1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/delay.h> 19 #include <linux/property.h> 20 #include <linux/platform_data/x86/apple.h> 21 22 #include "nhi.h" 23 #include "nhi_regs.h" 24 #include "tb.h" 25 26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 27 28 #define RING_FIRST_USABLE_HOPID 1 29 30 /* 31 * Minimal number of vectors when we use MSI-X. Two for control channel 32 * Rx/Tx and the rest four are for cross domain DMA paths. 33 */ 34 #define MSIX_MIN_VECS 6 35 #define MSIX_MAX_VECS 16 36 37 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 38 39 static int ring_interrupt_index(struct tb_ring *ring) 40 { 41 int bit = ring->hop; 42 if (!ring->is_tx) 43 bit += ring->nhi->hop_count; 44 return bit; 45 } 46 47 /** 48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 49 * 50 * ring->nhi->lock must be held. 51 */ 52 static void ring_interrupt_active(struct tb_ring *ring, bool active) 53 { 54 int reg = REG_RING_INTERRUPT_BASE + 55 ring_interrupt_index(ring) / 32 * 4; 56 int bit = ring_interrupt_index(ring) & 31; 57 int mask = 1 << bit; 58 u32 old, new; 59 60 if (ring->irq > 0) { 61 u32 step, shift, ivr, misc; 62 void __iomem *ivr_base; 63 int index; 64 65 if (ring->is_tx) 66 index = ring->hop; 67 else 68 index = ring->hop + ring->nhi->hop_count; 69 70 /* 71 * Ask the hardware to clear interrupt status bits automatically 72 * since we already know which interrupt was triggered. 73 */ 74 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 75 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) { 76 misc |= REG_DMA_MISC_INT_AUTO_CLEAR; 77 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC); 78 } 79 80 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 81 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 82 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 83 ivr = ioread32(ivr_base + step); 84 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 85 if (active) 86 ivr |= ring->vector << shift; 87 iowrite32(ivr, ivr_base + step); 88 } 89 90 old = ioread32(ring->nhi->iobase + reg); 91 if (active) 92 new = old | mask; 93 else 94 new = old & ~mask; 95 96 dev_dbg(&ring->nhi->pdev->dev, 97 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 98 active ? "enabling" : "disabling", reg, bit, old, new); 99 100 if (new == old) 101 dev_WARN(&ring->nhi->pdev->dev, 102 "interrupt for %s %d is already %s\n", 103 RING_TYPE(ring), ring->hop, 104 active ? "enabled" : "disabled"); 105 iowrite32(new, ring->nhi->iobase + reg); 106 } 107 108 /** 109 * nhi_disable_interrupts() - disable interrupts for all rings 110 * 111 * Use only during init and shutdown. 112 */ 113 static void nhi_disable_interrupts(struct tb_nhi *nhi) 114 { 115 int i = 0; 116 /* disable interrupts */ 117 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 118 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 119 120 /* clear interrupt status bits */ 121 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 122 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 123 } 124 125 /* ring helper methods */ 126 127 static void __iomem *ring_desc_base(struct tb_ring *ring) 128 { 129 void __iomem *io = ring->nhi->iobase; 130 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 131 io += ring->hop * 16; 132 return io; 133 } 134 135 static void __iomem *ring_options_base(struct tb_ring *ring) 136 { 137 void __iomem *io = ring->nhi->iobase; 138 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 139 io += ring->hop * 32; 140 return io; 141 } 142 143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 144 { 145 /* 146 * The other 16-bits in the register is read-only and writes to it 147 * are ignored by the hardware so we can save one ioread32() by 148 * filling the read-only bits with zeroes. 149 */ 150 iowrite32(cons, ring_desc_base(ring) + 8); 151 } 152 153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 154 { 155 /* See ring_iowrite_cons() above for explanation */ 156 iowrite32(prod << 16, ring_desc_base(ring) + 8); 157 } 158 159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 160 { 161 iowrite32(value, ring_desc_base(ring) + offset); 162 } 163 164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 165 { 166 iowrite32(value, ring_desc_base(ring) + offset); 167 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 168 } 169 170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 171 { 172 iowrite32(value, ring_options_base(ring) + offset); 173 } 174 175 static bool ring_full(struct tb_ring *ring) 176 { 177 return ((ring->head + 1) % ring->size) == ring->tail; 178 } 179 180 static bool ring_empty(struct tb_ring *ring) 181 { 182 return ring->head == ring->tail; 183 } 184 185 /** 186 * ring_write_descriptors() - post frames from ring->queue to the controller 187 * 188 * ring->lock