1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/delay.h> 21 #include <linux/property.h> 22 #include <linux/string_helpers.h> 23 24 #include "nhi.h" 25 #include "nhi_regs.h" 26 #include "tb.h" 27 28 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 29 30 #define RING_FIRST_USABLE_HOPID 1 31 /* 32 * Used with QUIRK_E2E to specify an unused HopID the Rx credits are 33 * transferred. 34 */ 35 #define RING_E2E_RESERVED_HOPID RING_FIRST_USABLE_HOPID 36 /* 37 * Minimal number of vectors when we use MSI-X. Two for control channel 38 * Rx/Tx and the rest four are for cross domain DMA paths. 39 */ 40 #define MSIX_MIN_VECS 6 41 #define MSIX_MAX_VECS 16 42 43 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 44 45 /* Host interface quirks */ 46 #define QUIRK_AUTO_CLEAR_INT BIT(0) 47 #define QUIRK_E2E BIT(1) 48 49 static int ring_interrupt_index(const struct tb_ring *ring) 50 { 51 int bit = ring->hop; 52 if (!ring->is_tx) 53 bit += ring->nhi->hop_count; 54 return bit; 55 } 56 57 /* 58 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 59 * 60 * ring->nhi->lock must be held. 61 */ 62 static void ring_interrupt_active(struct tb_ring *ring, bool active) 63 { 64 int reg = REG_RING_INTERRUPT_BASE + 65 ring_interrupt_index(ring) / 32 * 4; 66 int interrupt_bit = ring_interrupt_index(ring) & 31; 67 int mask = 1 << interrupt_bit; 68 u32 old, new; 69 70 if (ring->irq > 0) { 71 u32 step, shift, ivr, misc; 72 void __iomem *ivr_base; 73 int auto_clear_bit; 74 int index; 75 76 if (ring->is_tx) 77 index = ring->hop; 78 else 79 index = ring->hop + ring->nhi->hop_count; 80 81 /* 82 * Intel routers support a bit that isn't part of 83 * the USB4 spec to ask the hardware to clear 84 * interrupt status bits automatically since 85 * we already know which interrupt was triggered. 86 * 87 * Other routers explicitly disable auto-clear 88 * to prevent conditions that may occur where two 89 * MSIX interrupts are simultaneously active and 90 * reading the register clears both of them. 91 */ 92 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 93 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) 94 auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR; 95 else 96 auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR; 97 if (!(misc & auto_clear_bit)) 98 iowrite32(misc | auto_clear_bit, 99 ring->nhi->iobase + REG_DMA_MISC); 100 101 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 102 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 103 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 104 ivr = ioread32(ivr_base + step); 105 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 106 if (active) 107 ivr |= ring->vector << shift; 108 iowrite32(ivr, ivr_base + step); 109 } 110 111 old = ioread32(ring->nhi->iobase + reg); 112 if (active) 113 new = old | mask; 114 else 115 new = old & ~mask; 116 117 dev_dbg(&ring->nhi->pdev->dev, 118 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 119 active ? "enabling" : "disabling", reg, interrupt_bit, old, new); 120 121 if (new == old) 122 dev_WARN(&ring->nhi->pdev->dev, 123 "interrupt for %s %d is already %s\n", 124 RING_TYPE(ring), ring->hop, 125 active ? "enabled" : "disabled"); 126 iowrite32(new, ring->nhi->iobase + reg); 127 } 128 129 /* 130 * nhi_disable_interrupts() - disable interrupts for all rings 131 * 132 * Use only during init and shutdown. 133 */ 134 static void nhi_disable_interrupts(struct tb_nhi *nhi) 135 { 136 int i = 0; 137 /* disable interrupts */ 138 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 139 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 140 141 /* clear interrupt status bits */ 142 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 143 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 144 } 145 146 /* ring helper methods */ 147 148 static void __iomem *ring_desc_base(struct tb_ring *ring) 149 { 150 void __iomem *io = ring->nhi->iobase; 151 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 152 io += ring->hop * 16; 153 return io; 154 } 155 156 static void __iomem *ring_options_base(struct tb_ring *ring) 157 { 158 void __iomem *io = ring->nhi->iobase; 159 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 160 io += ring->hop * 32; 161 return io; 162 } 163 164 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 165 { 166 /* 167 * The other 16-bits in the register is read-only and writes to it 168 * are ignored by the hardware so we can save one ioread32() by 169 * filling the read-only bits with zeroes. 170 */ 171 iowrite32(cons, ring_desc_base(ring) + 8); 172 } 173 174 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 175 { 176 /* See ring_iowrite_cons() above for explanation */ 177 iowrite32(prod << 16, ring_desc_base(ring) + 8); 178 } 179 180 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 181 { 182 iowrite32(value, ring_desc_base(ring) + offset); 183 } 184 185 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 186 { 187 iowrite32(value, ring_desc_base(ring) + offset); 188 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 189 } 190 191 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 192 { 193 iowrite32(value, ring_options_base(ring) + offset); 194 } 195 196 static bool ring_full(struct tb_ring *ring) 197 { 198 return ((ring->head + 1) % ring->size) == ring->tail; 199 } 200 201 static bool