xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision 9abcd240)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/property.h>
22 #include <linux/string_helpers.h>
23 
24 #include "nhi.h"
25 #include "nhi_regs.h"
26 #include "tb.h"
27 
28 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
29 
30 #define RING_FIRST_USABLE_HOPID	1
31 /*
32  * Used with QUIRK_E2E to specify an unused HopID the Rx credits are
33  * transferred.
34  */
35 #define RING_E2E_RESERVED_HOPID	RING_FIRST_USABLE_HOPID
36 /*
37  * Minimal number of vectors when we use MSI-X. Two for control channel
38  * Rx/Tx and the rest four are for cross domain DMA paths.
39  */
40 #define MSIX_MIN_VECS		6
41 #define MSIX_MAX_VECS		16
42 
43 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
44 
45 /* Host interface quirks */
46 #define QUIRK_AUTO_CLEAR_INT	BIT(0)
47 #define QUIRK_E2E		BIT(1)
48 
49 static int ring_interrupt_index(const struct tb_ring *ring)
50 {
51 	int bit = ring->hop;
52 	if (!ring->is_tx)
53 		bit += ring->nhi->hop_count;
54 	return bit;
55 }
56 
57 /*
58  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
59  *
60  * ring->nhi->lock must be held.
61  */
62 static void ring_interrupt_active(struct tb_ring *ring, bool active)
63 {
64 	int reg = REG_RING_INTERRUPT_BASE +
65 		  ring_interrupt_index(ring) / 32 * 4;
66 	int interrupt_bit = ring_interrupt_index(ring) & 31;
67 	int mask = 1 << interrupt_bit;
68 	u32 old, new;
69 
70 	if (ring->irq > 0) {
71 		u32 step, shift, ivr, misc;
72 		void __iomem *ivr_base;
73 		int auto_clear_bit;
74 		int index;
75 
76 		if (ring->is_tx)
77 			index = ring->hop;
78 		else
79 			index = ring->hop + ring->nhi->hop_count;
80 
81 		/*
82 		 * Intel routers support a bit that isn't part of
83 		 * the USB4 spec to ask the hardware to clear
84 		 * interrupt status bits automatically since
85 		 * we already know which interrupt was triggered.
86 		 *
87 		 * Other routers explicitly disable auto-clear
88 		 * to prevent conditions that may occur where two
89 		 * MSIX interrupts are simultaneously active and
90 		 * reading the register clears both of them.
91 		 */
92 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
93 		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
94 			auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR;
95 		else
96 			auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR;
97 		if (!(misc & auto_clear_bit))
98 			iowrite32(misc | auto_clear_bit,
99 				  ring->nhi->iobase + REG_DMA_MISC);
100 
101 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
102 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
103 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
104 		ivr = ioread32(ivr_base + step);
105 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
106 		if (active)
107 			ivr |= ring->vector << shift;
108 		iowrite32(ivr, ivr_base + step);
109 	}
110 
111 	old = ioread32(ring->nhi->iobase + reg);
112 	if (active)
113 		new = old | mask;
114 	else
115 		new = old & ~mask;
116 
117 	dev_dbg(&ring->nhi->pdev->dev,
118 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
119 		active ? "enabling" : "disabling", reg, interrupt_bit, old, new);
120 
121 	if (new == old)
122 		dev_WARN(&ring->nhi->pdev->dev,
123 					 "interrupt for %s %d is already %s\n",
124 					 RING_TYPE(ring), ring->hop,
125 					 active ? "enabled" : "disabled");
126 	iowrite32(new, ring->nhi->iobase + reg);
127 }
128 
129 /*
130  * nhi_disable_interrupts() - disable interrupts for all rings
131  *
132  * Use only during init and shutdown.
133  */
134 static void nhi_disable_interrupts(struct tb_nhi *nhi)
135 {
136 	int i = 0;
137 	/* disable interrupts */
138 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
139 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
140 
141 	/* clear interrupt status bits */
142 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
143 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
144 }
145 
146 /* ring helper methods */
147 
148 static void __iomem *ring_desc_base(struct tb_ring *ring)
149 {
150 	void __iomem *io = ring->nhi->iobase;
151 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
152 	io += ring->hop * 16;
153 	return io;
154 }
155 
156 static void __iomem *ring_options_base(struct tb_ring *ring)
157 {
158 	void __iomem *io = ring->nhi->iobase;
159 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
160 	io += ring->hop * 32;
161 	return io;
162 }
163 
164 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
165 {
166 	/*
167 	 * The other 16-bits in the register is read-only and writes to it
168 	 * are ignored by the hardware so we can save one ioread32() by
169 	 * filling the read-only bits with zeroes.
170 	 */
171 	iowrite32(cons, ring_desc_base(ring) + 8);
172 }
173 
174 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
175 {
176 	/* See ring_iowrite_cons() above for explanation */
177 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
178 }
179 
180 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
181 {
182 	iowrite32(value, ring_desc_base(ring) + offset);
183 }
184 
185 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
186 {
187 	iowrite32(value, ring_desc_base(ring) + offset);
188 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
189 }
190 
191 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
192 {
193 	iowrite32(value, ring_options_base(ring) + offset);
194 }
195 
196 static bool ring_full(struct tb_ring *ring)
197 {
198 	return ((ring->head + 1) % ring->size) == ring->tail;
199 }
200 
201 static bool ring_empty(struct tb_ring *ring)
202 {
203 	return ring->head == ring->tail;
204 }
205 
206 /*
207  * ring_write_descriptors() - post frames from ring->queue to the controller
208  *
209  * ring->lock is held.