is held. 189 */ 190 static void ring_write_descriptors(struct tb_ring *ring) 191 { 192 struct ring_frame *frame, *n; 193 struct ring_desc *descriptor; 194 list_for_each_entry_safe(frame, n, &ring->queue, list) { 195 if (ring_full(ring)) 196 break; 197 list_move_tail(&frame->list, &ring->in_flight); 198 descriptor = &ring->descriptors[ring->head]; 199 descriptor->phys = frame->buffer_phy; 200 descriptor->time = 0; 201 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 202 if (ring->is_tx) { 203 descriptor->length = frame->size; 204 descriptor->eof = frame->eof; 205 descriptor->sof = frame->sof; 206 } 207 ring->head = (ring->head + 1) % ring->size; 208 if (ring->is_tx) 209 ring_iowrite_prod(ring, ring->head); 210 else 211 ring_iowrite_cons(ring, ring->head); 212 } 213 } 214 215 /** 216 * ring_work() - progress completed frames 217 * 218 * If the ring is shutting down then all frames are marked as canceled and 219 * their callbacks are invoked. 220 * 221 * Otherwise we collect all completed frame from the ring buffer, write new 222 * frame to the ring buffer and invoke the callbacks for the completed frames. 223 */ 224 static void ring_work(struct work_struct *work) 225 { 226 struct tb_ring *ring = container_of(work, typeof(*ring), work); 227 struct ring_frame *frame; 228 bool canceled = false; 229 unsigned long flags; 230 LIST_HEAD(done); 231 232 spin_lock_irqsave(&ring->lock, flags); 233 234 if (!ring->running) { 235 /* Move all frames to done and mark them as canceled. */ 236 list_splice_tail_init(&ring->in_flight, &done); 237 list_splice_tail_init(&ring->queue, &done); 238 canceled = true; 239 goto invoke_callback; 240 } 241 242 while (!ring_empty(ring)) { 243 if (!(ring->descriptors[ring->tail].flags 244 & RING_DESC_COMPLETED)) 245 break; 246 frame = list_first_entry(&ring->in_flight, typeof(*frame), 247 list); 248 list_move_tail(&frame->list, &done); 249 if (!ring->is_tx) { 250 frame->size = ring->descriptors[ring->tail].length; 251 frame->eof = ring->descriptors[ring->tail].eof; 252 frame->sof = ring->descriptors[ring->tail].sof; 253 frame->flags = ring->descriptors[ring->tail].flags; 254 } 255 ring->tail = (ring->tail + 1) % ring->size; 256 } 257 ring_write_descriptors(ring); 258 259 invoke_callback: 260 /* allow callbacks to schedule new work */ 261 spin_unlock_irqrestore(&ring->lock, flags); 262 while (!list_empty(&done)) { 263 frame = list_first_entry(&done, typeof(*frame), list); 264 /* 265 * The callback may reenqueue or delete frame. 266 * Do not hold on to it. 267 */ 268 list_del_init(&frame->list); 269 if (frame->callback) 270 frame->callback(ring, frame, canceled); 271 } 272 } 273 274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 275 { 276 unsigned long flags; 277 int ret = 0; 278 279 spin_lock_irqsave(&ring->lock, flags); 280 if (ring->running) { 281 list_add_tail(&frame->list, &ring->queue); 282 ring_write_descriptors(ring); 283 } else { 284 ret = -ESHUTDOWN; 285 } 286 spin_unlock_irqrestore(&ring->lock, flags); 287 return ret; 288 } 289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 290 291 /** 292 * tb_ring_poll() - Poll one completed frame from the ring 293 * @ring: Ring to poll 294 * 295 * This function can be called when @start_poll callback of the @ring 296 * has been called. It will read one completed frame from the ring and 297 * return it to the caller. Returns %NULL if there is no more completed 298 * frames. 299 */ 300 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 301 { 302 struct ring_frame *frame = NULL; 303 unsigned long flags; 304 305 spin_lock_irqsave(&ring->lock, flags); 306 if (!ring->running) 307 goto unlock; 308 if (ring_empty(ring)) 309 goto unlock; 310 311 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 312 frame = list_first_entry(&ring->in_flight, typeof(*frame), 313 list); 314 list_del_init(&frame->list); 315 316 if (!ring->is_tx) { 317 frame->size = ring->descriptors[ring->tail].length; 318 frame->eof = ring->descriptors[ring->tail].eof; 319 frame->sof = ring->descriptors[ring->tail].sof; 320 frame->flags = ring->descriptors[ring->tail].flags; 321 } 322 323 ring->tail = (ring->tail + 1) % ring->size; 324 } 325 326 unlock: 327 spin_unlock_irqrestore(&ring->lock, flags); 328 return frame; 329 } 330 EXPORT_SYMBOL_GPL(tb_ring_poll); 331 332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 333 { 334 int idx = ring_interrupt_index(ring); 335 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 336 int bit = idx % 32; 337 u32 val; 338 339 val = ioread32(ring->nhi->iobase + reg); 340 if (mask) 341 val &= ~BIT(bit); 342 else 343 val |= BIT(bit); 344 iowrite32(val, ring->nhi->iobase + reg); 345 } 346 347 /* Both @nhi->lock and @ring->lock should be held */ 348 static void __ring_interrupt(struct tb_ring *ring) 349 { 350 if (!ring->running) 351 return; 352 353 if (ring->start_poll) { 354 __ring_interrupt_mask(ring, true); 355 ring->start_poll(ring->poll_data); 356 } else { 357 schedule_work(&ring->work); 358 } 359 } 360 361 /** 362 * tb_ring_poll_complete() - Re-start interrupt for the ring 363 * @ring: Ring to re-start the interrupt 364 * 365 * This will re-start (unmask) the ring interrupt once the user is done 366 * with polling. 