ring_empty(struct tb_ring *ring) 202 { 203 return ring->head == ring->tail; 204 } 205 206 /* 207 * ring_write_descriptors() - post frames from ring->queue to the controller 208 * 209 * ring->lock is held. 210 */ 211 static void ring_write_descriptors(struct tb_ring *ring) 212 { 213 struct ring_frame *frame, *n; 214 struct ring_desc *descriptor; 215 list_for_each_entry_safe(frame, n, &ring->queue, list) { 216 if (ring_full(ring)) 217 break; 218 list_move_tail(&frame->list, &ring->in_flight); 219 descriptor = &ring->descriptors[ring->head]; 220 descriptor->phys = frame->buffer_phy; 221 descriptor->time = 0; 222 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 223 if (ring->is_tx) { 224 descriptor->length = frame->size; 225 descriptor->eof = frame->eof; 226 descriptor->sof = frame->sof; 227 } 228 ring->head = (ring->head + 1) % ring->size; 229 if (ring->is_tx) 230 ring_iowrite_prod(ring, ring->head); 231 else 232 ring_iowrite_cons(ring, ring->head); 233 } 234 } 235 236 /* 237 * ring_work() - progress completed frames 238 * 239 * If the ring is shutting down then all frames are marked as canceled and 240 * their callbacks are invoked. 241 * 242 * Otherwise we collect all completed frame from the ring buffer, write new 243 * frame to the ring buffer and invoke the callbacks for the completed frames. 244 */ 245 static void ring_work(struct work_struct *work) 246 { 247 struct tb_ring *ring = container_of(work, typeof(*ring), work); 248 struct ring_frame *frame; 249 bool canceled = false; 250 unsigned long flags; 251 LIST_HEAD(done); 252 253 spin_lock_irqsave(&ring->lock, flags); 254 255 if (!ring->running) { 256 /* Move all frames to done and mark them as canceled. */ 257 list_splice_tail_init(&ring->in_flight, &done); 258 list_splice_tail_init(&ring->queue, &done); 259 canceled = true; 260 goto invoke_callback; 261 } 262 263 while (!ring_empty(ring)) { 264 if (!(ring->descriptors[ring->tail].flags 265 & RING_DESC_COMPLETED)) 266 break; 267 frame = list_first_entry(&ring->in_flight, typeof(*frame), 268 list); 269 list_move_tail(&frame->list, &done); 270 if (!ring->is_tx) { 271 frame->size = ring->descriptors[ring->tail].length; 272 frame->eof = ring->descriptors[ring->tail].eof; 273 frame->sof = ring->descriptors[ring->tail].sof; 274 frame->flags = ring->descriptors[ring->tail].flags; 275 } 276 ring->tail = (ring->tail + 1) % ring->size; 277 } 278 ring_write_descriptors(ring); 279 280 invoke_callback: 281 /* allow callbacks to schedule new work */ 282 spin_unlock_irqrestore(&ring->lock, flags); 283 while (!list_empty(&done)) { 284 frame = list_first_entry(&done, typeof(*frame), list); 285 /* 286 * The callback may reenqueue or delete frame. 287 * Do not hold on to it. 288 */ 289 list_del_init(&frame->list); 290 if (frame->callback) 291 frame->callback(ring, frame, canceled); 292 } 293 } 294 295 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 296 { 297 unsigned long flags; 298 int ret = 0; 299 300 spin_lock_irqsave(&ring->lock, flags); 301 if (ring->running) { 302 list_add_tail(&frame->list, &ring->queue); 303 ring_write_descriptors(ring); 304 } else { 305 ret = -ESHUTDOWN; 306 } 307 spin_unlock_irqrestore(&ring->lock, flags); 308 return ret; 309 } 310 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 311 312 /** 313 * tb_ring_poll() - Poll one completed frame from the ring 314 * @ring: Ring to poll 315 * 316 * This function can be called when @start_poll callback of the @ring 317 * has been called. It will read one completed frame from the ring and 318 * return it to the caller. Returns %NULL if there is no more completed 319 * frames. 320 */ 321 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 322 { 323 struct ring_frame *frame = NULL; 324 unsigned long flags; 325 326 spin_lock_irqsave(&ring->lock, flags); 327 if (!ring->running) 328 goto unlock; 329 if (ring_empty(ring)) 330 goto unlock; 331 332 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 333 frame = list_first_entry(&ring->in_flight, typeof(*frame), 334 list); 335 list_del_init(&frame->list); 336 337 if (!ring->is_tx) { 338 frame->size = ring->descriptors[ring->tail].length; 339 frame->eof = ring->descriptors[ring->tail].eof; 340 frame->sof = ring->descriptors[ring->tail].sof; 341 frame->flags = ring->descriptors[ring->tail].flags; 342 } 343 344 ring->tail = (ring->tail + 1) % ring->size; 345 } 346 347 unlock: 348 spin_unlock_irqrestore(&ring->lock, flags); 349 return frame; 350 } 351 EXPORT_SYMBOL_GPL(tb_ring_poll); 352 353 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 354 { 355 int idx = ring_interrupt_index(ring); 356 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 357 int bit = idx % 32; 358 u32 val; 359 360 val = ioread32(ring->nhi->iobase + reg); 361 if (mask) 362 val &= ~BIT(bit); 363 else 364 val |= BIT(bit); 365 iowrite32(val, ring->nhi->iobase + reg); 366 } 367 368 /* Both @nhi->lock and @ring->lock should be held */ 369 static void __ring_interrupt(struct tb_ring *ring) 370 { 371 if (!ring->running) 372 return; 373 374 if (ring->start_poll) { 375 __ring_interrupt_mask(ring, true); 376 ring->start_poll(ring->poll_data); 377 } else { 378 schedule_work(&ring->work); 379 } 380 } 381 382 /** 383 * tb_ring_poll_complete() - Re-start interrupt for the ring 384 * @ring: Ring to re-start the interrupt 385 * 386 * This will re-start (unmask) the ring interrupt once the user is done 387 * with polling. 