210  */
211 static void ring_write_descriptors(struct tb_ring *ring)
212 {
213 	struct ring_frame *frame, *n;
214 	struct ring_desc *descriptor;
215 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
216 		if (ring_full(ring))
217 			break;
218 		list_move_tail(&frame->list, &ring->in_flight);
219 		descriptor = &ring->descriptors[ring->head];
220 		descriptor->phys = frame->buffer_phy;
221 		descriptor->time = 0;
222 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
223 		if (ring->is_tx) {
224 			descriptor->length = frame->size;
225 			descriptor->eof = frame->eof;
226 			descriptor->sof = frame->sof;
227 		}
228 		ring->head = (ring->head + 1) % ring->size;
229 		if (ring->is_tx)
230 			ring_iowrite_prod(ring, ring->head);
231 		else
232 			ring_iowrite_cons(ring, ring->head);
233 	}
234 }
235 
236 /*
237  * ring_work() - progress completed frames
238  *
239  * If the ring is shutting down then all frames are marked as canceled and
240  * their callbacks are invoked.
241  *
242  * Otherwise we collect all completed frame from the ring buffer, write new
243  * frame to the ring buffer and invoke the callbacks for the completed frames.
244  */
245 static void ring_work(struct work_struct *work)
246 {
247 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
248 	struct ring_frame *frame;
249 	bool canceled = false;
250 	unsigned long flags;
251 	LIST_HEAD(done);
252 
253 	spin_lock_irqsave(&ring->lock, flags);
254 
255 	if (!ring->running) {
256 		/*  Move all frames to done and mark them as canceled. */
257 		list_splice_tail_init(&ring->in_flight, &done);
258 		list_splice_tail_init(&ring->queue, &done);
259 		canceled = true;
260 		goto invoke_callback;
261 	}
262 
263 	while (!ring_empty(ring)) {
264 		if (!(ring->descriptors[ring->tail].flags
265 				& RING_DESC_COMPLETED))
266 			break;
267 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
268 					 list);
269 		list_move_tail(&frame->list, &done);
270 		if (!ring->is_tx) {
271 			frame->size = ring->descriptors[ring->tail].length;
272 			frame->eof = ring->descriptors[ring->tail].eof;
273 			frame->sof = ring->descriptors[ring->tail].sof;
274 			frame->flags = ring->descriptors[ring->tail].flags;
275 		}
276 		ring->tail = (ring->tail + 1) % ring->size;
277 	}
278 	ring_write_descriptors(ring);
279 
280 invoke_callback:
281 	/* allow callbacks to schedule new work */
282 	spin_unlock_irqrestore(&ring->lock, flags);
283 	while (!list_empty(&done)) {
284 		frame = list_first_entry(&done, typeof(*frame), list);
285 		/*
286 		 * The callback may reenqueue or delete frame.
287 		 * Do not hold on to it.
288 		 */
289 		list_del_init(&frame->list);
290 		if (frame->callback)
291 			frame->callback(ring, frame, canceled);
292 	}
293 }
294 
295 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
296 {
297 	unsigned long flags;
298 	int ret = 0;
299 
300 	spin_lock_irqsave(&ring->lock, flags);
301 	if (ring->running) {
302 		list_add_tail(&frame->list, &ring->queue);
303 		ring_write_descriptors(ring);
304 	} else {
305 		ret = -ESHUTDOWN;
306 	}
307 	spin_unlock_irqrestore(&ring->lock, flags);
308 	return ret;
309 }
310 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
311 
312 /**
313  * tb_ring_poll() - Poll one completed frame from the ring
314  * @ring: Ring to poll
315  *
316  * This function can be called when @start_poll callback of the @ring
317  * has been called. It will read one completed frame from the ring and
318  * return it to the caller. Returns %NULL if there is no more completed
319  * frames.
320  */
321 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
322 {
323 	struct ring_frame *frame = NULL;
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(&ring->lock, flags);
327 	if (!ring->running)
328 		goto unlock;
329 	if (ring_empty(ring))
330 		goto unlock;
331 
332 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
333 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
334 					 list);
335 		list_del_init(&frame->list);
336 
337 		if (!ring->is_tx) {
338 			frame->size = ring->descriptors[ring->tail].length;
339 			frame->eof = ring->descriptors[ring->tail].eof;
340 			frame->sof = ring->descriptors[ring->tail].sof;
341 			frame->flags = ring->descriptors[ring->tail].flags;
342 		}
343 
344 		ring->tail = (ring->tail + 1) % ring->size;
345 	}
346 
347 unlock:
348 	spin_unlock_irqrestore(&ring->lock, flags);
349 	return frame;
350 }
351 EXPORT_SYMBOL_GPL(tb_ring_poll);
352 
353 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
354 {
355 	int idx = ring_interrupt_index(ring);
356 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
357 	int bit = idx % 32;
358 	u32 val;
359 
360 	val = ioread32(ring->nhi->iobase + reg);
361 	if (mask)
362 		val &= ~BIT(bit);
363 	else
364 		val |= BIT(bit);
365 	iowrite32(val, ring->nhi->iobase + reg);
366 }
367 
368 /* Both @nhi->lock and @ring->lock should be held */
369 static void __ring_interrupt(struct tb_ring *ring)
370 {
371 	if (!ring->running)
372 		return;
373 
374 	if (ring->start_poll) {
375 		__ring_interrupt_mask(ring, true);
376 		ring->start_poll(ring->poll_data);
377 	} else {
378 		schedule_work(&ring->work);
379 	}
380 }
381 
382 /**
383  * tb_ring_poll_complete() - Re-start interrupt for the ring
384  * @ring: Ring to re-start the interrupt
385  *
386  * This will re-start (unmask) the ring interrupt once the user is done
387  * with polling.
