functional state.
948 	 */
949 	if (pm_runtime_suspended(&pdev->dev))
950 		pm_runtime_resume(&pdev->dev);
951 	else
952 		tb_domain_complete(tb);
953 }
954 
955 static int nhi_runtime_suspend(struct device *dev)
956 {
957 	struct pci_dev *pdev = to_pci_dev(dev);
958 	struct tb *tb = pci_get_drvdata(pdev);
959 	struct tb_nhi *nhi = tb->nhi;
960 	int ret;
961 
962 	ret = tb_domain_runtime_suspend(tb);
963 	if (ret)
964 		return ret;
965 
966 	if (nhi->ops && nhi->ops->runtime_suspend) {
967 		ret = nhi->ops->runtime_suspend(tb->nhi);
968 		if (ret)
969 			return ret;
970 	}
971 	return 0;
972 }
973 
974 static int nhi_runtime_resume(struct device *dev)
975 {
976 	struct pci_dev *pdev = to_pci_dev(dev);
977 	struct tb *tb = pci_get_drvdata(pdev);
978 	struct tb_nhi *nhi = tb->nhi;
979 	int ret;
980 
981 	if (nhi->ops && nhi->ops->runtime_resume) {
982 		ret = nhi->ops->runtime_resume(nhi);
983 		if (ret)
984 			return ret;
985 	}
986 
987 	nhi_enable_int_throttling(nhi);
988 	return tb_domain_runtime_resume(tb);
989 }
990 
991 static void nhi_shutdown(struct tb_nhi *nhi)
992 {
993 	int i;
994 
995 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
996 
997 	for (i = 0; i < nhi->hop_count; i++) {
998 		if (nhi->tx_rings[i])
999 			dev_WARN(&nhi->pdev->dev,
1000 				 "TX ring %d is still active\n", i);
1001 		if (nhi->rx_rings[i])
1002 			dev_WARN(&nhi->pdev->dev,
1003 				 "RX ring %d is still active\n", i);
1004 	}
1005 	nhi_disable_interrupts(nhi);
1006 	/*
1007 	 * We have to release the irq before calling flush_work. Otherwise an
1008 	 * already executing IRQ handler could call schedule_work again.
1009 	 */
1010 	if (!nhi->pdev->msix_enabled) {
1011 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1012 		flush_work(&nhi->interrupt_work);
1013 	}
1014 	ida_destroy(&nhi->msix_ida);
1015 
1016 	if (nhi->ops && nhi->ops->shutdown)
1017 		nhi->ops->shutdown(nhi);
1018 }
1019 
1020 static int nhi_init_msi(struct tb_nhi *nhi)
1021 {
1022 	struct pci_dev *pdev = nhi->pdev;
1023 	int res, irq, nvec;
1024 
1025 	/* In case someone left them on. */
1026 	nhi_disable_interrupts(nhi);
1027 
1028 	nhi_enable_int_throttling(nhi);
1029 
1030 	ida_init(&nhi->msix_ida);
1031 
1032 	/*
1033 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1034 	 * get all MSI-X vectors and if we succeed, each ring will have
1035 	 * one MSI-X. If for some reason that does not work out, we
1036 	 * fallback to a single MSI.
1037 	 */
1038 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1039 				     PCI_IRQ_MSIX);
1040 	if (nvec < 0) {
1041 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1042 		if (nvec < 0)
1043 			return nvec;
1044 
1045 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1046 
1047 		irq = pci_irq_vector(nhi->pdev, 0);
1048 		if (irq < 0)
1049 			return irq;
1050 
1051 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1052 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1053 		if (res) {
1054 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1055 			return res;
1056 		}
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 static bool nhi_imr_valid(struct pci_dev *pdev)
1063 {
1064 	u8 val;
1065 
1066 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1067 		return !!val;
1068 
1069 	return true;
1070 }
1071 
1072 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1073 {
1074 	struct tb_nhi *nhi;
1075 	struct tb *tb;
1076 	int res;
1077 
1078 	if (!nhi_imr_valid(pdev)) {
1079 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1080 		return -ENODEV;
1081 	}
1082 
1083 	res = pcim_enable_device(pdev);
1084 	if (res) {
1085 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1086 		return res;
1087 	}
1088 
1089 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1090 	if (res) {
1091 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1092 		return res;
1093 	}
1094 
1095 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1096 	if (!nhi)
1097 		return -ENOMEM;
1098 
1099 	nhi->pdev = pdev;
1100 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1101 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1102 	nhi->iobase = pcim_iomap_table(pdev)[0];
1103 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1104 	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1105 
1106 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1107 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1108 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1109 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1110 	if (!nhi->tx_rings || !nhi->rx_rings)
1111 		return -ENOMEM;
1112 
1113 	res = nhi_init_msi(nhi);
1114 	if (res) {
1115 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1116 		return res;
1117 	}
1118 
1119 	spin_lock_init(&nhi->lock);
1120 
1121 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1122 	if (res)
1123 		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1124 	if (res) {
1125 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1126 		return res;
1127 	}
1128 
1129 	pci_set_master(pdev);
1130 
1131 	if (nhi->ops && nhi->ops->init) {
1132 		res = nhi->ops->init(nhi);
1133 		if (res)
1134 			return res;
1135 	}
1136 
1137 	tb = icm_probe(nhi);
1138 	if (!tb)
1139 		tb = tb_probe(nhi);
1140 	if (!tb) {
1141 		dev_err(&nhi->pdev->dev,
1142 			"failed to determine connection manager, aborting\n");
1143 		return -ENODEV;
1144 	}
1145 
1146 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1147 
1148 	res = tb_domain_add(tb);
1149 	if (res) {
1150 		/*
1151 		 * At this point the RX/TX rings might already have been
1152 		 * activated. Do a proper shutdown.