388 */ 389 void tb_ring_poll_complete(struct tb_ring *ring) 390 { 391 unsigned long flags; 392 393 spin_lock_irqsave(&ring->nhi->lock, flags); 394 spin_lock(&ring->lock); 395 if (ring->start_poll) 396 __ring_interrupt_mask(ring, false); 397 spin_unlock(&ring->lock); 398 spin_unlock_irqrestore(&ring->nhi->lock, flags); 399 } 400 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 401 402 static void ring_clear_msix(const struct tb_ring *ring) 403 { 404 int bit; 405 406 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) 407 return; 408 409 bit = ring_interrupt_index(ring) & 31; 410 if (ring->is_tx) 411 iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR); 412 else 413 iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR + 414 4 * (ring->nhi->hop_count / 32)); 415 } 416 417 static irqreturn_t ring_msix(int irq, void *data) 418 { 419 struct tb_ring *ring = data; 420 421 spin_lock(&ring->nhi->lock); 422 ring_clear_msix(ring); 423 spin_lock(&ring->lock); 424 __ring_interrupt(ring); 425 spin_unlock(&ring->lock); 426 spin_unlock(&ring->nhi->lock); 427 428 return IRQ_HANDLED; 429 } 430 431 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 432 { 433 struct tb_nhi *nhi = ring->nhi; 434 unsigned long irqflags; 435 int ret; 436 437 if (!nhi->pdev->msix_enabled) 438 return 0; 439 440 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 441 if (ret < 0) 442 return ret; 443 444 ring->vector = ret; 445 446 ret = pci_irq_vector(ring->nhi->pdev, ring->vector); 447 if (ret < 0) 448 goto err_ida_remove; 449 450 ring->irq = ret; 451 452 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 453 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 454 if (ret) 455 goto err_ida_remove; 456 457 return 0; 458 459 err_ida_remove: 460 ida_simple_remove(&nhi->msix_ida, ring->vector); 461 462 return ret; 463 } 464 465 static void ring_release_msix(struct tb_ring *ring) 466 { 467 if (ring->irq <= 0) 468 return; 469 470 free_irq(ring->irq, ring); 471 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 472 ring->vector = 0; 473 ring->irq = 0; 474 } 475 476 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 477 { 478 unsigned int start_hop = RING_FIRST_USABLE_HOPID; 479 int ret = 0; 480 481 if (nhi->quirks & QUIRK_E2E) { 482 start_hop = RING_FIRST_USABLE_HOPID + 1; 483 if (ring->flags & RING_FLAG_E2E && !ring->is_tx) { 484 dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n", 485 ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID); 486 ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID; 487 } 488 } 489 490 spin_lock_irq(&nhi->lock); 491 492 if (ring->hop < 0) { 493 unsigned int i; 494 495 /* 496 * Automatically allocate HopID from the non-reserved 497 * range 1 .. hop_count - 1. 498 */ 499 for (i = start_hop; i < nhi->hop_count; i++) { 500 if (ring->is_tx) { 501 if (!nhi->tx_rings[i]) { 502 ring->hop = i; 503 break; 504 } 505 } else { 506 if (!nhi->rx_rings[i]) { 507 ring->hop = i; 508 break; 509 } 510 } 511 } 512 } 513 514 if (ring->hop > 0 && ring->hop < start_hop) { 515 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 516 ret = -EINVAL; 517 goto err_unlock; 518 } 519 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 520 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 521 ret = -EINVAL; 522 goto err_unlock; 523 } 524 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 525 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 526 ring->hop); 527 ret = -EBUSY; 528 goto err_unlock; 529 } 530 if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 531 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 532 ring->hop); 533 ret = -EBUSY; 534 goto err_unlock; 535 } 536 537 if (ring->is_tx) 538 nhi->tx_rings[ring->hop] = ring; 539 else 540 nhi->rx_rings[ring->hop] = ring; 541 542 err_unlock: 543 spin_unlock_irq(&nhi->lock); 544 545 return ret; 546 } 547 548 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 549 bool transmit, unsigned int flags, 550 int e2e_tx_hop, u16 sof_mask, u16 eof_mask, 551 void (*start_poll)(void *), 552 void *poll_data) 553 { 554 struct tb_ring *ring = NULL; 555 556 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 557 transmit ? "TX" : "RX", hop, size); 558 559 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 560 if (!ring) 561 return NULL; 562 563 spin_lock_init(&ring->lock); 564 INIT_LIST_HEAD(&ring->queue); 565 INIT_LIST_HEAD(&ring->in_flight); 566 INIT_WORK(&ring->work, ring_work); 567 568 ring->nhi = nhi; 569 ring->hop = hop; 570 ring->is_tx = transmit; 571 ring->size = size; 572 ring->flags = flags; 573 ring->e2e_tx_hop = e2e_tx_hop; 574 ring->sof_mask = sof_mask; 575 ring->eof_mask = eof_mask; 576 ring->head = 0; 577 ring->tail = 0; 578 ring->running = false; 579 ring->start_poll = start_poll; 580 ring->poll_data = poll_data; 581 582 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 583 size * sizeof(*ring->descriptors), 584 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 585 if (!ring->descriptors) 586 goto err_free_ring; 587 588 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 589 goto err_free_descs; 590 591 if (nhi_alloc_hop(nhi, ring)) 592 goto err_release_msix; 593 594 return ring; 595 596 err_release_msix: 597 ring_release_msix(ring); 598 