388  */
389 void tb_ring_poll_complete(struct tb_ring *ring)
390 {
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(&ring->nhi->lock, flags);
394 	spin_lock(&ring->lock);
395 	if (ring->start_poll)
396 		__ring_interrupt_mask(ring, false);
397 	spin_unlock(&ring->lock);
398 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
399 }
400 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
401 
402 static void ring_clear_msix(const struct tb_ring *ring)
403 {
404 	int bit;
405 
406 	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
407 		return;
408 
409 	bit = ring_interrupt_index(ring) & 31;
410 	if (ring->is_tx)
411 		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR);
412 	else
413 		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR +
414 			  4 * (ring->nhi->hop_count / 32));
415 }
416 
417 static irqreturn_t ring_msix(int irq, void *data)
418 {
419 	struct tb_ring *ring = data;
420 
421 	spin_lock(&ring->nhi->lock);
422 	ring_clear_msix(ring);
423 	spin_lock(&ring->lock);
424 	__ring_interrupt(ring);
425 	spin_unlock(&ring->lock);
426 	spin_unlock(&ring->nhi->lock);
427 
428 	return IRQ_HANDLED;
429 }
430 
431 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
432 {
433 	struct tb_nhi *nhi = ring->nhi;
434 	unsigned long irqflags;
435 	int ret;
436 
437 	if (!nhi->pdev->msix_enabled)
438 		return 0;
439 
440 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
441 	if (ret < 0)
442 		return ret;
443 
444 	ring->vector = ret;
445 
446 	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
447 	if (ret < 0)
448 		goto err_ida_remove;
449 
450 	ring->irq = ret;
451 
452 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
453 	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
454 	if (ret)
455 		goto err_ida_remove;
456 
457 	return 0;
458 
459 err_ida_remove:
460 	ida_simple_remove(&nhi->msix_ida, ring->vector);
461 
462 	return ret;
463 }
464 
465 static void ring_release_msix(struct tb_ring *ring)
466 {
467 	if (ring->irq <= 0)
468 		return;
469 
470 	free_irq(ring->irq, ring);
471 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
472 	ring->vector = 0;
473 	ring->irq = 0;
474 }
475 
476 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
477 {
478 	unsigned int start_hop = RING_FIRST_USABLE_HOPID;
479 	int ret = 0;
480 
481 	if (nhi->quirks & QUIRK_E2E) {
482 		start_hop = RING_FIRST_USABLE_HOPID + 1;
483 		if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
484 			dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n",
485 				ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID);
486 			ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID;
487 		}
488 	}
489 
490 	spin_lock_irq(&nhi->lock);
491 
492 	if (ring->hop < 0) {
493 		unsigned int i;
494 
495 		/*
496 		 * Automatically allocate HopID from the non-reserved
497 		 * range 1 .. hop_count - 1.
498 		 */
499 		for (i = start_hop; i < nhi->hop_count; i++) {
500 			if (ring->is_tx) {
501 				if (!nhi->tx_rings[i]) {
502 					ring->hop = i;
503 					break;
504 				}
505 			} else {
506 				if (!nhi->rx_rings[i]) {
507 					ring->hop = i;
508 					break;
509 				}
510 			}
511 		}
512 	}
513 
514 	if (ring->hop > 0 && ring->hop < start_hop) {
515 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
516 		ret = -EINVAL;
517 		goto err_unlock;
518 	}
519 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
520 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
521 		ret = -EINVAL;
522 		goto err_unlock;
523 	}
524 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
525 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
526 			 ring->hop);
527 		ret = -EBUSY;
528 		goto err_unlock;
529 	}
530 	if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
531 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
532 			 ring->hop);
533 		ret = -EBUSY;
534 		goto err_unlock;
535 	}
536 
537 	if (ring->is_tx)
538 		nhi->tx_rings[ring->hop] = ring;
539 	else
540 		nhi->rx_rings[ring->hop] = ring;
541 
542 err_unlock:
543 	spin_unlock_irq(&nhi->lock);
544 
545 	return ret;
546 }
547 
548 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
549 				     bool transmit, unsigned int flags,
550 				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
551 				     void (*start_poll)(void *),
552 				     void *poll_data)
553 {
554 	struct tb_ring *ring = NULL;
555 
556 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
557 		transmit ? "TX" : "RX", hop, size);
558 
559 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
560 	if (!ring)
561 		return NULL;
562 
563 	spin_lock_init(&ring->lock);
564 	INIT_LIST_HEAD(&ring->queue);
565 	INIT_LIST_HEAD(&ring->in_flight);
566 	INIT_WORK(&ring->work, ring_work);
567 
568 	ring->nhi = nhi;
569 	ring->hop = hop;
570 	ring->is_tx = transmit;
571 	ring->size = size;
572 	ring->flags = flags;
573 	ring->e2e_tx_hop = e2e_tx_hop;
574 	ring->sof_mask = sof_mask;
575 	ring->eof_mask = eof_mask;
576 	ring->head = 0;
577 	ring->tail = 0;
578 	ring->running = false;
579 	ring->start_poll = start_poll;
580 	ring->poll_data = poll_data;
581 
582 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
583 			size * sizeof(*ring->descriptors),
584 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
585 	if (!ring->descriptors)
586 		goto err_free_ring;
587 
588 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
589 		goto err_free_descs;
590 
591 	if (nhi_alloc_hop(nhi, ring))
592 		goto err_release_msix;
593 
594 	return ring;
595 
596 err_release_msix:
597 	ring_release_msix(ring);
598 err_free_descs:
599 	dma_free_coherent(&ring->nhi->pdev->dev,
600 			  ring->size * sizeof(*ring->descriptors),
601 			  ring->descriptors, ring->descriptors_dma);
602 err_free_ring:
603 	kfree(ring);
604 
605 	return NULL;
606 }
607 
608 /**
609  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
610  * @nhi: Pointer to the NHI the ring is to be allocated
611  * @hop: HopID (ring) to allocate
612  * @size: Number of entries in the ring
613  * @flags: Flags for the ring
614  */
615 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
616 				 unsigned int flags)
617 {
618 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
619 }
620 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
621 
622 /**
623  * tb_ring_alloc_rx() - Allocate DMA ring for receive
624  * @nhi: Pointer to the NHI the ring is to be allocated
625  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
626  * @size: Number of entries in the ring
627  * @flags: Flags for the ring
628  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
629  * @sof_mask: Mask of PDF values that start a frame
630  * @eof_mask: Mask of PDF values that end a frame
631  * @start_poll: If not %NULL the ring will call this function when an
632  *		interrupt is triggered and masked, instead of callback
633  *		in each Rx frame.
