1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/delay.h> 19 #include <linux/property.h> 20 21 #include "nhi.h" 22 #include "nhi_regs.h" 23 #include "tb.h" 24 25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 26 27 #define RING_FIRST_USABLE_HOPID 1 28 29 /* 30 * Minimal number of vectors when we use MSI-X. Two for control channel 31 * Rx/Tx and the rest four are for cross domain DMA paths. 32 */ 33 #define MSIX_MIN_VECS 6 34 #define MSIX_MAX_VECS 16 35 36 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 37 38 static int ring_interrupt_index(struct tb_ring *ring) 39 { 40 int bit = ring->hop; 41 if (!ring->is_tx) 42 bit += ring->nhi->hop_count; 43 return bit; 44 } 45 46 /** 47 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 48 * 49 * ring->nhi->lock must be held. 50 */ 51 static void ring_interrupt_active(struct tb_ring *ring, bool active) 52 { 53 int reg = REG_RING_INTERRUPT_BASE + 54 ring_interrupt_index(ring) / 32 * 4; 55 int bit = ring_interrupt_index(ring) & 31; 56 int mask = 1 << bit; 57 u32 old, new; 58 59 if (ring->irq > 0) { 60 u32 step, shift, ivr, misc; 61 void __iomem *ivr_base; 62 int index; 63 64 if (ring->is_tx) 65 index = ring->hop; 66 else 67 index = ring->hop + ring->nhi->hop_count; 68 69 /* 70 * Ask the hardware to clear interrupt status bits automatically 71 * since we already know which interrupt was triggered. 72 */ 73 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 74 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) { 75 misc |= REG_DMA_MISC_INT_AUTO_CLEAR; 76 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC); 77 } 78 79 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 80 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 81 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 82 ivr = ioread32(ivr_base + step); 83 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 84 if (active) 85 ivr |= ring->vector << shift; 86 iowrite32(ivr, ivr_base + step); 87 } 88 89 old = ioread32(ring->nhi->iobase + reg); 90 if (active) 91 new = old | mask; 92 else 93 new = old & ~mask; 94 95 dev_dbg(&ring->nhi->pdev->dev, 96 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 97 active ? "enabling" : "disabling", reg, bit, old, new); 98 99 if (new == old) 100 dev_WARN(&ring->nhi->pdev->dev, 101 "interrupt for %s %d is already %s\n", 102 RING_TYPE(ring), ring->hop, 103 active ? "enabled" : "disabled"); 104 iowrite32(new, ring->nhi->iobase + reg); 105 } 106 107 /** 108 * nhi_disable_interrupts() - disable interrupts for all rings 109 * 110 * Use only during init and shutdown. 111 */ 112 static void nhi_disable_interrupts(struct tb_nhi *nhi) 113 { 114 int i = 0; 115 /* disable interrupts */ 116 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 117 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 118 119 /* clear interrupt status bits */ 120 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 121 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 122 } 123 124 /* ring helper methods */ 125 126 static void __iomem *ring_desc_base(struct tb_ring *ring) 127 { 128 void __iomem *io = ring->nhi->iobase; 129 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 130 io += ring->hop * 16; 131 return io; 132 } 133 134 static void __iomem *ring_options_base(struct tb_ring *ring) 135 { 136 void __iomem *io = ring->nhi->iobase; 137 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 138 io += ring->hop * 32; 139 return io; 140 } 141 142 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 143 { 144 /* 145 * The other 16-bits in the register is read-only and writes to it 146 * are ignored by the hardware so we can save one ioread32() by 147 * filling the read-only bits with zeroes. 148 */ 149 iowrite32(cons, ring_desc_base(ring) + 8); 150 } 151 152 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 153 { 154 /* See ring_iowrite_cons() above for explanation */ 155 iowrite32(prod << 16, ring_desc_base(ring) + 8); 156 } 157 158 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 159 { 160 iowrite32(value, ring_desc_base(ring) + offset); 161 } 162 163 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 164 { 165 iowrite32(value, ring_desc_base(ring) + offset); 166 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 167 } 168 169 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 170 { 171 iowrite32(value, ring_options_base(ring) + offset); 172 } 173 174 static bool