err_free_descs: 599 dma_free_coherent(&ring->nhi->pdev->dev, 600 ring->size * sizeof(*ring->descriptors), 601 ring->descriptors, ring->descriptors_dma); 602 err_free_ring: 603 kfree(ring); 604 605 return NULL; 606 } 607 608 /** 609 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 610 * @nhi: Pointer to the NHI the ring is to be allocated 611 * @hop: HopID (ring) to allocate 612 * @size: Number of entries in the ring 613 * @flags: Flags for the ring 614 */ 615 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 616 unsigned int flags) 617 { 618 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL); 619 } 620 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 621 622 /** 623 * tb_ring_alloc_rx() - Allocate DMA ring for receive 624 * @nhi: Pointer to the NHI the ring is to be allocated 625 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 626 * @size: Number of entries in the ring 627 * @flags: Flags for the ring 628 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags 629 * @sof_mask: Mask of PDF values that start a frame 630 * @eof_mask: Mask of PDF values that end a frame 631 * @start_poll: If not %NULL the ring will call this function when an 632 * interrupt is triggered and masked, instead of callback 633 * in each Rx frame. 634 * @poll_data: Optional data passed to @start_poll 635 */ 636 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 637 unsigned int flags, int e2e_tx_hop, 638 u16 sof_mask, u16 eof_mask, 639 void (*start_poll)(void *), void *poll_data) 640 { 641 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask, 642 start_poll, poll_data); 643 } 644 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 645 646 /** 647 * tb_ring_start() - enable a ring 648 * @ring: Ring to start 649 * 650 * Must not be invoked in parallel with tb_ring_stop(). 651 */ 652 void tb_ring_start(struct tb_ring *ring) 653 { 654 u16 frame_size; 655 u32 flags; 656 657 spin_lock_irq(&ring->nhi->lock); 658 spin_lock(&ring->lock); 659 if (ring->nhi->going_away) 660 goto err; 661 if (ring->running) { 662 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 663 goto err; 664 } 665 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 666 RING_TYPE(ring), ring->hop); 667 668 if (ring->flags & RING_FLAG_FRAME) { 669 /* Means 4096 */ 670 frame_size = 0; 671 flags = RING_FLAG_ENABLE; 672 } else { 673 frame_size = TB_FRAME_SIZE; 674 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 675 } 676 677 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 678 if (ring->is_tx) { 679 ring_iowrite32desc(ring, ring->size, 12); 680 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 681 ring_iowrite32options(ring, flags, 0); 682 } else { 683 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 684 685 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 686 ring_iowrite32options(ring, sof_eof_mask, 4); 687 ring_iowrite32options(ring, flags, 0); 688 } 689 690 /* 691 * Now that the ring valid bit is set we can configure E2E if 692 * enabled for the ring. 693 */ 694 if (ring->flags & RING_FLAG_E2E) { 695 if (!ring->is_tx) { 696 u32 hop; 697 698 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT; 699 hop &= REG_RX_OPTIONS_E2E_HOP_MASK; 700 flags |= hop; 701 702 dev_dbg(&ring->nhi->pdev->dev, 703 "enabling E2E for %s %d with TX HopID %d\n", 704 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop); 705 } else { 706 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n", 707 RING_TYPE(ring), ring->hop); 708 } 709 710 flags |= RING_FLAG_E2E_FLOW_CONTROL; 711 ring_iowrite32options(ring, flags, 0); 712 } 713 714 ring_interrupt_active(ring, true); 715 ring->running = true; 716 err: 717 spin_unlock(&ring->lock); 718 spin_unlock_irq(&ring->nhi->lock); 719 } 720 EXPORT_SYMBOL_GPL(tb_ring_start); 721 722 /** 723 * tb_ring_stop() - shutdown a ring 724 * @ring: Ring to stop 725 * 726 * Must not be invoked from a callback. 727 * 728 * This method will disable the ring. Further calls to 729 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 730 * called. 731 * 732 * All enqueued frames will be canceled and their callbacks will be executed 733 * with frame->canceled set to true (on the callback thread). This method 734 * returns only after all callback invocations have finished. 735 */ 736 void tb_ring_stop(struct tb_ring *ring) 737 { 738 spin_lock_irq(&ring->nhi->lock); 739 spin_lock(&ring->lock); 740 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 741 RING_TYPE(ring), ring->hop); 742 if (ring->nhi->going_away) 743 goto err; 744 if (!ring->running) { 745 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 746 RING_TYPE(ring), ring->hop); 747 goto err; 748 } 749 ring_interrupt_active(ring, false); 750 751 ring_iowrite32options(ring, 0, 0); 752 ring_iowrite64desc(ring, 0, 0); 753 ring_iowrite32desc(ring, 0, 8); 754 ring_iowrite32desc(ring, 0, 12); 755 ring->head = 0; 756 ring->tail = 0; 757 ring->running = false; 758 759 err: 760 spin_unlock(&ring->lock); 761 spin_unlock_irq(&ring->nhi->lock); 762 763 /* 764 * schedule ring->work to invoke callbacks on all remaining frames. 765 */ 766 schedule_work(&ring->work); 767 flush_work(&ring->work); 768 } 769 EXPORT_SYMBOL_GPL(tb_ring_stop); 770 771 /* 772 * tb_ring_free() - free ring 773 * 774 * When this method returns all invocations of ring->callback will have 775 * finished. 