367 */ 368 void tb_ring_poll_complete(struct tb_ring *ring) 369 { 370 unsigned long flags; 371 372 spin_lock_irqsave(&ring->nhi->lock, flags); 373 spin_lock(&ring->lock); 374 if (ring->start_poll) 375 __ring_interrupt_mask(ring, false); 376 spin_unlock(&ring->lock); 377 spin_unlock_irqrestore(&ring->nhi->lock, flags); 378 } 379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 380 381 static irqreturn_t ring_msix(int irq, void *data) 382 { 383 struct tb_ring *ring = data; 384 385 spin_lock(&ring->nhi->lock); 386 spin_lock(&ring->lock); 387 __ring_interrupt(ring); 388 spin_unlock(&ring->lock); 389 spin_unlock(&ring->nhi->lock); 390 391 return IRQ_HANDLED; 392 } 393 394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 395 { 396 struct tb_nhi *nhi = ring->nhi; 397 unsigned long irqflags; 398 int ret; 399 400 if (!nhi->pdev->msix_enabled) 401 return 0; 402 403 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 404 if (ret < 0) 405 return ret; 406 407 ring->vector = ret; 408 409 ret = pci_irq_vector(ring->nhi->pdev, ring->vector); 410 if (ret < 0) 411 goto err_ida_remove; 412 413 ring->irq = ret; 414 415 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 416 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 417 if (ret) 418 goto err_ida_remove; 419 420 return 0; 421 422 err_ida_remove: 423 ida_simple_remove(&nhi->msix_ida, ring->vector); 424 425 return ret; 426 } 427 428 static void ring_release_msix(struct tb_ring *ring) 429 { 430 if (ring->irq <= 0) 431 return; 432 433 free_irq(ring->irq, ring); 434 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 435 ring->vector = 0; 436 ring->irq = 0; 437 } 438 439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 440 { 441 int ret = 0; 442 443 spin_lock_irq(&nhi->lock); 444 445 if (ring->hop < 0) { 446 unsigned int i; 447 448 /* 449 * Automatically allocate HopID from the non-reserved 450 * range 1 .. hop_count - 1. 451 */ 452 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) { 453 if (ring->is_tx) { 454 if (!nhi->tx_rings[i]) { 455 ring->hop = i; 456 break; 457 } 458 } else { 459 if (!nhi->rx_rings[i]) { 460 ring->hop = i; 461 break; 462 } 463 } 464 } 465 } 466 467 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 468 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 469 ret = -EINVAL; 470 goto err_unlock; 471 } 472 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 473 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 474 ring->hop); 475 ret = -EBUSY; 476 goto err_unlock; 477 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 478 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 479 ring->hop); 480 ret = -EBUSY; 481 goto err_unlock; 482 } 483 484 if (ring->is_tx) 485 nhi->tx_rings[ring->hop] = ring; 486 else 487 nhi->rx_rings[ring->hop] = ring; 488 489 err_unlock: 490 spin_unlock_irq(&nhi->lock); 491 492 return ret; 493 } 494 495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 496 bool transmit, unsigned int flags, 497 u16 sof_mask, u16 eof_mask, 498 void (*start_poll)(void *), 499 void *poll_data) 500 { 501 struct tb_ring *ring = NULL; 502 503 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 504 transmit ? "TX" : "RX", hop, size); 505 506 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 507 if (!ring) 508 return NULL; 509 510 spin_lock_init(&ring->lock); 511 INIT_LIST_HEAD(&ring->queue); 512 INIT_LIST_HEAD(&ring->in_flight); 513 INIT_WORK(&ring->work, ring_work); 514 515 ring->nhi = nhi; 516 ring->hop = hop; 517 ring->is_tx = transmit; 518 ring->size = size; 519 ring->flags = flags; 520 ring->sof_mask = sof_mask; 521 ring->eof_mask = eof_mask; 522 ring->head = 0; 523 ring->tail = 0; 524 ring->running = false; 525 ring->start_poll = start_poll; 526 ring->poll_data = poll_data; 527 528 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 529 size * sizeof(*ring->descriptors), 530 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 531 if (!ring->descriptors) 532 goto err_free_ring; 533 534 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 535 goto err_free_descs; 536 537 if (nhi_alloc_hop(nhi, ring)) 538 goto err_release_msix; 539 540 return ring; 541 542 err_release_msix: 543 ring_release_msix(ring); 544 err_free_descs: 545 dma_free_coherent(&ring->nhi->pdev->dev, 546 ring->size * sizeof(*ring->descriptors), 547 ring->descriptors, ring->descriptors_dma); 