ring_full(struct tb_ring *ring) 175 { 176 return ((ring->head + 1) % ring->size) == ring->tail; 177 } 178 179 static bool ring_empty(struct tb_ring *ring) 180 { 181 return ring->head == ring->tail; 182 } 183 184 /** 185 * ring_write_descriptors() - post frames from ring->queue to the controller 186 * 187 * ring->lock is held. 188 */ 189 static void ring_write_descriptors(struct tb_ring *ring) 190 { 191 struct ring_frame *frame, *n; 192 struct ring_desc *descriptor; 193 list_for_each_entry_safe(frame, n, &ring->queue, list) { 194 if (ring_full(ring)) 195 break; 196 list_move_tail(&frame->list, &ring->in_flight); 197 descriptor = &ring->descriptors[ring->head]; 198 descriptor->phys = frame->buffer_phy; 199 descriptor->time = 0; 200 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 201 if (ring->is_tx) { 202 descriptor->length = frame->size; 203 descriptor->eof = frame->eof; 204 descriptor->sof = frame->sof; 205 } 206 ring->head = (ring->head + 1) % ring->size; 207 if (ring->is_tx) 208 ring_iowrite_prod(ring, ring->head); 209 else 210 ring_iowrite_cons(ring, ring->head); 211 } 212 } 213 214 /** 215 * ring_work() - progress completed frames 216 * 217 * If the ring is shutting down then all frames are marked as canceled and 218 * their callbacks are invoked. 219 * 220 * Otherwise we collect all completed frame from the ring buffer, write new 221 * frame to the ring buffer and invoke the callbacks for the completed frames. 222 */ 223 static void ring_work(struct work_struct *work) 224 { 225 struct tb_ring *ring = container_of(work, typeof(*ring), work); 226 struct ring_frame *frame; 227 bool canceled = false; 228 unsigned long flags; 229 LIST_HEAD(done); 230 231 spin_lock_irqsave(&ring->lock, flags); 232 233 if (!ring->running) { 234 /* Move all frames to done and mark them as canceled. */ 235 list_splice_tail_init(&ring->in_flight, &done); 236 list_splice_tail_init(&ring->queue, &done); 237 canceled = true; 238 goto invoke_callback; 239 } 240 241 while (!ring_empty(ring)) { 242 if (!(ring->descriptors[ring->tail].flags 243 & RING_DESC_COMPLETED)) 244 break; 245 frame = list_first_entry(&ring->in_flight, typeof(*frame), 246 list); 247 list_move_tail(&frame->list, &done); 248 if (!ring->is_tx) { 249 frame->size = ring->descriptors[ring->tail].length; 250 frame->eof = ring->descriptors[ring->tail].eof; 251 frame->sof = ring->descriptors[ring->tail].sof; 252 frame->flags = ring->descriptors[ring->tail].flags; 253 } 254 ring->tail = (ring->tail + 1) % ring->size; 255 } 256 ring_write_descriptors(ring); 257 258 invoke_callback: 259 /* allow callbacks to schedule new work */ 260 spin_unlock_irqrestore(&ring->lock, flags); 261 while (!list_empty(&done)) { 262 frame = list_first_entry(&done, typeof(*frame), list); 263 /* 264 * The callback may reenqueue or delete frame. 265 * Do not hold on to it. 266 */ 267 list_del_init(&frame->list); 268 if (frame->callback) 269 frame->callback(ring, frame, canceled); 270 } 271 } 272 273 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 274 { 275 unsigned long flags; 276 int ret = 0; 277 278 spin_lock_irqsave(&ring->lock, flags); 279 if (ring->running) { 280 list_add_tail(&frame->list, &ring->queue); 281 ring_write_descriptors(ring); 282 } else { 283 ret = -ESHUTDOWN; 284 } 285 spin_unlock_irqrestore(&ring->lock, flags); 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 289 290 /** 291 * tb_ring_poll() - Poll one completed frame from the ring 292 * @ring: Ring to poll 293 * 294 * This function can be called when @start_poll callback of the @ring 295 * has been called. It will read one completed frame from the ring and 296 * return it to the caller. Returns %NULL if there is no more completed 297 * frames. 298 */ 299 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 300 { 301 struct ring_frame *frame = NULL; 302 unsigned long flags; 303 304 spin_lock_irqsave(&ring->lock, flags); 305 if (!ring->running) 306 goto unlock; 307 if (ring_empty(ring)) 308 goto unlock; 309 310 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 311 frame = list_first_entry(&ring->in_flight, typeof(*frame), 312 list); 313 list_del_init(&frame->list); 314 315 if (!ring->is_tx) { 316 frame->size = ring->descriptors[ring->tail].length; 317 frame->eof = ring->descriptors[ring->tail].eof; 318 frame->sof = ring->descriptors[ring->tail].sof; 319 frame->flags = ring->descriptors[ring->tail].flags; 320 } 321 322 ring->tail = (ring->tail + 1) % ring->size; 323 } 324 325 unlock: 326 spin_unlock_irqrestore(&ring->lock, flags); 327 return frame; 328 } 329 EXPORT_SYMBOL_GPL(tb_ring_poll); 330 331 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 332 { 333 int idx = ring_interrupt_index(ring); 334 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 335 int bit = idx % 32; 336 u32 val; 337 338 val = ioread32(ring->nhi->iobase + reg); 339 if (mask) 340 val &= ~BIT(bit); 341 else 342 val |= BIT(bit); 343 iowrite32(val, ring->nhi->iobase + reg); 344 } 345 346 /* Both @nhi->lock and @ring->lock should be held */ 347 static void __ring_interrupt(struct tb_ring *ring) 348 { 349 if (!ring->running) 350 return; 351 352 if (ring->start_poll) { 353 __ring_interrupt_mask(ring, true); 354 ring->start_poll(ring->poll_data); 355 } else { 356 schedule_work(&ring->work); 357 } 358 } 359 360 /** 361 * tb_ring_poll_complete() - Re-start interrupt for the ring 362 * @ring: Ring to re-start the interrupt 363 * 364 * This will re-start (unmask) the ring interrupt once the user is done 365 * with polling. 366 */ 367 void tb_ring_poll_complete(struct tb_ring *ring) 368 { 369 unsigned long flags; 370 371 spin_lock_irqsave(&ring->nhi->lock, flags); 372 spin_lock(&ring->lock); 373 if (ring->start_poll) 374 __ring_interrupt_mask(ring, false); 375 spin_unlock(&ring->lock); 376 spin_unlock_irqrestore(&ring->nhi->lock, flags); 377 } 378 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 379 380 static irqreturn_t ring_msix(int irq, void *data) 381 { 382 struct tb_ring *ring = data; 383 384 spin_lock(&ring->nhi->lock); 385 spin_lock(&ring->lock); 386 __ring_interrupt(ring); 387 spin_unlock(&ring->lock); 388 spin_unlock(&ring->nhi->lock); 389 390 return IRQ_HANDLED; 391 } 392 393 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 394 { 395 struct tb_nhi *nhi = ring->nhi; 396 unsigned long irqflags; 397 int ret; 398 399 if (!nhi->pdev->msix_enabled) 400 return 0; 401 402 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 403 if (ret < 0) 404 return ret; 405 406 ring->vector = ret; 407 408 ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector); 409 if (ring->irq < 0) 410 return ring->irq; 411 412 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 413 return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 414 } 415 416 static void ring_release_msix(struct tb_ring *ring) 417 { 418 if (ring->irq <= 0) 419 return; 420 421 free_irq(ring->irq, ring); 422 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 423 ring->vector = 0; 424 ring->irq = 0; 425 } 426 427 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 428 { 429 int ret = 0; 430 431 spin_lock_irq(&nhi->lock); 432 433 if (ring->hop < 0) { 434 unsigned int i; 435 436 /* 437 * Automatically allocate HopID from the non-reserved 438 * range 1 .. hop_count - 1. 439 */ 440 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) { 441 if (ring->is_tx) { 442 if (!nhi->tx_rings[i]) { 443 ring->hop = i; 444 break; 445 } 446 } else { 447 if (!nhi->rx_rings[i]) { 448 ring->hop = i; 449 break; 450 } 451 } 452 } 453 } 454 455 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 456 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 457 ret = -EINVAL; 458 goto err_unlock; 459 } 460 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 461 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 462 ring->hop); 463 ret = -EBUSY; 464 goto err_unlock; 465 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 466 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 467 ring->hop); 468 ret = -EBUSY; 469 goto err_unlock; 470 } 471 472 if (ring->is_tx) 473 nhi->tx_rings[ring->hop] = ring; 474 else 475 nhi->rx_rings[ring->hop] = ring; 476 477 err_unlock: 478 spin_unlock_irq(&nhi->lock); 479 480 return ret; 481 } 482 483 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 484 bool transmit, unsigned int flags, 485 u16 sof_mask, u16 eof_mask, 486 void (*start_poll)(void *), 487 void *poll_data) 488 { 489 struct tb_ring *ring = NULL; 490 491 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 492 transmit ? "TX" : "RX", hop, size); 493 494 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 495 if (!ring) 496 return NULL; 497 498 spin_lock_init(&ring->lock); 499 INIT_LIST_HEAD(&ring->queue); 500 INIT_LIST_HEAD(&ring->in_flight); 501 INIT_WORK(&ring->work, ring_work); 502 503 ring->nhi = nhi; 504 ring->hop = hop; 505 ring->is_tx = transmit; 506 ring->size = size; 507 ring->flags = flags; 508 ring->sof_mask = sof_mask; 509 ring->eof_mask = eof_mask; 510 ring->head = 0; 511 ring->tail = 0; 512 ring->running = false; 513 ring->start_poll = start_poll; 514 ring->poll_data = poll_data; 515 516 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 517 size * sizeof(*ring->descriptors), 518 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 519 if (!ring->descriptors) 520 goto err_free_ring; 521 522 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 523 goto err_free_descs; 524 525 if (nhi_alloc_hop(nhi, ring)) 526 goto err_release_msix; 527 528 return ring; 529 530 err_release_msix: 531 ring_release_msix(ring); 532 err_free_descs: 533 dma_free_coherent(&ring->nhi->pdev->dev, 534 ring->size * sizeof(*ring->descriptors), 535 ring->descriptors, ring->descriptors_dma); 536 err_free_ring: 537 kfree(ring); 538 539 return NULL; 540 } 541 542 /** 543 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 544 * @nhi: Pointer to the NHI the ring is to be allocated 545 * @hop: HopID (ring) to allocate 546 * @size: Number of entries in the ring 547 * @flags: Flags for the ring 548 */ 549 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 550 unsigned int flags) 551 { 552 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL); 553 } 554 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 555 556 /** 557 * tb_ring_alloc_rx() - Allocate DMA ring for receive 558 * @nhi: Pointer to the NHI the ring is to be allocated 559 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 560 * @size: Number of entries in the ring 561 * @flags: Flags for the ring 562 * @sof_mask: Mask of PDF values that start a frame 563 * @eof_mask: Mask of PDF values that end a frame 564 * @start_poll: If not %NULL the ring will call this function when an 565 * interrupt is triggered and masked, instead of callback 566 * in each Rx frame. 567 * @poll_data: Optional data passed to @start_poll 568 */ 569 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 570 unsigned int flags, u16 sof_mask, u16 eof_mask, 571 void (*start_poll)(void *), void *poll_data) 572 { 573 return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask, 574 start_poll, poll_data); 575 } 576 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 577 578 /** 579 * tb_ring_start() - enable a ring 580 * 581 * Must not be invoked in parallel with tb_ring_stop(). 582 */ 583 void tb_ring_start(struct tb_ring *ring) 584 { 585 u16 frame_size; 586 u32 flags; 587 588 spin_lock_irq(&ring->nhi->lock); 589 spin_lock(&ring->lock); 590 if (ring->nhi->going_away) 591 goto err; 592 if (ring->running) { 593 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 594 goto err; 595 } 596 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 597 RING_TYPE(ring), ring->hop); 598 599 if (ring->flags & RING_FLAG_FRAME) { 600 /* Means 4096 */ 601 frame_size = 0; 602 flags = RING_FLAG_ENABLE; 603 } else { 604 frame_size = TB_FRAME_SIZE; 605 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 606 } 607 608 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 609 if (ring->is_tx) { 610 ring_iowrite32desc(ring, ring->size, 12); 611 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 612 ring_iowrite32options(ring, flags, 0); 613 } else { 614 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 615 616 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 617 ring_iowrite32options(ring, sof_eof_mask, 4); 618 ring_iowrite32options(ring, flags, 0); 619 } 620 ring_interrupt_active(ring, true); 621 ring->running = true; 622 err: 623 spin_unlock(&ring->lock); 624 spin_unlock_irq(&ring->nhi->lock); 625 } 626 EXPORT_SYMBOL_GPL(tb_ring_start); 627 628 /** 629 * tb_ring_stop() - shutdown a ring 630 * 631 * Must not be invoked from a callback. 632 * 633 * This method will disable the ring. Further calls to 634 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 635 * called. 636 * 637 * All enqueued frames will be canceled and their callbacks will be executed 638 * with frame->canceled set to true (on the callback thread). This method 639 * returns only after all callback invocations have finished. 