776 * 777 * Ring must be stopped. 778 * 779 * Must NOT be called from ring_frame->callback! 780 */ 781 void tb_ring_free(struct tb_ring *ring) 782 { 783 spin_lock_irq(&ring->nhi->lock); 784 /* 785 * Dissociate the ring from the NHI. This also ensures that 786 * nhi_interrupt_work cannot reschedule ring->work. 787 */ 788 if (ring->is_tx) 789 ring->nhi->tx_rings[ring->hop] = NULL; 790 else 791 ring->nhi->rx_rings[ring->hop] = NULL; 792 793 if (ring->running) { 794 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 795 RING_TYPE(ring), ring->hop); 796 } 797 spin_unlock_irq(&ring->nhi->lock); 798 799 ring_release_msix(ring); 800 801 dma_free_coherent(&ring->nhi->pdev->dev, 802 ring->size * sizeof(*ring->descriptors), 803 ring->descriptors, ring->descriptors_dma); 804 805 ring->descriptors = NULL; 806 ring->descriptors_dma = 0; 807 808 809 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 810 ring->hop); 811 812 /* 813 * ring->work can no longer be scheduled (it is scheduled only 814 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 815 * to finish before freeing the ring. 816 */ 817 flush_work(&ring->work); 818 kfree(ring); 819 } 820 EXPORT_SYMBOL_GPL(tb_ring_free); 821 822 /** 823 * nhi_mailbox_cmd() - Send a command through NHI mailbox 824 * @nhi: Pointer to the NHI structure 825 * @cmd: Command to send 826 * @data: Data to be send with the command 827 * 828 * Sends mailbox command to the firmware running on NHI. Returns %0 in 829 * case of success and negative errno in case of failure. 830 */ 831 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 832 { 833 ktime_t timeout; 834 u32 val; 835 836 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 837 838 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 839 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 840 val |= REG_INMAIL_OP_REQUEST | cmd; 841 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 842 843 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 844 do { 845 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 846 if (!(val & REG_INMAIL_OP_REQUEST)) 847 break; 848 usleep_range(10, 20); 849 } while (ktime_before(ktime_get(), timeout)); 850 851 if (val & REG_INMAIL_OP_REQUEST) 852 return -ETIMEDOUT; 853 if (val & REG_INMAIL_ERROR) 854 return -EIO; 855 856 return 0; 857 } 858 859 /** 860 * nhi_mailbox_mode() - Return current firmware operation mode 861 * @nhi: Pointer to the NHI structure 862 * 863 * The function reads current firmware operation mode using NHI mailbox 864 * registers and returns it to the caller. 865 */ 866 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 867 { 868 u32 val; 869 870 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 871 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 872 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 873 874 return (enum nhi_fw_mode)val; 875 } 876 877 static void nhi_interrupt_work(struct work_struct *work) 878 { 879 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 880 int value = 0; /* Suppress uninitialized usage warning. */ 881 int bit; 882 int hop = -1; 883 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 884 struct tb_ring *ring; 885 886 spin_lock_irq(&nhi->lock); 887 888 /* 889 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 890 * (TX, RX, RX overflow). We iterate over the bits and read a new 891 * dwords as required. The registers are cleared on read. 892 */ 893 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 894 if (bit % 32 == 0) 895 value = ioread32(nhi->iobase 896 + REG_RING_NOTIFY_BASE 897 + 4 * (bit / 32)); 898 if (++hop == nhi->hop_count) { 899 hop = 0; 900 type++; 901 } 902 if ((value & (1 << (bit % 32))) == 0) 903 continue; 904 if (type == 2) { 905 dev_warn(&nhi->pdev->dev, 906 "RX overflow for ring %d\n", 907 hop); 908 continue; 909 } 910 if (type == 0) 911 ring = nhi->tx_rings[hop]; 912 else 913 ring = nhi->rx_rings[hop]; 914 if (ring == NULL) { 915 dev_warn(&nhi->pdev->dev, 916 "got interrupt for inactive %s ring %d\n", 917 type ? "RX" : "TX", 918 hop); 919 continue; 920 } 921 922 spin_lock(&ring->lock); 923 __ring_interrupt(ring); 924 spin_unlock(&ring->lock); 925 } 926 spin_unlock_irq(&nhi->lock); 927 } 928 929 static irqreturn_t nhi_msi(int irq, void *data) 930 { 931 struct tb_nhi *nhi = data; 932 schedule_work(&nhi->interrupt_work); 933 return IRQ_HANDLED; 934 } 935 936 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 937 { 938 struct pci_dev *pdev = to_pci_dev(dev); 939 struct tb *tb = pci_get_drvdata(pdev); 940 struct tb_nhi *nhi = tb->nhi; 941 int ret; 942 943 ret = tb_domain_suspend_noirq(tb); 944 if (ret) 945 return ret; 946 947 if (nhi->ops && nhi->ops->suspend_noirq) { 948 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 949 if (ret) 950 return ret; 951 } 952 953 return 0; 954 } 955 956 static int nhi_suspend_noirq(struct device *dev) 957 { 958 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 959 } 960 961 static int nhi_freeze_noirq(struct device *dev) 962 { 963 struct pci_dev *pdev = to_pci_dev(dev); 964 struct tb *tb = pci_get_drvdata(pdev); 965 966 return tb_domain_freeze_noirq(tb); 967 } 968 969 static int nhi_thaw_noirq(struct device *dev) 970 { 971 struct pci_dev *pdev = to_pci_dev(dev); 972 struct tb *tb = pci_get_drvdata(pdev); 973 974 return tb_domain_thaw_noirq(tb); 975 } 976 