548 err_free_ring: 549 kfree(ring); 550 551 return NULL; 552 } 553 554 /** 555 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 556 * @nhi: Pointer to the NHI the ring is to be allocated 557 * @hop: HopID (ring) to allocate 558 * @size: Number of entries in the ring 559 * @flags: Flags for the ring 560 */ 561 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 562 unsigned int flags) 563 { 564 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL); 565 } 566 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 567 568 /** 569 * tb_ring_alloc_rx() - Allocate DMA ring for receive 570 * @nhi: Pointer to the NHI the ring is to be allocated 571 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 572 * @size: Number of entries in the ring 573 * @flags: Flags for the ring 574 * @sof_mask: Mask of PDF values that start a frame 575 * @eof_mask: Mask of PDF values that end a frame 576 * @start_poll: If not %NULL the ring will call this function when an 577 * interrupt is triggered and masked, instead of callback 578 * in each Rx frame. 579 * @poll_data: Optional data passed to @start_poll 580 */ 581 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 582 unsigned int flags, u16 sof_mask, u16 eof_mask, 583 void (*start_poll)(void *), void *poll_data) 584 { 585 return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask, 586 start_poll, poll_data); 587 } 588 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 589 590 /** 591 * tb_ring_start() - enable a ring 592 * 593 * Must not be invoked in parallel with tb_ring_stop(). 594 */ 595 void tb_ring_start(struct tb_ring *ring) 596 { 597 u16 frame_size; 598 u32 flags; 599 600 spin_lock_irq(&ring->nhi->lock); 601 spin_lock(&ring->lock); 602 if (ring->nhi->going_away) 603 goto err; 604 if (ring->running) { 605 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 606 goto err; 607 } 608 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 609 RING_TYPE(ring), ring->hop); 610 611 if (ring->flags & RING_FLAG_FRAME) { 612 /* Means 4096 */ 613 frame_size = 0; 614 flags = RING_FLAG_ENABLE; 615 } else { 616 frame_size = TB_FRAME_SIZE; 617 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 618 } 619 620 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 621 if (ring->is_tx) { 622 ring_iowrite32desc(ring, ring->size, 12); 623 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 624 ring_iowrite32options(ring, flags, 0); 625 } else { 626 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 627 628 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 629 ring_iowrite32options(ring, sof_eof_mask, 4); 630 ring_iowrite32options(ring, flags, 0); 631 } 632 ring_interrupt_active(ring, true); 633 ring->running = true; 634 err: 635 spin_unlock(&ring->lock); 636 spin_unlock_irq(&ring->nhi->lock); 637 } 638 EXPORT_SYMBOL_GPL(tb_ring_start); 639 640 /** 641 * tb_ring_stop() - shutdown a ring 642 * 643 * Must not be invoked from a callback. 644 * 645 * This method will disable the ring. Further calls to 646 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 647 * called. 648 * 649 * All enqueued frames will be canceled and their callbacks will be executed 650 * with frame->canceled set to true (on the callback thread). This method 651 * returns only after all callback invocations have finished. 652 */ 653 void tb_ring_stop(struct tb_ring *ring) 654 { 655 spin_lock_irq(&ring->nhi->lock); 656 spin_lock(&ring->lock); 657 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 658 RING_TYPE(ring), ring->hop); 659 if (ring->nhi->going_away) 660 goto err; 661 if (!ring->running) { 662 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 663 RING_TYPE(ring), ring->hop); 664 goto err; 665 } 666 ring_interrupt_active(ring, false); 667 668 ring_iowrite32options(ring, 0, 0); 669 ring_iowrite64desc(ring, 0, 0); 670 ring_iowrite32desc(ring, 0, 8); 671 ring_iowrite32desc(ring, 0, 12); 672 ring->head = 0; 673 ring->tail = 0; 674 ring->running = false; 675 676 err: 677 spin_unlock(&ring->lock); 678 spin_unlock_irq(&ring->nhi->lock); 679 680 /* 681 * schedule ring->work to invoke callbacks on all remaining frames. 682 */ 683 schedule_work(&ring->work); 684 flush_work(&ring->work); 685 } 686 EXPORT_SYMBOL_GPL(tb_ring_stop); 687 688 /* 689 * tb_ring_free() - free ring 690 * 691 * When this method returns all invocations of ring->callback will have 692 * finished. 693 * 694 * Ring must be stopped. 695 * 696 * Must NOT be called from ring_frame->callback! 