640 */ 641 void tb_ring_stop(struct tb_ring *ring) 642 { 643 spin_lock_irq(&ring->nhi->lock); 644 spin_lock(&ring->lock); 645 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 646 RING_TYPE(ring), ring->hop); 647 if (ring->nhi->going_away) 648 goto err; 649 if (!ring->running) { 650 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 651 RING_TYPE(ring), ring->hop); 652 goto err; 653 } 654 ring_interrupt_active(ring, false); 655 656 ring_iowrite32options(ring, 0, 0); 657 ring_iowrite64desc(ring, 0, 0); 658 ring_iowrite32desc(ring, 0, 8); 659 ring_iowrite32desc(ring, 0, 12); 660 ring->head = 0; 661 ring->tail = 0; 662 ring->running = false; 663 664 err: 665 spin_unlock(&ring->lock); 666 spin_unlock_irq(&ring->nhi->lock); 667 668 /* 669 * schedule ring->work to invoke callbacks on all remaining frames. 670 */ 671 schedule_work(&ring->work); 672 flush_work(&ring->work); 673 } 674 EXPORT_SYMBOL_GPL(tb_ring_stop); 675 676 /* 677 * tb_ring_free() - free ring 678 * 679 * When this method returns all invocations of ring->callback will have 680 * finished. 681 * 682 * Ring must be stopped. 683 * 684 * Must NOT be called from ring_frame->callback! 685 */ 686 void tb_ring_free(struct tb_ring *ring) 687 { 688 spin_lock_irq(&ring->nhi->lock); 689 /* 690 * Dissociate the ring from the NHI. This also ensures that 691 * nhi_interrupt_work cannot reschedule ring->work. 692 */ 693 if (ring->is_tx) 694 ring->nhi->tx_rings[ring->hop] = NULL; 695 else 696 ring->nhi->rx_rings[ring->hop] = NULL; 697 698 if (ring->running) { 699 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 700 RING_TYPE(ring), ring->hop); 701 } 702 spin_unlock_irq(&ring->nhi->lock); 703 704 ring_release_msix(ring); 705 706 dma_free_coherent(&ring->nhi->pdev->dev, 707 ring->size * sizeof(*ring->descriptors), 708 ring->descriptors, ring->descriptors_dma); 709 710 ring->descriptors = NULL; 711 ring->descriptors_dma = 0; 712 713 714 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 715 ring->hop); 716 717 /** 718 * ring->work can no longer be scheduled (it is scheduled only 719 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 720 * to finish before freeing the ring. 721 */ 722 flush_work(&ring->work); 723 kfree(ring); 724 } 725 EXPORT_SYMBOL_GPL(tb_ring_free); 726 727 /** 728 * nhi_mailbox_cmd() - Send a command through NHI mailbox 729 * @nhi: Pointer to the NHI structure 730 * @cmd: Command to send 731 * @data: Data to be send with the command 732 * 733 * Sends mailbox command to the firmware running on NHI. Returns %0 in 734 * case of success and negative errno in case of failure. 735 */ 736 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 737 { 738 ktime_t timeout; 739 u32 val; 740 741 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 742 743 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 744 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 745 val |= REG_INMAIL_OP_REQUEST | cmd; 746 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 747 748 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 749 do { 750 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 751 if (!(val & REG_INMAIL_OP_REQUEST)) 752 break; 753 usleep_range(10, 20); 754 } while (ktime_before(ktime_get(), timeout)); 755 756 if (val & REG_INMAIL_OP_REQUEST) 757 return -ETIMEDOUT; 758 if (val & REG_INMAIL_ERROR) 759 return -EIO; 760 761 return 0; 762 } 763 764 /** 765 * nhi_mailbox_mode() - Return current firmware operation mode 766 * @nhi: Pointer to the NHI structure 767 * 768 * The function reads current firmware operation mode using NHI mailbox 769 * registers and returns it to the caller. 770 */ 771 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 772 { 773 u32 val; 774 775 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 776 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 777 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 778 779 return (enum nhi_fw_mode)val; 780 } 781 782 static void nhi_interrupt_work(struct work_struct *work) 783 { 784 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 785 int value = 0; /* Suppress uninitialized usage warning. */ 786 int bit; 787 int hop = -1; 788 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 789 struct tb_ring *ring; 790 791 spin_lock_irq(&nhi->lock); 792 793 /* 794 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 795 * (TX, RX, RX overflow). We iterate over the bits and read a new 796 * dwords as required. The registers are cleared on read. 797 */ 798 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 799 if (bit % 32 == 0) 800 value = ioread32(nhi->iobase 801 + REG_RING_NOTIFY_BASE 802 + 4 * (bit / 32)); 803 if (++hop == nhi->hop_count) { 804 