977 static bool nhi_wake_supported(struct pci_dev *pdev) 978 { 979 u8 val; 980 981 /* 982 * If power rails are sustainable for wakeup from S4 this 983 * property is set by the BIOS. 984 */ 985 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 986 return !!val; 987 988 return true; 989 } 990 991 static int nhi_poweroff_noirq(struct device *dev) 992 { 993 struct pci_dev *pdev = to_pci_dev(dev); 994 bool wakeup; 995 996 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 997 return __nhi_suspend_noirq(dev, wakeup); 998 } 999 1000 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 1001 { 1002 /* Throttling is specified in 256ns increments */ 1003 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 1004 unsigned int i; 1005 1006 /* 1007 * Configure interrupt throttling for all vectors even if we 1008 * only use few. 1009 */ 1010 for (i = 0; i < MSIX_MAX_VECS; i++) { 1011 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 1012 iowrite32(throttle, nhi->iobase + reg); 1013 } 1014 } 1015 1016 static int nhi_resume_noirq(struct device *dev) 1017 { 1018 struct pci_dev *pdev = to_pci_dev(dev); 1019 struct tb *tb = pci_get_drvdata(pdev); 1020 struct tb_nhi *nhi = tb->nhi; 1021 int ret; 1022 1023 /* 1024 * Check that the device is still there. It may be that the user 1025 * unplugged last device which causes the host controller to go 1026 * away on PCs. 1027 */ 1028 if (!pci_device_is_present(pdev)) { 1029 nhi->going_away = true; 1030 } else { 1031 if (nhi->ops && nhi->ops->resume_noirq) { 1032 ret = nhi->ops->resume_noirq(nhi); 1033 if (ret) 1034 return ret; 1035 } 1036 nhi_enable_int_throttling(tb->nhi); 1037 } 1038 1039 return tb_domain_resume_noirq(tb); 1040 } 1041 1042 static int nhi_suspend(struct device *dev) 1043 { 1044 struct pci_dev *pdev = to_pci_dev(dev); 1045 struct tb *tb = pci_get_drvdata(pdev); 1046 1047 return tb_domain_suspend(tb); 1048 } 1049 1050 static void nhi_complete(struct device *dev) 1051 { 1052 struct pci_dev *pdev = to_pci_dev(dev); 1053 struct tb *tb = pci_get_drvdata(pdev); 1054 1055 /* 1056 * If we were runtime suspended when system suspend started, 1057 * schedule runtime resume now. It should bring the domain back 1058 * to functional state. 1059 */ 1060 if (pm_runtime_suspended(&pdev->dev)) 1061 pm_runtime_resume(&pdev->dev); 1062 else 1063 tb_domain_complete(tb); 1064 } 1065 1066 static int nhi_runtime_suspend(struct device *dev) 1067 { 1068 struct pci_dev *pdev = to_pci_dev(dev); 1069 struct tb *tb = pci_get_drvdata(pdev); 1070 struct tb_nhi *nhi = tb->nhi; 1071 int ret; 1072 1073 ret = tb_domain_runtime_suspend(tb); 1074 if (ret) 1075 return ret; 1076 1077 if (nhi->ops && nhi->ops->runtime_suspend) { 1078 ret = nhi->ops->runtime_suspend(tb->nhi); 1079 if (ret) 1080 return ret; 1081 } 1082 return 0; 1083 } 1084 1085 static int nhi_runtime_resume(struct device *dev) 1086 { 1087 struct pci_dev *pdev = to_pci_dev(dev); 1088 struct tb *tb = pci_get_drvdata(pdev); 1089 struct tb_nhi *nhi = tb->nhi; 1090 int ret; 1091 1092 if (nhi->ops && nhi->ops->runtime_resume) { 1093 ret = nhi->ops->runtime_resume(nhi); 1094 if (ret) 1095 return ret; 1096 } 1097 1098 nhi_enable_int_throttling(nhi); 1099 return tb_domain_runtime_resume(tb); 1100 } 1101 1102 static void nhi_shutdown(struct tb_nhi *nhi) 1103 { 1104 int i; 1105 1106 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1107 1108 for (i = 0; i < nhi->hop_count; i++) { 1109 if (nhi->tx_rings[i]) 1110 dev_WARN(&nhi->pdev->dev, 1111 "TX ring %d is still active\n", i); 1112 if (nhi->rx_rings[i]) 1113 dev_WARN(&nhi->pdev->dev, 1114 "RX ring %d is still active\n", i); 1115 } 1116 nhi_disable_interrupts(nhi); 1117 /* 1118 * We have to release the irq before calling flush_work. Otherwise an 1119 * already executing IRQ handler could call schedule_work again. 1120 */ 1121 if (!nhi->pdev->msix_enabled) { 1122 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1123 flush_work(&nhi->interrupt_work); 1124 } 1125 ida_destroy(&nhi->msix_ida); 1126 1127 if (nhi->ops && nhi->ops->shutdown) 1128 nhi->ops->shutdown(nhi); 1129 } 1130 1131 static void nhi_check_quirks(struct tb_nhi *nhi) 1132 { 1133 if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) { 1134 /* 1135 * Intel hardware supports auto clear of the interrupt 1136 * status register right after interrupt is being 1137 * issued. 1138 */ 1139 nhi->quirks |= QUIRK_AUTO_CLEAR_INT; 1140 1141 switch (nhi->pdev->device) { 1142 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 1143 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 1144 /* 1145 * Falcon Ridge controller needs the end-to-end 1146 * flow control workaround to avoid losing Rx 1147 * packets when RING_FLAG_E2E is set. 1148 */ 1149 nhi->quirks |= QUIRK_E2E; 1150 break; 1151 } 1152 } 1153 } 1154 1155 static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data) 1156 { 1157 if (!pdev->external_facing || 1158 !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION)) 1159 return 0; 1160 *(bool *)data = true; 1161 return 1; /* Stop walking */ 1162 } 1163 1164 static void nhi_check_iommu(struct tb_nhi *nhi) 1165 { 1166 struct pci_bus *bus = nhi->pdev->bus; 1167 bool port_ok = false; 1168 1169 /* 1170 * Ideally what we'd do here is grab every PCI device that 1171 * represents a tunnelling adapter for this NHI and check their 1172 * status directly, but unfortunately USB4 seems to make it 1173 * obnoxiously difficult to reliably make any correlation. 