1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/delay.h> 19 #include <linux/property.h> 20 #include <linux/platform_data/x86/apple.h> 21 22 #include "nhi.h" 23 #include "nhi_regs.h" 24 #include "tb.h" 25 26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 27 28 #define RING_FIRST_USABLE_HOPID 1 29 30 /* 31 * Minimal number of vectors when we use MSI-X. Two for control channel 32 * Rx/Tx and the rest four are for cross domain DMA paths. 33 */ 34 #define MSIX_MIN_VECS 6 35 #define MSIX_MAX_VECS 16 36 37 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 38 39 static int ring_interrupt_index(struct tb_ring *ring) 40 { 41 int bit = ring->hop; 42 if (!ring->is_tx) 43 bit += ring->nhi->hop_count; 44 return bit; 45 } 46 47 /** 48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 49 * 50 * ring->nhi->lock must be held. 51 */ 52 static void ring_interrupt_active(struct tb_ring *ring, bool active) 53 { 54 int reg = REG_RING_INTERRUPT_BASE + 55 ring_interrupt_index(ring) / 32 * 4; 56 int bit = ring_interrupt_index(ring) & 31; 57 int mask = 1 << bit; 58 u32 old, new; 59 60 if (ring->irq > 0) { 61 u32 step, shift, ivr, misc; 62 void __iomem *ivr_base; 63 int index; 64 65 if (ring->is_tx) 66 index = ring->hop; 67 else 68 index = ring->hop + ring->nhi->hop_count; 69 70 /* 71 * Ask the hardware to clear interrupt status bits automatically 72 * since we already know which interrupt was triggered. 73 */ 74 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 75 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) { 76 misc |= REG_DMA_MISC_INT_AUTO_CLEAR; 77 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC); 78 } 79 80 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 81 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 82 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 83 ivr = ioread32(ivr_base + step); 84 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 85 if (active) 86 ivr |= ring->vector << shift; 87 iowrite32(ivr, ivr_base + step); 88 } 89 90 old = ioread32(ring->nhi->iobase + reg); 91 if (active) 92 new = old | mask; 93 else 94 new = old & ~mask; 95 96 dev_dbg(&ring->nhi->pdev->dev, 97 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 98 active ? "enabling" : "disabling", reg, bit, old, new); 99 100 if (new == old) 101 dev_WARN(&ring->nhi->pdev->dev, 102 "interrupt for %s %d is already %s\n", 103 RING_TYPE(ring), ring->hop, 104 active ? "enabled" : "disabled"); 105 iowrite32(new, ring->nhi->iobase + reg); 106 } 107 108 /** 109 * nhi_disable_interrupts() - disable interrupts for all rings 110 * 111 * Use only during init and shutdown. 112 */ 113 static void nhi_disable_interrupts(struct tb_nhi *nhi) 114 { 115 int i = 0; 116 /* disable interrupts */ 117 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 118 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 119 120 /* clear interrupt status bits */ 121 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 122 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 123 } 124 125 /* ring helper methods */ 126 127 static void __iomem *ring_desc_base(struct tb_ring *ring) 128 { 129 void __iomem *io = ring->nhi->iobase; 130 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 131 io += ring->hop * 16; 132 return io; 133 } 134 135 static void __iomem *ring_options_base(struct tb_ring *ring) 136 { 137 void __iomem *io = ring->nhi->iobase; 138 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 139 io += ring->hop * 32; 140 return io; 141 } 142 143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 144 { 145 /* 146 * The other 16-bits in the register is read-only and writes to it 147 * are ignored by the hardware so we can save one ioread32() by 148 * filling the read-only bits with zeroes. 149 */ 150 iowrite32(cons, ring_desc_base(ring) + 8); 151 } 152 153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 154 { 155 /* See ring_iowrite_cons() above for explanation */ 156 iowrite32(prod << 16, ring_desc_base(ring) + 8); 157 } 158 159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 160 { 161 iowrite32(value, ring_desc_base(ring) + offset); 162 } 163 164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 165 { 166 iowrite32(value, ring_desc_base(ring) + offset); 167 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 168 } 169 170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 171 { 172 iowrite32(value, ring_options_base(ring) + offset); 173 } 174 175 static bool ring_full(struct tb_ring *ring) 176 { 177 return ((ring->head + 1) % ring->size) == ring->tail; 178 } 179 180 static bool ring_empty(struct tb_ring *ring) 181 { 182 return ring->head == ring->tail; 