634  * @poll_data: Optional data passed to @start_poll
635  */
636 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
637 				 unsigned int flags, int e2e_tx_hop,
638 				 u16 sof_mask, u16 eof_mask,
639 				 void (*start_poll)(void *), void *poll_data)
640 {
641 	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
642 			     start_poll, poll_data);
643 }
644 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
645 
646 /**
647  * tb_ring_start() - enable a ring
648  * @ring: Ring to start
649  *
650  * Must not be invoked in parallel with tb_ring_stop().
651  */
652 void tb_ring_start(struct tb_ring *ring)
653 {
654 	u16 frame_size;
655 	u32 flags;
656 
657 	spin_lock_irq(&ring->nhi->lock);
658 	spin_lock(&ring->lock);
659 	if (ring->nhi->going_away)
660 		goto err;
661 	if (ring->running) {
662 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
663 		goto err;
664 	}
665 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
666 		RING_TYPE(ring), ring->hop);
667 
668 	if (ring->flags & RING_FLAG_FRAME) {
669 		/* Means 4096 */
670 		frame_size = 0;
671 		flags = RING_FLAG_ENABLE;
672 	} else {
673 		frame_size = TB_FRAME_SIZE;
674 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
675 	}
676 
677 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
678 	if (ring->is_tx) {
679 		ring_iowrite32desc(ring, ring->size, 12);
680 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
681 		ring_iowrite32options(ring, flags, 0);
682 	} else {
683 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
684 
685 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
686 		ring_iowrite32options(ring, sof_eof_mask, 4);
687 		ring_iowrite32options(ring, flags, 0);
688 	}
689 
690 	/*
691 	 * Now that the ring valid bit is set we can configure E2E if
692 	 * enabled for the ring.
693 	 */
694 	if (ring->flags & RING_FLAG_E2E) {
695 		if (!ring->is_tx) {
696 			u32 hop;
697 
698 			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
699 			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
700 			flags |= hop;
701 
702 			dev_dbg(&ring->nhi->pdev->dev,
703 				"enabling E2E for %s %d with TX HopID %d\n",
704 				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
705 		} else {
706 			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
707 				RING_TYPE(ring), ring->hop);
708 		}
709 
710 		flags |= RING_FLAG_E2E_FLOW_CONTROL;
711 		ring_iowrite32options(ring, flags, 0);
712 	}
713 
714 	ring_interrupt_active(ring, true);
715 	ring->running = true;
716 err:
717 	spin_unlock(&ring->lock);
718 	spin_unlock_irq(&ring->nhi->lock);
719 }
720 EXPORT_SYMBOL_GPL(tb_ring_start);
721 
722 /**
723  * tb_ring_stop() - shutdown a ring
724  * @ring: Ring to stop
725  *
726  * Must not be invoked from a callback.
727  *
728  * This method will disable the ring. Further calls to
729  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
730  * called.
731  *
732  * All enqueued frames will be canceled and their callbacks will be executed
733  * with frame->canceled set to true (on the callback thread). This method
734  * returns only after all callback invocations have finished.
735  */
736 void tb_ring_stop(struct tb_ring *ring)
737 {
738 	spin_lock_irq(&ring->nhi->lock);
739 	spin_lock(&ring->lock);
740 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
741 		RING_TYPE(ring), ring->hop);
742 	if (ring->nhi->going_away)
743 		goto err;
744 	if (!ring->running) {
745 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
746 			 RING_TYPE(ring), ring->hop);
747 		goto err;
748 	}
749 	ring_interrupt_active(ring, false);
750 
751 	ring_iowrite32options(ring, 0, 0);
752 	ring_iowrite64desc(ring, 0, 0);
753 	ring_iowrite32desc(ring, 0, 8);
754 	ring_iowrite32desc(ring, 0, 12);
755 	ring->head = 0;
756 	ring->tail = 0;
757 	ring->running = false;
758 
759 err:
760 	spin_unlock(&ring->lock);
761 	spin_unlock_irq(&ring->nhi->lock);
762 
763 	/*
764 	 * schedule ring->work to invoke callbacks on all remaining frames.
765 	 */
766 	schedule_work(&ring->work);
767 	flush_work(&ring->work);
768 }
769 EXPORT_SYMBOL_GPL(tb_ring_stop);
770 
771 /*
772  * tb_ring_free() - free ring
773  *
774  * When this method returns all invocations of ring->callback will have
775  * finished.