1174 * 1175 * So for now we'll have to bodge it... Hoping that the system 1176 * is at least sane enough that an adapter is in the same PCI 1177 * segment as its NHI, if we can find *something* on that segment 1178 * which meets the requirements for Kernel DMA Protection, we'll 1179 * take that to imply that firmware is aware and has (hopefully) 1180 * done the right thing in general. We need to know that the PCI 1181 * layer has seen the ExternalFacingPort property which will then 1182 * inform the IOMMU layer to enforce the complete "untrusted DMA" 1183 * flow, but also that the IOMMU driver itself can be trusted not 1184 * to have been subverted by a pre-boot DMA attack. 1185 */ 1186 while (bus->parent) 1187 bus = bus->parent; 1188 1189 pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok); 1190 1191 nhi->iommu_dma_protection = port_ok; 1192 dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n", 1193 str_enabled_disabled(port_ok)); 1194 } 1195 1196 static int nhi_init_msi(struct tb_nhi *nhi) 1197 { 1198 struct pci_dev *pdev = nhi->pdev; 1199 struct device *dev = &pdev->dev; 1200 int res, irq, nvec; 1201 1202 /* In case someone left them on. */ 1203 nhi_disable_interrupts(nhi); 1204 1205 nhi_enable_int_throttling(nhi); 1206 1207 ida_init(&nhi->msix_ida); 1208 1209 /* 1210 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1211 * get all MSI-X vectors and if we succeed, each ring will have 1212 * one MSI-X. If for some reason that does not work out, we 1213 * fallback to a single MSI. 1214 */ 1215 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1216 PCI_IRQ_MSIX); 1217 if (nvec < 0) { 1218 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1219 if (nvec < 0) 1220 return nvec; 1221 1222 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1223 1224 irq = pci_irq_vector(nhi->pdev, 0); 1225 if (irq < 0) 1226 return irq; 1227 1228 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1229 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1230 if (res) 1231 return dev_err_probe(dev, res, "request_irq failed, aborting\n"); 1232 } 1233 1234 return 0; 1235 } 1236 1237 static bool nhi_imr_valid(struct pci_dev *pdev) 1238 { 1239 u8 val; 1240 1241 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1242 return !!val; 1243 1244 return true; 1245 } 1246 1247 static struct tb *nhi_select_cm(struct tb_nhi *nhi) 1248 { 1249 struct tb *tb; 1250 1251 /* 1252 * USB4 case is simple. If we got control of any of the 1253 * capabilities, we use software CM. 1254 */ 1255 if (tb_acpi_is_native()) 1256 return tb_probe(nhi); 1257 1258 /* 1259 * Either firmware based CM is running (we did not get control 1260 * from the firmware) or this is pre-USB4 PC so try first 1261 * firmware CM and then fallback to software CM. 1262 */ 1263 tb = icm_probe(nhi); 1264 if (!tb) 1265 tb = tb_probe(nhi); 1266 1267 return tb; 1268 } 1269 1270 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1271 { 1272 struct device *dev = &pdev->dev; 1273 struct tb_nhi *nhi; 1274 struct tb *tb; 1275 int res; 1276 1277 if (!nhi_imr_valid(pdev)) 1278 return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n"); 1279 1280 res = pcim_enable_device(pdev); 1281 if (res) 1282 return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n"); 1283 1284 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1285 if (res) 1286 return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n"); 1287 1288 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1289 if (!nhi) 1290 return -ENOMEM; 1291 1292 nhi->pdev = pdev; 1293 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1294 /* cannot fail - table is allocated in pcim_iomap_regions */ 1295 nhi->iobase = pcim_iomap_table(pdev)[0]; 1296 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1297 dev_dbg(dev, "total paths: %d\n", nhi->hop_count); 1298 1299 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1300 sizeof(*nhi->tx_rings), GFP_KERNEL); 1301 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1302 sizeof(*nhi->rx_rings), GFP_KERNEL); 1303 if (!nhi->tx_rings || !nhi->rx_rings) 1304 return -ENOMEM; 1305 1306 nhi_check_quirks(nhi); 1307 nhi_check_iommu(nhi); 1308 1309 res = nhi_init_msi(nhi); 1310 if (res) 1311 return dev_err_probe(dev, res, "cannot enable MSI, aborting\n"); 1312 1313 spin_lock_init(&nhi->lock); 1314 1315 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1316 if (res) 1317 return dev_err_probe(dev, res, "failed to set DMA mask\n"); 1318 1319 pci_set_master(pdev); 1320 1321 if (nhi->ops && nhi->ops->init) { 1322 res = nhi->ops->init(nhi); 1323 if (res) 1324 return res; 1325 } 1326 1327 tb = nhi_select_cm(nhi); 1328 if (!tb) 1329 return dev_err_probe(dev, -ENODEV, 1330 "failed to determine connection manager, aborting\n"); 1331 1332 dev_dbg(dev, "NHI initialized, starting thunderbolt\n"); 1333 1334 res = tb_domain_add(tb); 1335 if (res) { 1336 /* 1337 * At this point the RX/TX rings might already have been 1338 * activated. Do a proper shutdown. 