hop = 0; 805 type++; 806 } 807 if ((value & (1 << (bit % 32))) == 0) 808 continue; 809 if (type == 2) { 810 dev_warn(&nhi->pdev->dev, 811 "RX overflow for ring %d\n", 812 hop); 813 continue; 814 } 815 if (type == 0) 816 ring = nhi->tx_rings[hop]; 817 else 818 ring = nhi->rx_rings[hop]; 819 if (ring == NULL) { 820 dev_warn(&nhi->pdev->dev, 821 "got interrupt for inactive %s ring %d\n", 822 type ? "RX" : "TX", 823 hop); 824 continue; 825 } 826 827 spin_lock(&ring->lock); 828 __ring_interrupt(ring); 829 spin_unlock(&ring->lock); 830 } 831 spin_unlock_irq(&nhi->lock); 832 } 833 834 static irqreturn_t nhi_msi(int irq, void *data) 835 { 836 struct tb_nhi *nhi = data; 837 schedule_work(&nhi->interrupt_work); 838 return IRQ_HANDLED; 839 } 840 841 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 842 { 843 struct pci_dev *pdev = to_pci_dev(dev); 844 struct tb *tb = pci_get_drvdata(pdev); 845 struct tb_nhi *nhi = tb->nhi; 846 int ret; 847 848 ret = tb_domain_suspend_noirq(tb); 849 if (ret) 850 return ret; 851 852 if (nhi->ops && nhi->ops->suspend_noirq) { 853 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 854 if (ret) 855 return ret; 856 } 857 858 return 0; 859 } 860 861 static int nhi_suspend_noirq(struct device *dev) 862 { 863 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 864 } 865 866 static bool nhi_wake_supported(struct pci_dev *pdev) 867 { 868 u8 val; 869 870 /* 871 * If power rails are sustainable for wakeup from S4 this 872 * property is set by the BIOS. 873 */ 874 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 875 return !!val; 876 877 return true; 878 } 879 880 static int nhi_poweroff_noirq(struct device *dev) 881 { 882 struct pci_dev *pdev = to_pci_dev(dev); 883 bool wakeup; 884 885 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 886 return __nhi_suspend_noirq(dev, wakeup); 887 } 888 889 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 890 { 891 /* Throttling is specified in 256ns increments */ 892 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 893 unsigned int i; 894 895 /* 896 * Configure interrupt throttling for all vectors even if we 897 * only use few. 898 */ 899 for (i = 0; i < MSIX_MAX_VECS; i++) { 900 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 901 iowrite32(throttle, nhi->iobase + reg); 902 } 903 } 904 905 static int nhi_resume_noirq(struct device *dev) 906 { 907 struct pci_dev *pdev = to_pci_dev(dev); 908 struct tb *tb = pci_get_drvdata(pdev); 909 struct tb_nhi *nhi = tb->nhi; 910 int ret; 911 912 /* 913 * Check that the device is still there. It may be that the user 914 * unplugged last device which causes the host controller to go 915 * away on PCs. 916 */ 917 if (!pci_device_is_present(pdev)) { 918 nhi->going_away = true; 919 } else { 920 if (nhi->ops && nhi->ops->resume_noirq) { 921 ret = nhi->ops->resume_noirq(nhi); 922 if (ret) 923 return ret; 924 } 925 nhi_enable_int_throttling(tb->nhi); 926 } 927 928 return tb_domain_resume_noirq(tb); 929 } 930 931 static int nhi_suspend(struct device *dev) 932 { 933 struct pci_dev *pdev = to_pci_dev(dev); 934 struct tb *tb = pci_get_drvdata(pdev); 935 936 return tb_domain_suspend(tb); 937 } 938 939 static void nhi_complete(struct device *dev) 940 { 941 struct pci_dev *pdev = to_pci_dev(dev); 942 struct tb *tb = pci_get_drvdata(pdev); 943 944 /* 945 * If we were runtime suspended when system suspend started, 946 * schedule runtime resume now. It should bring the domain back 947 * to functional state. 948 */ 949 if (pm_runtime_suspended(&pdev->dev)) 950 pm_runtime_resume(&pdev->dev); 951 else 952 tb_domain_complete(tb); 953 } 954 955 static int nhi_runtime_suspend(struct device *dev) 956 { 957 struct pci_dev *pdev = to_pci_dev(dev); 958 struct tb *tb = pci_get_drvdata(pdev); 959 struct tb_nhi *nhi = tb->nhi; 960 int ret; 961 962 ret = tb_domain_runtime_suspend(tb); 963 if (ret) 964 return ret; 965 966 if (nhi->ops && nhi->ops->runtime_suspend) { 967 ret = nhi->ops->runtime_suspend(tb->nhi); 968 if (ret) 969 return ret; 970 } 971 return 0; 972 } 973 974 static int nhi_runtime_resume(struct device *dev) 975 { 976 struct pci_dev *pdev = to_pci_dev(dev); 977 struct tb *tb = pci_get_drvdata(pdev); 978 struct tb_nhi *nhi = tb->nhi; 979 int ret; 980 981 if (nhi->ops && nhi->ops->runtime_resume) { 982 ret = nhi->ops->runtime_resume(nhi); 983 if (ret) 984 return ret; 985 } 986 987 nhi_enable_int_throttling(nhi); 988 return tb_domain_runtime_resume(tb); 989 } 990 991 static void nhi_shutdown(struct tb_nhi *nhi) 992 { 993 int i; 994 995 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 996 997 for (i = 0; i < nhi->hop_count; i++) { 998 if (nhi->tx_rings[i]) 999 dev_WARN(&nhi->pdev->dev, 1000 "TX ring %d is still active\n", i); 1001 if (nhi->rx_rings[i]) 1002 dev_WARN(&nhi->pdev->dev, 1003 "RX ring %d is still active\n", i); 1004 } 1005 nhi_disable_interrupts(nhi); 1006 /* 1007 * We have to release the irq before calling flush_work. Otherwise an 1008 * already executing IRQ handler could call schedule_work again. 