776  *
777  * Ring must be stopped.
778  *
779  * Must NOT be called from ring_frame->callback!
780  */
781 void tb_ring_free(struct tb_ring *ring)
782 {
783 	spin_lock_irq(&ring->nhi->lock);
784 	/*
785 	 * Dissociate the ring from the NHI. This also ensures that
786 	 * nhi_interrupt_work cannot reschedule ring->work.
787 	 */
788 	if (ring->is_tx)
789 		ring->nhi->tx_rings[ring->hop] = NULL;
790 	else
791 		ring->nhi->rx_rings[ring->hop] = NULL;
792 
793 	if (ring->running) {
794 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
795 			 RING_TYPE(ring), ring->hop);
796 	}
797 	spin_unlock_irq(&ring->nhi->lock);
798 
799 	ring_release_msix(ring);
800 
801 	dma_free_coherent(&ring->nhi->pdev->dev,
802 			  ring->size * sizeof(*ring->descriptors),
803 			  ring->descriptors, ring->descriptors_dma);
804 
805 	ring->descriptors = NULL;
806 	ring->descriptors_dma = 0;
807 
808 
809 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
810 		ring->hop);
811 
812 	/*
813 	 * ring->work can no longer be scheduled (it is scheduled only
814 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
815 	 * to finish before freeing the ring.
816 	 */
817 	flush_work(&ring->work);
818 	kfree(ring);
819 }
820 EXPORT_SYMBOL_GPL(tb_ring_free);
821 
822 /**
823  * nhi_mailbox_cmd() - Send a command through NHI mailbox
824  * @nhi: Pointer to the NHI structure
825  * @cmd: Command to send
826  * @data: Data to be send with the command
827  *
828  * Sends mailbox command to the firmware running on NHI. Returns %0 in
829  * case of success and negative errno in case of failure.
830  */
831 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
832 {
833 	ktime_t timeout;
834 	u32 val;
835 
836 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
837 
838 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
839 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
840 	val |= REG_INMAIL_OP_REQUEST | cmd;
841 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
842 
843 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
844 	do {
845 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
846 		if (!(val & REG_INMAIL_OP_REQUEST))
847 			break;
848 		usleep_range(10, 20);
849 	} while (ktime_before(ktime_get(), timeout));
850 
851 	if (val & REG_INMAIL_OP_REQUEST)
852 		return -ETIMEDOUT;
853 	if (val & REG_INMAIL_ERROR)
854 		return -EIO;
855 
856 	return 0;
857 }
858 
859 /**
860  * nhi_mailbox_mode() - Return current firmware operation mode
861  * @nhi: Pointer to the NHI structure
862  *
863  * The function reads current firmware operation mode using NHI mailbox
864  * registers and returns it to the caller.
865  */
866 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
867 {
868 	u32 val;
869 
870 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
871 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
872 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
873 
874 	return (enum nhi_fw_mode)val;
875 }
876 
877 static void nhi_interrupt_work(struct work_struct *work)
878 {
879 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
880 	int value = 0; /* Suppress uninitialized usage warning. */
881 	int bit;
882 	int hop = -1;
883 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
884 	struct tb_ring *ring;
885 
886 	spin_lock_irq(&nhi->lock);
887 
888 	/*
889 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
890 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
891 	 * dwords as required. The registers are cleared on read.
892 	 */
893 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
894 		if (bit % 32 == 0)
895 			value = ioread32(nhi->iobase
896 					 + REG_RING_NOTIFY_BASE
897 					 + 4 * (bit / 32));
898 		if (++hop == nhi->hop_count) {
899 			hop = 0;
900 			type++;
901 		}
902 		if ((value & (1 << (bit % 32))) == 0)
903 			continue;
904 		if (type == 2) {
905 			dev_warn(&nhi->pdev->dev,
906 				 "RX overflow for ring %d\n",
907 				 hop);
908 			continue;
909 		}
910 		if (type == 0)
911 			ring = nhi->tx_rings[hop];
912 		else
913 			ring = nhi->rx_rings[hop];
914 		if (ring == NULL) {
915 			dev_warn(&nhi->pdev->dev,
916 				 "got interrupt for inactive %s ring %d\n",
917 				 type ? "RX" : "TX",
918 				 hop);
919 			continue;
920 		}
921 
922 		spin_lock(&ring->lock);
923 		__ring_interrupt(ring);
924 		spin_unlock(&ring->lock);
925 	}
926 	spin_unlock_irq(&nhi->lock);
927 }
928 
929 static irqreturn_t nhi_msi(int irq, void *data)
930 {
931 	struct tb_nhi *nhi = data;
932 	schedule_work(&nhi->interrupt_work);
933 	return IRQ_HANDLED;
934 }
935 
936 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
937 {
938 	struct pci_dev *pdev = to_pci_dev(dev);
939 	struct tb *tb = pci_get_drvdata(pdev);
940 	struct tb_nhi *nhi = tb->nhi;
941 	int ret;
942 
943 	ret = tb_domain_suspend_noirq(tb);
944 	if (ret)
945 		return ret;
946 
947 	if (nhi->ops && nhi->ops->suspend_noirq) {
948 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
949 		if (ret)
950 			return ret;
951 	}
952 
953 	return 0;
954 }
955 
956 static int nhi_suspend_noirq(struct device *dev)
957 {
958 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
959 }
960 
961 static int nhi_freeze_noirq(struct device *dev)
962 {
963 	struct pci_dev *pdev = to_pci_dev(dev);
964 	struct tb *tb = pci_get_drvdata(pdev);
965 
966 	return tb_domain_freeze_noirq(tb);
967 }
968 
969 static int nhi_thaw_noirq(struct device *dev)
970 {
971 	struct pci_dev *pdev = to_pci_dev(dev);
972 	struct tb *tb = pci_get_drvdata(pdev);
973 
974 	return tb_domain_thaw_noirq(tb);
975 }
976 
977 static bool nhi_wake_supported(struct pci_dev *pdev)
978 {
979 	u8 val;
980 
981 	/*
982 	 * If power rails are sustainable for wakeup from S4 this
983 	 * property is set by the BIOS.