697 */ 698 void tb_ring_free(struct tb_ring *ring) 699 { 700 spin_lock_irq(&ring->nhi->lock); 701 /* 702 * Dissociate the ring from the NHI. This also ensures that 703 * nhi_interrupt_work cannot reschedule ring->work. 704 */ 705 if (ring->is_tx) 706 ring->nhi->tx_rings[ring->hop] = NULL; 707 else 708 ring->nhi->rx_rings[ring->hop] = NULL; 709 710 if (ring->running) { 711 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 712 RING_TYPE(ring), ring->hop); 713 } 714 spin_unlock_irq(&ring->nhi->lock); 715 716 ring_release_msix(ring); 717 718 dma_free_coherent(&ring->nhi->pdev->dev, 719 ring->size * sizeof(*ring->descriptors), 720 ring->descriptors, ring->descriptors_dma); 721 722 ring->descriptors = NULL; 723 ring->descriptors_dma = 0; 724 725 726 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 727 ring->hop); 728 729 /** 730 * ring->work can no longer be scheduled (it is scheduled only 731 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 732 * to finish before freeing the ring. 733 */ 734 flush_work(&ring->work); 735 kfree(ring); 736 } 737 EXPORT_SYMBOL_GPL(tb_ring_free); 738 739 /** 740 * nhi_mailbox_cmd() - Send a command through NHI mailbox 741 * @nhi: Pointer to the NHI structure 742 * @cmd: Command to send 743 * @data: Data to be send with the command 744 * 745 * Sends mailbox command to the firmware running on NHI. Returns %0 in 746 * case of success and negative errno in case of failure. 747 */ 748 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 749 { 750 ktime_t timeout; 751 u32 val; 752 753 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 754 755 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 756 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 757 val |= REG_INMAIL_OP_REQUEST | cmd; 758 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 759 760 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 761 do { 762 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 763 if (!(val & REG_INMAIL_OP_REQUEST)) 764 break; 765 usleep_range(10, 20); 766 } while (ktime_before(ktime_get(), timeout)); 767 768 if (val & REG_INMAIL_OP_REQUEST) 769 return -ETIMEDOUT; 770 if (val & REG_INMAIL_ERROR) 771 return -EIO; 772 773 return 0; 774 } 775 776 /** 777 * nhi_mailbox_mode() - Return current firmware operation mode 778 * @nhi: Pointer to the NHI structure 779 * 780 * The function reads current firmware operation mode using NHI mailbox 781 * registers and returns it to the caller. 782 */ 783 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 784 { 785 u32 val; 786 787 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 788 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 789 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 790 791 return (enum nhi_fw_mode)val; 792 } 793 794 static void nhi_interrupt_work(struct work_struct *work) 795 { 796 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 797 int value = 0; /* Suppress uninitialized usage warning. */ 798 int bit; 799 int hop = -1; 800 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 801 struct tb_ring *ring; 802 803 spin_lock_irq(&nhi->lock); 804 805 /* 806 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 807 * (TX, RX, RX overflow). We iterate over the bits and read a new 808 * dwords as required. The registers are cleared on read. 809 */ 810 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 811 if (bit % 32 == 0) 812 value = ioread32(nhi->iobase 813 + REG_RING_NOTIFY_BASE 814 + 4 * (bit / 32)); 815 if (++hop == nhi->hop_count) { 816 hop = 0; 817 type++; 818 } 819 if ((value & (1 << (bit % 32))) == 0) 820 continue; 821 if (type == 2) { 822 dev_warn(&nhi->pdev->dev, 823 "RX overflow for ring %d\n", 824 hop); 825 continue; 826 } 827 if (type == 0) 828 ring = nhi->tx_rings[hop]; 829 else 830 ring = nhi->rx_rings[hop]; 831 if (ring == NULL) { 832 dev_warn(&nhi->pdev->dev, 833 "got interrupt for inactive %s ring %d\n", 834 type ? "RX" : "TX", 835 hop); 836 continue; 837 } 838 839 spin_lock(&ring->lock); 840 __ring_interrupt(ring); 841 spin_unlock(&ring->lock); 842 } 843 spin_unlock_irq(&nhi->lock); 844 } 845 846 static irqreturn_t nhi_msi(int irq, void *data) 847 { 848 struct tb_nhi *nhi = data; 849 schedule_work(&nhi->interrupt_work); 850 return IRQ_HANDLED; 851 } 852 853 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 854 { 855 struct pci_dev *pdev = to_pci_dev(dev); 856 struct tb *tb = pci_get_drvdata(pdev); 857 struct tb_nhi *nhi = tb->nhi; 858 int ret; 859 860 ret = tb_domain_suspend_noirq(tb); 861 if (ret) 862 return ret; 863 864 if (nhi->ops && nhi->ops->suspend_noirq) { 865 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 866 if (ret) 867 return ret; 868 } 869 870 return 0; 871 } 872 873 static int nhi_suspend_noirq(struct device *dev) 874 { 875 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 876 } 877 878 static int nhi_freeze_noirq(struct device *dev) 879 { 880 struct pci_dev *pdev = to_pci_dev(dev); 881 struct tb *tb = pci_get_drvdata(pdev); 882 883 return tb_domain_freeze_noirq(tb); 884 } 885 886 static int nhi_thaw_noirq(struct