1009 */ 1010 if (!nhi->pdev->msix_enabled) { 1011 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1012 flush_work(&nhi->interrupt_work); 1013 } 1014 ida_destroy(&nhi->msix_ida); 1015 1016 if (nhi->ops && nhi->ops->shutdown) 1017 nhi->ops->shutdown(nhi); 1018 } 1019 1020 static int nhi_init_msi(struct tb_nhi *nhi) 1021 { 1022 struct pci_dev *pdev = nhi->pdev; 1023 int res, irq, nvec; 1024 1025 /* In case someone left them on. */ 1026 nhi_disable_interrupts(nhi); 1027 1028 nhi_enable_int_throttling(nhi); 1029 1030 ida_init(&nhi->msix_ida); 1031 1032 /* 1033 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1034 * get all MSI-X vectors and if we succeed, each ring will have 1035 * one MSI-X. If for some reason that does not work out, we 1036 * fallback to a single MSI. 1037 */ 1038 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1039 PCI_IRQ_MSIX); 1040 if (nvec < 0) { 1041 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1042 if (nvec < 0) 1043 return nvec; 1044 1045 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1046 1047 irq = pci_irq_vector(nhi->pdev, 0); 1048 if (irq < 0) 1049 return irq; 1050 1051 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1052 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1053 if (res) { 1054 dev_err(&pdev->dev, "request_irq failed, aborting\n"); 1055 return res; 1056 } 1057 } 1058 1059 return 0; 1060 } 1061 1062 static bool nhi_imr_valid(struct pci_dev *pdev) 1063 { 1064 u8 val; 1065 1066 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1067 return !!val; 1068 1069 return true; 1070 } 1071 1072 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1073 { 1074 struct tb_nhi *nhi; 1075 struct tb *tb; 1076 int res; 1077 1078 if (!nhi_imr_valid(pdev)) { 1079 dev_warn(&pdev->dev, "firmware image not valid, aborting\n"); 1080 return -ENODEV; 1081 } 1082 1083 res = pcim_enable_device(pdev); 1084 if (res) { 1085 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n"); 1086 return res; 1087 } 1088 1089 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1090 if (res) { 1091 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 1092 return res; 1093 } 1094 1095 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1096 if (!nhi) 1097 return -ENOMEM; 1098 1099 nhi->pdev = pdev; 1100 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1101 /* cannot fail - table is allocated bin pcim_iomap_regions */ 1102 nhi->iobase = pcim_iomap_table(pdev)[0]; 1103 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1104 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count); 1105 1106 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1107 sizeof(*nhi->tx_rings), GFP_KERNEL); 1108 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1109 sizeof(*nhi->rx_rings), GFP_KERNEL); 1110 if (!nhi->tx_rings || !nhi->rx_rings) 1111 return -ENOMEM; 1112 1113 res = nhi_init_msi(nhi); 1114 if (res) { 1115 dev_err(&pdev->dev, "cannot enable MSI, aborting\n"); 1116 return res; 1117 } 1118 1119 spin_lock_init(&nhi->lock); 1120 1121 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1122 if (res) 1123 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1124 if (res) { 1125 dev_err(&pdev->dev, "failed to set DMA mask\n"); 1126 return res; 1127 } 1128 1129 pci_set_master(pdev); 1130 1131 if (nhi->ops && nhi->ops->init) { 1132 res = nhi->ops->init(nhi); 1133 if (res) 1134 return res; 1135 } 1136 1137 tb = icm_probe(nhi); 1138 if (!tb) 1139 tb = tb_probe(nhi); 1140 if (!tb) { 1141 dev_err(&nhi->pdev->dev, 1142 "failed to determine connection manager, aborting\n"); 1143 return -ENODEV; 1144 } 1145 1146 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n"); 1147 1148 res = tb_domain_add(tb); 1149 if (res) { 1150 /* 1151 * At this point the RX/TX rings might already have been 1152 * activated. Do a proper shutdown. 