1339 */ 1340 tb_domain_put(tb); 1341 nhi_shutdown(nhi); 1342 return res; 1343 } 1344 pci_set_drvdata(pdev, tb); 1345 1346 device_wakeup_enable(&pdev->dev); 1347 1348 pm_runtime_allow(&pdev->dev); 1349 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1350 pm_runtime_use_autosuspend(&pdev->dev); 1351 pm_runtime_put_autosuspend(&pdev->dev); 1352 1353 return 0; 1354 } 1355 1356 static void nhi_remove(struct pci_dev *pdev) 1357 { 1358 struct tb *tb = pci_get_drvdata(pdev); 1359 struct tb_nhi *nhi = tb->nhi; 1360 1361 pm_runtime_get_sync(&pdev->dev); 1362 pm_runtime_dont_use_autosuspend(&pdev->dev); 1363 pm_runtime_forbid(&pdev->dev); 1364 1365 tb_domain_remove(tb); 1366 nhi_shutdown(nhi); 1367 } 1368 1369 /* 1370 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1371 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1372 * resume_noirq until we are done. 1373 */ 1374 static const struct dev_pm_ops nhi_pm_ops = { 1375 .suspend_noirq = nhi_suspend_noirq, 1376 .resume_noirq = nhi_resume_noirq, 1377 .freeze_noirq = nhi_freeze_noirq, /* 1378 * we just disable hotplug, the 1379 * pci-tunnels stay alive. 1380 */ 1381 .thaw_noirq = nhi_thaw_noirq, 1382 .restore_noirq = nhi_resume_noirq, 1383 .suspend = nhi_suspend, 1384 .poweroff_noirq = nhi_poweroff_noirq, 1385 .poweroff = nhi_suspend, 1386 .complete = nhi_complete, 1387 .runtime_suspend = nhi_runtime_suspend, 1388 .runtime_resume = nhi_runtime_resume, 1389 }; 1390 1391 static struct pci_device_id nhi_ids[] = { 1392 /* 1393 * We have to specify class, the TB bridges use the same device and 1394 * vendor (sub)id on gen 1 and gen 2 controllers. 1395 */ 1396 { 1397 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1398 .vendor = PCI_VENDOR_ID_INTEL, 1399 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1400 .subvendor = 0x2222, .subdevice = 0x1111, 1401 }, 1402 { 1403 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1404 .vendor = PCI_VENDOR_ID_INTEL, 1405 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1406 .subvendor = 0x2222, .subdevice = 0x1111, 1407 }, 1408 { 1409 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1410 .vendor = PCI_VENDOR_ID_INTEL, 1411 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1412 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1413 }, 1414 { 1415 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1416 .vendor = PCI_VENDOR_ID_INTEL, 1417 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1418 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1419 }, 1420 1421 /* Thunderbolt 3 */ 1422 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1423 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1424 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1425 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1426 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1427 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1428 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1429 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1430 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1431 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1432 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1433 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1434 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1435 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1436 /* Thunderbolt 4 */ 1437 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1438 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1439 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1440 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1441 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0), 1442 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1443 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1), 1444 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1445 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0), 1446 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1447 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1), 1448 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1449 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0), 1450 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1451 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1), 1452 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1453 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0), 1454 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1455 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0), 1456 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1457 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1), 1458 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1459 1460 /* Any USB4 compliant host */ 1461 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1462 1463 { 0,} 1464 }; 1465 1466 MODULE_DEVICE_TABLE(pci, nhi_ids); 1467 MODULE_LICENSE("GPL"); 1468 1469 static struct pci_driver nhi_driver = { 1470 .name = "thunderbolt", 1471 .id_table = nhi_ids, 1472 .probe = nhi_probe, 1473 .remove = nhi_remove, 1474 .shutdown = nhi_remove, 1475 .driver.pm = &nhi_pm_ops, 1476 }; 1477 1478 static int __init nhi_init(void) 1479 { 1480 int ret; 1481 1482 ret = tb_domain_init(); 1483 if (ret) 1484 return ret; 1485 ret = pci_register_driver(&nhi_driver); 1486 if (ret) 1487 tb_domain_exit(); 1488 return ret; 1489 } 1490 1491 static void __exit nhi_unload(void) 1492 { 1493 pci_unregister_driver(&nhi_driver); 1494 tb_domain_exit(); 1495 } 1496 1497 rootfs_initcall(nhi_init); 1498 module_exit(nhi_unload); 1499