984 	 */
985 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
986 		return !!val;
987 
988 	return true;
989 }
990 
991 static int nhi_poweroff_noirq(struct device *dev)
992 {
993 	struct pci_dev *pdev = to_pci_dev(dev);
994 	bool wakeup;
995 
996 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
997 	return __nhi_suspend_noirq(dev, wakeup);
998 }
999 
1000 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
1001 {
1002 	/* Throttling is specified in 256ns increments */
1003 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
1004 	unsigned int i;
1005 
1006 	/*
1007 	 * Configure interrupt throttling for all vectors even if we
1008 	 * only use few.
1009 	 */
1010 	for (i = 0; i < MSIX_MAX_VECS; i++) {
1011 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
1012 		iowrite32(throttle, nhi->iobase + reg);
1013 	}
1014 }
1015 
1016 static int nhi_resume_noirq(struct device *dev)
1017 {
1018 	struct pci_dev *pdev = to_pci_dev(dev);
1019 	struct tb *tb = pci_get_drvdata(pdev);
1020 	struct tb_nhi *nhi = tb->nhi;
1021 	int ret;
1022 
1023 	/*
1024 	 * Check that the device is still there. It may be that the user
1025 	 * unplugged last device which causes the host controller to go
1026 	 * away on PCs.
1027 	 */
1028 	if (!pci_device_is_present(pdev)) {
1029 		nhi->going_away = true;
1030 	} else {
1031 		if (nhi->ops && nhi->ops->resume_noirq) {
1032 			ret = nhi->ops->resume_noirq(nhi);
1033 			if (ret)
1034 				return ret;
1035 		}
1036 		nhi_enable_int_throttling(tb->nhi);
1037 	}
1038 
1039 	return tb_domain_resume_noirq(tb);
1040 }
1041 
1042 static int nhi_suspend(struct device *dev)
1043 {
1044 	struct pci_dev *pdev = to_pci_dev(dev);
1045 	struct tb *tb = pci_get_drvdata(pdev);
1046 
1047 	return tb_domain_suspend(tb);
1048 }
1049 
1050 static void nhi_complete(struct device *dev)
1051 {
1052 	struct pci_dev *pdev = to_pci_dev(dev);
1053 	struct tb *tb = pci_get_drvdata(pdev);
1054 
1055 	/*
1056 	 * If we were runtime suspended when system suspend started,
1057 	 * schedule runtime resume now. It should bring the domain back
1058 	 * to functional state.
1059 	 */
1060 	if (pm_runtime_suspended(&pdev->dev))
1061 		pm_runtime_resume(&pdev->dev);
1062 	else
1063 		tb_domain_complete(tb);
1064 }
1065 
1066 static int nhi_runtime_suspend(struct device *dev)
1067 {
1068 	struct pci_dev *pdev = to_pci_dev(dev);
1069 	struct tb *tb = pci_get_drvdata(pdev);
1070 	struct tb_nhi *nhi = tb->nhi;
1071 	int ret;
1072 
1073 	ret = tb_domain_runtime_suspend(tb);
1074 	if (ret)
1075 		return ret;
1076 
1077 	if (nhi->ops && nhi->ops->runtime_suspend) {
1078 		ret = nhi->ops->runtime_suspend(tb->nhi);
1079 		if (ret)
1080 			return ret;
1081 	}
1082 	return 0;
1083 }
1084 
1085 static int nhi_runtime_resume(struct device *dev)
1086 {
1087 	struct pci_dev *pdev = to_pci_dev(dev);
1088 	struct tb *tb = pci_get_drvdata(pdev);
1089 	struct tb_nhi *nhi = tb->nhi;
1090 	int ret;
1091 
1092 	if (nhi->ops && nhi->ops->runtime_resume) {
1093 		ret = nhi->ops->runtime_resume(nhi);
1094 		if (ret)
1095 			return ret;
1096 	}
1097 
1098 	nhi_enable_int_throttling(nhi);
1099 	return tb_domain_runtime_resume(tb);
1100 }
1101 
1102 static void nhi_shutdown(struct tb_nhi *nhi)
1103 {
1104 	int i;
1105 
1106 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1107 
1108 	for (i = 0; i < nhi->hop_count; i++) {
1109 		if (nhi->tx_rings[i])
1110 			dev_WARN(&nhi->pdev->dev,
1111 				 "TX ring %d is still active\n", i);
1112 		if (nhi->rx_rings[i])
1113 			dev_WARN(&nhi->pdev->dev,
1114 				 "RX ring %d is still active\n", i);
1115 	}
1116 	nhi_disable_interrupts(nhi);
1117 	/*
1118 	 * We have to release the irq before calling flush_work. Otherwise an
1119 	 * already executing IRQ handler could call schedule_work again.