1153 */ 1154 tb_domain_put(tb); 1155 nhi_shutdown(nhi); 1156 return res; 1157 } 1158 pci_set_drvdata(pdev, tb); 1159 1160 pm_runtime_allow(&pdev->dev); 1161 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1162 pm_runtime_use_autosuspend(&pdev->dev); 1163 pm_runtime_put_autosuspend(&pdev->dev); 1164 1165 return 0; 1166 } 1167 1168 static void nhi_remove(struct pci_dev *pdev) 1169 { 1170 struct tb *tb = pci_get_drvdata(pdev); 1171 struct tb_nhi *nhi = tb->nhi; 1172 1173 pm_runtime_get_sync(&pdev->dev); 1174 pm_runtime_dont_use_autosuspend(&pdev->dev); 1175 pm_runtime_forbid(&pdev->dev); 1176 1177 tb_domain_remove(tb); 1178 nhi_shutdown(nhi); 1179 } 1180 1181 /* 1182 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1183 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1184 * resume_noirq until we are done. 1185 */ 1186 static const struct dev_pm_ops nhi_pm_ops = { 1187 .suspend_noirq = nhi_suspend_noirq, 1188 .resume_noirq = nhi_resume_noirq, 1189 .freeze_noirq = nhi_suspend_noirq, /* 1190 * we just disable hotplug, the 1191 * pci-tunnels stay alive. 1192 */ 1193 .thaw_noirq = nhi_resume_noirq, 1194 .restore_noirq = nhi_resume_noirq, 1195 .suspend = nhi_suspend, 1196 .freeze = nhi_suspend, 1197 .poweroff_noirq = nhi_poweroff_noirq, 1198 .poweroff = nhi_suspend, 1199 .complete = nhi_complete, 1200 .runtime_suspend = nhi_runtime_suspend, 1201 .runtime_resume = nhi_runtime_resume, 1202 }; 1203 1204 static struct pci_device_id nhi_ids[] = { 1205 /* 1206 * We have to specify class, the TB bridges use the same device and 1207 * vendor (sub)id on gen 1 and gen 2 controllers. 1208 */ 1209 { 1210 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1211 .vendor = PCI_VENDOR_ID_INTEL, 1212 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1213 .subvendor = 0x2222, .subdevice = 0x1111, 1214 }, 1215 { 1216 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1217 .vendor = PCI_VENDOR_ID_INTEL, 1218 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1219 .subvendor = 0x2222, .subdevice = 0x1111, 1220 }, 1221 { 1222 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1223 .vendor = PCI_VENDOR_ID_INTEL, 1224 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1225 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1226 }, 1227 { 1228 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1229 .vendor = PCI_VENDOR_ID_INTEL, 1230 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1231 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1232 }, 1233 1234 /* Thunderbolt 3 */ 1235 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1236 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1237 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1238 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1239 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1240 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1241 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1242 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1243 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1244 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1245 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1246 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1247 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1248 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1249 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1250 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1251 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1252 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1253 1254 /* Any USB4 compliant host */ 1255 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1256 1257 { 0,} 1258 }; 1259 1260 MODULE_DEVICE_TABLE(pci, nhi_ids); 1261 MODULE_LICENSE("GPL"); 1262 1263 static struct pci_driver nhi_driver = { 1264 .name = "thunderbolt", 1265 .id_table = nhi_ids, 1266 .probe = nhi_probe, 1267 .remove = nhi_remove, 1268 .shutdown = nhi_remove, 1269 .driver.pm = &nhi_pm_ops, 1270 }; 1271 1272 static int __init nhi_init(void) 1273 { 1274 int ret; 1275 1276 ret = tb_domain_init(); 1277 if (ret) 1278 return ret; 1279 ret = pci_register_driver(&nhi_driver); 1280 if (ret) 1281 tb_domain_exit(); 1282 return ret; 1283 } 1284 1285 static void __exit nhi_unload(void) 1286 { 1287 pci_unregister_driver(&nhi_driver); 1288 tb_domain_exit(); 1289 } 1290 1291 rootfs_initcall(nhi_init); 1292 module_exit(nhi_unload); 1293