device *dev) 887 { 888 struct pci_dev *pdev = to_pci_dev(dev); 889 struct tb *tb = pci_get_drvdata(pdev); 890 891 return tb_domain_thaw_noirq(tb); 892 } 893 894 static bool nhi_wake_supported(struct pci_dev *pdev) 895 { 896 u8 val; 897 898 /* 899 * If power rails are sustainable for wakeup from S4 this 900 * property is set by the BIOS. 901 */ 902 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 903 return !!val; 904 905 return true; 906 } 907 908 static int nhi_poweroff_noirq(struct device *dev) 909 { 910 struct pci_dev *pdev = to_pci_dev(dev); 911 bool wakeup; 912 913 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 914 return __nhi_suspend_noirq(dev, wakeup); 915 } 916 917 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 918 { 919 /* Throttling is specified in 256ns increments */ 920 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 921 unsigned int i; 922 923 /* 924 * Configure interrupt throttling for all vectors even if we 925 * only use few. 926 */ 927 for (i = 0; i < MSIX_MAX_VECS; i++) { 928 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 929 iowrite32(throttle, nhi->iobase + reg); 930 } 931 } 932 933 static int nhi_resume_noirq(struct device *dev) 934 { 935 struct pci_dev *pdev = to_pci_dev(dev); 936 struct tb *tb = pci_get_drvdata(pdev); 937 struct tb_nhi *nhi = tb->nhi; 938 int ret; 939 940 /* 941 * Check that the device is still there. It may be that the user 942 * unplugged last device which causes the host controller to go 943 * away on PCs. 944 */ 945 if (!pci_device_is_present(pdev)) { 946 nhi->going_away = true; 947 } else { 948 if (nhi->ops && nhi->ops->resume_noirq) { 949 ret = nhi->ops->resume_noirq(nhi); 950 if (ret) 951 return ret; 952 } 953 nhi_enable_int_throttling(tb->nhi); 954 } 955 956 return tb_domain_resume_noirq(tb); 957 } 958 959 static int nhi_suspend(struct device *dev) 960 { 961 struct pci_dev *pdev = to_pci_dev(dev); 962 struct tb *tb = pci_get_drvdata(pdev); 963 964 return tb_domain_suspend(tb); 965 } 966 967 static void nhi_complete(struct device *dev) 968 { 969 struct pci_dev *pdev = to_pci_dev(dev); 970 struct tb *tb = pci_get_drvdata(pdev); 971 972 /* 973 * If we were runtime suspended when system suspend started, 974 * schedule runtime resume now. It should bring the domain back 975 * to functional state. 976 */ 977 if (pm_runtime_suspended(&pdev->dev)) 978 pm_runtime_resume(&pdev->dev); 979 else 980 tb_domain_complete(tb); 981 } 982 983 static int nhi_runtime_suspend(struct device *dev) 984 { 985 struct pci_dev *pdev = to_pci_dev(dev); 986 struct tb *tb = pci_get_drvdata(pdev); 987 struct tb_nhi *nhi = tb->nhi; 988 int ret; 989 990 ret = tb_domain_runtime_suspend(tb); 991 if (ret) 992 return ret; 993 994 if (nhi->ops && nhi->ops->runtime_suspend) { 995 ret = nhi->ops->runtime_suspend(tb->nhi); 996 if (ret) 997 return ret; 998 } 999 return 0; 1000 } 1001 1002 static int nhi_runtime_resume(struct device *dev) 1003 { 1004 struct pci_dev *pdev = to_pci_dev(dev); 1005 struct tb *tb = pci_get_drvdata(pdev); 1006 struct tb_nhi *nhi = tb->nhi; 1007 int ret; 1008 1009 if (nhi->ops && nhi->ops->runtime_resume) { 1010 ret = nhi->ops->runtime_resume(nhi); 1011 if (ret) 1012 return ret; 1013 } 1014 1015 nhi_enable_int_throttling(nhi); 1016 return tb_domain_runtime_resume(tb); 1017 } 1018 1019 static void nhi_shutdown(struct tb_nhi *nhi) 1020 { 1021 int i; 1022 1023 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1024 1025 for (i = 0; i < nhi->hop_count; i++) { 1026 if (nhi->tx_rings[i]) 1027 dev_WARN(&nhi->pdev->dev, 1028 "TX ring %d is still active\n", i); 1029 if (nhi->rx_rings[i]) 1030 dev_WARN(&nhi->pdev->dev, 1031 "RX ring %d is still active\n", i); 1032 } 1033 nhi_disable_interrupts(nhi); 1034 /* 1035 * We have to release the irq before calling flush_work. Otherwise an 1036 * already executing IRQ handler could call schedule_work again. 1037 */ 1038 if (!nhi->pdev->msix_enabled) { 1039 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1040 flush_work(&nhi->interrupt_work); 1041 } 1042 ida_destroy(&nhi->msix_ida); 1043 1044 if (nhi->ops && nhi->ops->shutdown) 1045 nhi->ops->shutdown(nhi); 1046 } 1047 1048 static int nhi_init_msi(struct tb_nhi *nhi) 1049 { 1050 struct pci_dev *pdev = nhi->pdev; 1051 int res, irq, nvec; 1052 1053 /* In case someone left them on. */ 1054 nhi_disable_interrupts(nhi); 1055 1056 nhi_enable_int_throttling(nhi); 1057 1058 ida_init(&nhi->msix_ida); 1059 1060 /* 1061 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1062 * get all MSI-X vectors and if we succeed, each ring will have 1063 * one MSI-X. If for some reason that does not work out, we 1064 * fallback to a single MSI. 1065 */ 1066 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1067 PCI_IRQ_MSIX); 1068 if (nvec < 0) { 