1120 	 */
1121 	if (!nhi->pdev->msix_enabled) {
1122 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1123 		flush_work(&nhi->interrupt_work);
1124 	}
1125 	ida_destroy(&nhi->msix_ida);
1126 
1127 	if (nhi->ops && nhi->ops->shutdown)
1128 		nhi->ops->shutdown(nhi);
1129 }
1130 
1131 static void nhi_check_quirks(struct tb_nhi *nhi)
1132 {
1133 	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) {
1134 		/*
1135 		 * Intel hardware supports auto clear of the interrupt
1136 		 * status register right after interrupt is being
1137 		 * issued.
1138 		 */
1139 		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1140 
1141 		switch (nhi->pdev->device) {
1142 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1143 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1144 			/*
1145 			 * Falcon Ridge controller needs the end-to-end
1146 			 * flow control workaround to avoid losing Rx
1147 			 * packets when RING_FLAG_E2E is set.
1148 			 */
1149 			nhi->quirks |= QUIRK_E2E;
1150 			break;
1151 		}
1152 	}
1153 }
1154 
1155 static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
1156 {
1157 	if (!pdev->external_facing ||
1158 	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
1159 		return 0;
1160 	*(bool *)data = true;
1161 	return 1; /* Stop walking */
1162 }
1163 
1164 static void nhi_check_iommu(struct tb_nhi *nhi)
1165 {
1166 	struct pci_bus *bus = nhi->pdev->bus;
1167 	bool port_ok = false;
1168 
1169 	/*
1170 	 * Ideally what we'd do here is grab every PCI device that
1171 	 * represents a tunnelling adapter for this NHI and check their
1172 	 * status directly, but unfortunately USB4 seems to make it
1173 	 * obnoxiously difficult to reliably make any correlation.
1174 	 *
1175 	 * So for now we'll have to bodge it... Hoping that the system
1176 	 * is at least sane enough that an adapter is in the same PCI
1177 	 * segment as its NHI, if we can find *something* on that segment
1178 	 * which meets the requirements for Kernel DMA Protection, we'll
1179 	 * take that to imply that firmware is aware and has (hopefully)
1180 	 * done the right thing in general. We need to know that the PCI
1181 	 * layer has seen the ExternalFacingPort property which will then
1182 	 * inform the IOMMU layer to enforce the complete "untrusted DMA"
1183 	 * flow, but also that the IOMMU driver itself can be trusted not
1184 	 * to have been subverted by a pre-boot DMA attack.
1185 	 */
1186 	while (bus->parent)
1187 		bus = bus->parent;
1188 
1189 	pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
1190 
1191 	nhi->iommu_dma_protection = port_ok;
1192 	dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
1193 		str_enabled_disabled(port_ok));
1194 }
1195 
1196 static int nhi_init_msi(struct tb_nhi *nhi)
1197 {
1198 	struct pci_dev *pdev = nhi->pdev;
1199 	struct device *dev = &pdev->dev;
1200 	int res, irq, nvec;
1201 
1202 	/* In case someone left them on. */
1203 	nhi_disable_interrupts(nhi);
1204 
1205 	nhi_enable_int_throttling(nhi);
1206 
1207 	ida_init(&nhi->msix_ida);
1208 
1209 	/*
1210 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1211 	 * get all MSI-X vectors and if we succeed, each ring will have
1212 	 * one MSI-X. If for some reason that does not work out, we
1213 	 * fallback to a single MSI.
1214 	 */
1215 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1216 				     PCI_IRQ_MSIX);
1217 	if (nvec < 0) {
1218 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1219 		if (nvec < 0)
1220 			return nvec;
1221 
1222 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1223 
1224 		irq = pci_irq_vector(nhi->pdev, 0);
1225 		if (irq < 0)
1226 			return irq;
1227 
1228 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1229 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1230 		if (res)
1231 			return dev_err_probe(dev, res, "request_irq failed, aborting\n");
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static bool nhi_imr_valid(struct pci_dev *pdev)
1238 {
1239 	u8 val;
1240 
1241 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1242 		return !!val;
1243 
1244 	return true;
1245 }
1246 
1247 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1248 {
1249 	struct tb *tb;
1250 
1251 	/*
1252 	 * USB4 case is simple. If we got control of any of the
1253 	 * capabilities, we use software CM.
1254 	 */
1255 	if (tb_acpi_is_native())
1256 		return tb_probe(nhi);
1257 
1258 	/*
1259 	 * Either firmware based CM is running (we did not get control
1260 	 * from the firmware) or this is pre-USB4 PC so try first
1261 	 * firmware CM and then fallback to software CM.
1262 	 */
1263 	tb = icm_probe(nhi);
1264 	if (!tb)
1265 		tb = tb_probe(nhi);
1266 
1267 	return tb;
1268 }
1269 
1270 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1271 {
1272 	struct device *dev = &pdev->dev;
1273 	struct tb_nhi *nhi;
1274 	struct tb *tb;
1275 	int res;
1276 
1277 	if (!nhi_imr_valid(pdev))
1278 		return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n");
1279 
1280 	res = pcim_enable_device(pdev);
1281 	if (res)
1282 		return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n");
1283 
1284 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1285 	if (res)
1286 		return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n");
1287 
1288 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1289 	if (!nhi)
1290 		return -ENOMEM;
1291 
1292 	nhi->pdev = pdev;
1293 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1294 	/* cannot fail - table is allocated in pcim_iomap_regions */
1295 	nhi->iobase = pcim_iomap_table(pdev)[0];
1296 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1297 	dev_dbg(dev, "total paths: %d\n", nhi->hop_count);
1298 
1299 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1300 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1301 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1302 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1303 	if (!nhi->tx_rings || !nhi->rx_rings)
1304 		return -ENOMEM;
1305 
1306 	nhi_check_quirks(nhi);
1307 	nhi_check_iommu(nhi);
1308 
1309 	res = nhi_init_msi(nhi);
1310 	if (res)
1311 		return dev_err_probe(dev, res, "cannot enable MSI, aborting\n");
1312 
1313 	spin_lock_init(&nhi->lock);
1314 
1315 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1316 	if (res)
1317 		return dev_err_probe(dev, res, "failed to set DMA mask\n");
1318 
1319 	pci_set_master(pdev);
1320 
1321 	if (nhi->ops && nhi->ops->init) {
1322 		res = nhi->ops->init(nhi);
1323 		if (res)
1324 			return res;
1325 	}
1326 
1327 	tb = nhi_select_cm(nhi);
1328 	if (!tb)
1329 		return dev_err_probe(dev, -ENODEV,
1330 			"failed to determine connection manager, aborting\n");
1331 
1332 	dev_dbg(dev, "NHI initialized, starting thunderbolt\n");
1333 
1334 	res = tb_domain_add(tb);
1335 	if (res) {
1336 		/*
1337 		 * At this point the RX/TX rings might already have been
1338 		 * activated. Do a proper shutdown.