1153 		 */
1154 		tb_domain_put(tb);
1155 		nhi_shutdown(nhi);
1156 		return res;
1157 	}
1158 	pci_set_drvdata(pdev, tb);
1159 
1160 	pm_runtime_allow(&pdev->dev);
1161 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1162 	pm_runtime_use_autosuspend(&pdev->dev);
1163 	pm_runtime_put_autosuspend(&pdev->dev);
1164 
1165 	return 0;
1166 }
1167 
1168 static void nhi_remove(struct pci_dev *pdev)
1169 {
1170 	struct tb *tb = pci_get_drvdata(pdev);
1171 	struct tb_nhi *nhi = tb->nhi;
1172 
1173 	pm_runtime_get_sync(&pdev->dev);
1174 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1175 	pm_runtime_forbid(&pdev->dev);
1176 
1177 	tb_domain_remove(tb);
1178 	nhi_shutdown(nhi);
1179 }
1180 
1181 /*
1182  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1183  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1184  * resume_noirq until we are done.
1185  */
1186 static const struct dev_pm_ops nhi_pm_ops = {
1187 	.suspend_noirq = nhi_suspend_noirq,
1188 	.resume_noirq = nhi_resume_noirq,
1189 	.freeze_noirq = nhi_suspend_noirq, /*
1190 					    * we just disable hotplug, the
1191 					    * pci-tunnels stay alive.
1192 					    */
1193 	.thaw_noirq = nhi_resume_noirq,
1194 	.restore_noirq = nhi_resume_noirq,
1195 	.suspend = nhi_suspend,
1196 	.freeze = nhi_suspend,
1197 	.poweroff_noirq = nhi_poweroff_noirq,
1198 	.poweroff = nhi_suspend,
1199 	.complete = nhi_complete,
1200 	.runtime_suspend = nhi_runtime_suspend,
1201 	.runtime_resume = nhi_runtime_resume,
1202 };
1203 
1204 static struct pci_device_id nhi_ids[] = {
1205 	/*
1206 	 * We have to specify class, the TB bridges use the same device and
1207 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1208 	 */
1209 	{
1210 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1211 		.vendor = PCI_VENDOR_ID_INTEL,
1212 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1213 		.subvendor = 0x2222, .subdevice = 0x1111,
1214 	},
1215 	{
1216 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1217 		.vendor = PCI_VENDOR_ID_INTEL,
1218 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1219 		.subvendor = 0x2222, .subdevice = 0x1111,
1220 	},
1221 	{
1222 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1223 		.vendor = PCI_VENDOR_ID_INTEL,
1224 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1225 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1226 	},
1227 	{
1228 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1229 		.vendor = PCI_VENDOR_ID_INTEL,
1230 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1231 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1232 	},
1233 
1234 	/* Thunderbolt 3 */
1235 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1236 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1237 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1238 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1239 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1240 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1241 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1242 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1243 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1244 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1245 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1246 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1247 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1248 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1249 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1250 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1251 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1252 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1253 
1254 	/* Any USB4 compliant host */
1255 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1256 
1257 	{ 0,}
1258 };
1259 
1260 MODULE_DEVICE_TABLE(pci, nhi_ids);
1261 MODULE_LICENSE("GPL");
1262 
1263 static struct pci_driver nhi_driver = {
1264 	.name = "thunderbolt",
1265 	.id_table = nhi_ids,
1266 	.probe = nhi_probe,
1267 	.remove = nhi_remove,
1268 	.shutdown = nhi_remove,
1269 	.driver.pm = &nhi_pm_ops,
1270 };
1271 
1272 static int __init nhi_init(void)
1273 {
1274 	int ret;
1275 
1276 	ret = tb_domain_init();
1277 	if (ret)
1278 		return ret;
1279 	ret = pci_register_driver(&nhi_driver);
1280 	if (ret)
1281 		tb_domain_exit();
1282 	return ret;
1283 }
1284 
1285 static void __exit nhi_unload(void)
1286 {
1287 	pci_unregister_driver(&nhi_driver);
1288 	tb_domain_exit();
1289 }
1290 
1291 rootfs_initcall(nhi_init);
1292 module_exit(nhi_unload);
1293