1069 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1070 if (nvec < 0) 1071 return nvec; 1072 1073 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1074 1075 irq = pci_irq_vector(nhi->pdev, 0); 1076 if (irq < 0) 1077 return irq; 1078 1079 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1080 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1081 if (res) { 1082 dev_err(&pdev->dev, "request_irq failed, aborting\n"); 1083 return res; 1084 } 1085 } 1086 1087 return 0; 1088 } 1089 1090 static bool nhi_imr_valid(struct pci_dev *pdev) 1091 { 1092 u8 val; 1093 1094 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1095 return !!val; 1096 1097 return true; 1098 } 1099 1100 /* 1101 * During suspend the Thunderbolt controller is reset and all PCIe 1102 * tunnels are lost. The NHI driver will try to reestablish all tunnels 1103 * during resume. This adds device links between the tunneled PCIe 1104 * downstream ports and the NHI so that the device core will make sure 1105 * NHI is resumed first before the rest. 1106 */ 1107 static void tb_apple_add_links(struct tb_nhi *nhi) 1108 { 1109 struct pci_dev *upstream, *pdev; 1110 1111 if (!x86_apple_machine) 1112 return; 1113 1114 switch (nhi->pdev->device) { 1115 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1116 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1117 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 1118 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 1119 break; 1120 default: 1121 return; 1122 } 1123 1124 upstream = pci_upstream_bridge(nhi->pdev); 1125 while (upstream) { 1126 if (!pci_is_pcie(upstream)) 1127 return; 1128 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 1129 break; 1130 upstream = pci_upstream_bridge(upstream); 1131 } 1132 1133 if (!upstream) 1134 return; 1135 1136 /* 1137 * For each hotplug downstream port, create add device link 1138 * back to NHI so that PCIe tunnels can be re-established after 1139 * sleep. 1140 */ 1141 for_each_pci_bridge(pdev, upstream->subordinate) { 1142 const struct device_link *link; 1143 1144 if (!pci_is_pcie(pdev)) 1145 continue; 1146 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 1147 !pdev->is_hotplug_bridge) 1148 continue; 1149 1150 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 1151 DL_FLAG_AUTOREMOVE_SUPPLIER | 1152 DL_FLAG_PM_RUNTIME); 1153 if (link) { 1154 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 1155 dev_name(&pdev->dev)); 1156 } else { 1157 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 1158 dev_name(&pdev->dev)); 1159 } 1160 } 1161 } 1162 1163 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1164 { 1165 struct tb_nhi *nhi; 1166 struct tb *tb; 1167 int res; 1168 1169 if (!nhi_imr_valid(pdev)) { 1170 dev_warn(&pdev->dev, "firmware image not valid, aborting\n"); 1171 return -ENODEV; 1172 } 1173 1174 res = pcim_enable_device(pdev); 1175 if (res) { 1176 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n"); 1177 return res; 1178 } 1179 1180 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1181 if (res) { 1182 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 1183 return res; 1184 } 1185 1186 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1187 if (!nhi) 1188 return -ENOMEM; 1189 1190 nhi->pdev = pdev; 1191 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1192 /* cannot fail - table is allocated bin pcim_iomap_regions */ 1193 nhi->iobase = pcim_iomap_table(pdev)[0]; 1194 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1195 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count); 1196 1197 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1198 sizeof(*nhi->tx_rings), GFP_KERNEL); 1199 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1200 sizeof(*nhi->rx_rings), GFP_KERNEL); 1201 if (!nhi->tx_rings || !nhi->rx_rings) 1202 return -ENOMEM; 1203 1204 res = nhi_init_msi(nhi); 1205 if (res) { 1206 dev_err(&pdev->dev, "cannot enable MSI, aborting\n"); 1207 return res; 1208 } 1209 1210 spin_lock_init(&nhi->lock); 1211 1212 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1213 if (res) 1214 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1215 if (res) { 1216 dev_err(&pdev->dev, "failed to set DMA mask\n"); 1217 return res; 1218 } 1219 1220 pci_set_master(pdev); 1221 1222 if (nhi->ops && nhi->ops->init) { 1223 res = nhi->ops->init(nhi); 1224 if (res) 1225 return res; 1226 } 1227 1228 tb_apple_add_links(nhi); 1229 tb_acpi_add_links(nhi); 1230 1231 tb = icm_probe(nhi); 1232 if (!tb) 1233 tb = tb_probe(nhi); 1234 if (!tb) { 1235 dev_err(&nhi->pdev->dev, 1236 "failed to determine connection manager, aborting\n"); 1237 return -ENODEV; 1238 } 1239 1240 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n"); 1241 1242 res = tb_domain_add(tb); 1243 if (res) { 1244 /* 1245 * At this point the RX/TX rings might already have been 1246 * activated. Do a proper shutdown. 