1339 		 */
1340 		tb_domain_put(tb);
1341 		nhi_shutdown(nhi);
1342 		return res;
1343 	}
1344 	pci_set_drvdata(pdev, tb);
1345 
1346 	device_wakeup_enable(&pdev->dev);
1347 
1348 	pm_runtime_allow(&pdev->dev);
1349 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1350 	pm_runtime_use_autosuspend(&pdev->dev);
1351 	pm_runtime_put_autosuspend(&pdev->dev);
1352 
1353 	return 0;
1354 }
1355 
1356 static void nhi_remove(struct pci_dev *pdev)
1357 {
1358 	struct tb *tb = pci_get_drvdata(pdev);
1359 	struct tb_nhi *nhi = tb->nhi;
1360 
1361 	pm_runtime_get_sync(&pdev->dev);
1362 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1363 	pm_runtime_forbid(&pdev->dev);
1364 
1365 	tb_domain_remove(tb);
1366 	nhi_shutdown(nhi);
1367 }
1368 
1369 /*
1370  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1371  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1372  * resume_noirq until we are done.
1373  */
1374 static const struct dev_pm_ops nhi_pm_ops = {
1375 	.suspend_noirq = nhi_suspend_noirq,
1376 	.resume_noirq = nhi_resume_noirq,
1377 	.freeze_noirq = nhi_freeze_noirq,  /*
1378 					    * we just disable hotplug, the
1379 					    * pci-tunnels stay alive.
1380 					    */
1381 	.thaw_noirq = nhi_thaw_noirq,
1382 	.restore_noirq = nhi_resume_noirq,
1383 	.suspend = nhi_suspend,
1384 	.poweroff_noirq = nhi_poweroff_noirq,
1385 	.poweroff = nhi_suspend,
1386 	.complete = nhi_complete,
1387 	.runtime_suspend = nhi_runtime_suspend,
1388 	.runtime_resume = nhi_runtime_resume,
1389 };
1390 
1391 static struct pci_device_id nhi_ids[] = {
1392 	/*
1393 	 * We have to specify class, the TB bridges use the same device and
1394 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1395 	 */
1396 	{
1397 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1398 		.vendor = PCI_VENDOR_ID_INTEL,
1399 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1400 		.subvendor = 0x2222, .subdevice = 0x1111,
1401 	},
1402 	{
1403 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1404 		.vendor = PCI_VENDOR_ID_INTEL,
1405 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1406 		.subvendor = 0x2222, .subdevice = 0x1111,
1407 	},
1408 	{
1409 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1410 		.vendor = PCI_VENDOR_ID_INTEL,
1411 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1412 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1413 	},
1414 	{
1415 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1416 		.vendor = PCI_VENDOR_ID_INTEL,
1417 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1418 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1419 	},
1420 
1421 	/* Thunderbolt 3 */
1422 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1423 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1424 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1425 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1426 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1427 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1428 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1429 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1430 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1431 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1432 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1433 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1434 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1435 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1436 	/* Thunderbolt 4 */
1437 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1438 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1439 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1440 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1441 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1442 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1443 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1444 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1445 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1446 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1447 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1448 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1449 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0),
1450 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1451 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1),
1452 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1453 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0),
1454 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1455 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0),
1456 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1457 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1),
1458 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1459 
1460 	/* Any USB4 compliant host */
1461 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1462 
1463 	{ 0,}
1464 };
1465 
1466 MODULE_DEVICE_TABLE(pci, nhi_ids);
1467 MODULE_LICENSE("GPL");
1468 
1469 static struct pci_driver nhi_driver = {
1470 	.name = "thunderbolt",
1471 	.id_table = nhi_ids,
1472 	.probe = nhi_probe,
1473 	.remove = nhi_remove,
1474 	.shutdown = nhi_remove,
1475 	.driver.pm = &nhi_pm_ops,
1476 };
1477 
1478 static int __init nhi_init(void)
1479 {
1480 	int ret;
1481 
1482 	ret = tb_domain_init();
1483 	if (ret)
1484 		return ret;
1485 	ret = pci_register_driver(&nhi_driver);
1486 	if (ret)
1487 		tb_domain_exit();
1488 	return ret;
1489 }
1490 
1491 static void __exit nhi_unload(void)
1492 {
1493 	pci_unregister_driver(&nhi_driver);
1494 	tb_domain_exit();
1495 }
1496 
1497 rootfs_initcall(nhi_init);
1498 module_exit(nhi_unload);
1499