1247 */ 1248 tb_domain_put(tb); 1249 nhi_shutdown(nhi); 1250 return res; 1251 } 1252 pci_set_drvdata(pdev, tb); 1253 1254 device_wakeup_enable(&pdev->dev); 1255 1256 pm_runtime_allow(&pdev->dev); 1257 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1258 pm_runtime_use_autosuspend(&pdev->dev); 1259 pm_runtime_put_autosuspend(&pdev->dev); 1260 1261 return 0; 1262 } 1263 1264 static void nhi_remove(struct pci_dev *pdev) 1265 { 1266 struct tb *tb = pci_get_drvdata(pdev); 1267 struct tb_nhi *nhi = tb->nhi; 1268 1269 pm_runtime_get_sync(&pdev->dev); 1270 pm_runtime_dont_use_autosuspend(&pdev->dev); 1271 pm_runtime_forbid(&pdev->dev); 1272 1273 tb_domain_remove(tb); 1274 nhi_shutdown(nhi); 1275 } 1276 1277 /* 1278 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1279 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1280 * resume_noirq until we are done. 1281 */ 1282 static const struct dev_pm_ops nhi_pm_ops = { 1283 .suspend_noirq = nhi_suspend_noirq, 1284 .resume_noirq = nhi_resume_noirq, 1285 .freeze_noirq = nhi_freeze_noirq, /* 1286 * we just disable hotplug, the 1287 * pci-tunnels stay alive. 1288 */ 1289 .thaw_noirq = nhi_thaw_noirq, 1290 .restore_noirq = nhi_resume_noirq, 1291 .suspend = nhi_suspend, 1292 .poweroff_noirq = nhi_poweroff_noirq, 1293 .poweroff = nhi_suspend, 1294 .complete = nhi_complete, 1295 .runtime_suspend = nhi_runtime_suspend, 1296 .runtime_resume = nhi_runtime_resume, 1297 }; 1298 1299 static struct pci_device_id nhi_ids[] = { 1300 /* 1301 * We have to specify class, the TB bridges use the same device and 1302 * vendor (sub)id on gen 1 and gen 2 controllers. 1303 */ 1304 { 1305 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1306 .vendor = PCI_VENDOR_ID_INTEL, 1307 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1308 .subvendor = 0x2222, .subdevice = 0x1111, 1309 }, 1310 { 1311 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1312 .vendor = PCI_VENDOR_ID_INTEL, 1313 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1314 .subvendor = 0x2222, .subdevice = 0x1111, 1315 }, 1316 { 1317 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1318 .vendor = PCI_VENDOR_ID_INTEL, 1319 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1320 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1321 }, 1322 { 1323 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1324 .vendor = PCI_VENDOR_ID_INTEL, 1325 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1326 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1327 }, 1328 1329 /* Thunderbolt 3 */ 1330 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1331 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1332 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1333 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1334 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1335 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1336 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1337 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1338 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1339 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1340 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1341 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1342 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1343 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1344 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1345 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1346 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1347 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1348 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0), 1349 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1350 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1), 1351 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1352 1353 /* Any USB4 compliant host */ 1354 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1355 1356 { 0,} 1357 }; 1358 1359 MODULE_DEVICE_TABLE(pci, nhi_ids); 1360 MODULE_LICENSE("GPL"); 1361 1362 static struct pci_driver nhi_driver = { 1363 .name = "thunderbolt", 1364 .id_table = nhi_ids, 1365 .probe = nhi_probe, 1366 .remove = nhi_remove, 1367 .shutdown = nhi_remove, 1368 .driver.pm = &nhi_pm_ops, 1369 }; 1370 1371 static int __init nhi_init(void) 1372 { 1373 int ret; 1374 1375 ret = tb_domain_init(); 1376 if (ret) 1377 return ret; 1378 ret = pci_register_driver(&nhi_driver); 1379 if (ret) 1380 tb_domain_exit(); 1381 return ret; 1382 } 1383 1384 static void __exit nhi_unload(void) 1385 { 1386 pci_unregister_driver(&nhi_driver); 1387 tb_domain_exit(); 1388 } 1389 1390 rootfs_initcall(nhi_init); 1391 module_exit(nhi_unload); 1392