183 } 184 185 /** 186 * ring_write_descriptors() - post frames from ring->queue to the controller 187 * 188 * ring->lock is held. 189 */ 190 static void ring_write_descriptors(struct tb_ring *ring) 191 { 192 struct ring_frame *frame, *n; 193 struct ring_desc *descriptor; 194 list_for_each_entry_safe(frame, n, &ring->queue, list) { 195 if (ring_full(ring)) 196 break; 197 list_move_tail(&frame->list, &ring->in_flight); 198 descriptor = &ring->descriptors[ring->head]; 199 descriptor->phys = frame->buffer_phy; 200 descriptor->time = 0; 201 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 202 if (ring->is_tx) { 203 descriptor->length = frame->size; 204 descriptor->eof = frame->eof; 205 descriptor->sof = frame->sof; 206 } 207 ring->head = (ring->head + 1) % ring->size; 208 if (ring->is_tx) 209 ring_iowrite_prod(ring, ring->head); 210 else 211 ring_iowrite_cons(ring, ring->head); 212 } 213 } 214 215 /** 216 * ring_work() - progress completed frames 217 * 218 * If the ring is shutting down then all frames are marked as canceled and 219 * their callbacks are invoked. 220 * 221 * Otherwise we collect all completed frame from the ring buffer, write new 222 * frame to the ring buffer and invoke the callbacks for the completed frames. 223 */ 224 static void ring_work(struct work_struct *work) 225 { 226 struct tb_ring *ring = container_of(work, typeof(*ring), work); 227 struct ring_frame *frame; 228 bool canceled = false; 229 unsigned long flags; 230 LIST_HEAD(done); 231 232 spin_lock_irqsave(&ring->lock, flags); 233 234 if (!ring->running) { 235 /* Move all frames to done and mark them as canceled. */ 236 list_splice_tail_init(&ring->in_flight, &done); 237 list_splice_tail_init(&ring->queue, &done); 238 canceled = true; 239 goto invoke_callback; 240 } 241 242 while (!ring_empty(ring)) { 243 if (!(ring->descriptors[ring->tail].flags 244 & RING_DESC_COMPLETED)) 245 break; 246 frame = list_first_entry(&ring->in_flight, typeof(*frame), 247 list); 248 list_move_tail(&frame->list, &done); 249 if (!ring->is_tx) { 250 frame->size = ring->descriptors[ring->tail].length; 251 frame->eof = ring->descriptors[ring->tail].eof; 252 frame->sof = ring->descriptors[ring->tail].sof; 253 frame->flags = ring->descriptors[ring->tail].flags; 254 } 255 ring->tail = (ring->tail + 1) % ring->size; 256 } 257 ring_write_descriptors(ring); 258 259 invoke_callback: 260 /* allow callbacks to schedule new work */ 261 spin_unlock_irqrestore(&ring->lock, flags); 262 while (!list_empty(&done)) { 263 frame = list_first_entry(&done, typeof(*frame), list); 264 /* 265 * The callback may reenqueue or delete frame. 266 * Do not hold on to it. 267 */ 268 list_del_init(&frame->list); 269 if (frame->callback) 270 frame->callback(ring, frame, canceled); 271 } 272 } 273 274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 275 { 276 unsigned long flags; 277 int ret = 0; 278 279 spin_lock_irqsave(&ring->lock, flags); 280 if (ring->running) { 281 list_add_tail(&frame->list, &ring->queue); 282 ring_write_descriptors(ring); 283 } else { 284 ret = -ESHUTDOWN; 285 } 286 spin_unlock_irqrestore(&ring->lock, flags); 287 return ret; 288 } 289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 290 291 /** 292 * tb_ring_poll() - Poll one completed frame from the ring 293 * @ring: Ring to poll 294 * 295 * This function can be called when @start_poll callback of the @ring 296 * has been called. It will read one completed frame from the ring and 297 * return it to the caller. Returns %NULL if there is no more completed 298 * frames. 299 */ 300 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 301 { 302 struct ring_frame *frame = NULL; 303 unsigned long flags; 304 305 spin_lock_irqsave(&ring->lock, flags); 306 if (!ring->running) 307 goto unlock; 308 if (ring_empty(ring)) 309 goto unlock; 310 311 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 312 frame = list_first_entry(&ring->in_flight, typeof(*frame), 313 list); 314 list_del_init(&frame->list); 315 316 if (!ring->is_tx) { 317 frame->size = ring->descriptors[ring->tail].length; 318 frame->eof = ring->descriptors[ring->tail].eof; 319 frame->sof = ring->descriptors[ring->tail].sof; 320 frame->flags = ring->descriptors[ring->tail].flags; 321 } 322 323 ring->tail = (ring->tail + 1) % ring->size; 324 } 325 326 unlock: 327 spin_unlock_irqrestore(&ring->lock, flags); 328 return frame; 329 } 330 EXPORT_SYMBOL_GPL(tb_ring_poll); 331 332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 333 { 334 int idx = ring_interrupt_index(ring); 335 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 336 int bit = idx % 32; 337 u32 val; 338 339 val = ioread32(ring->nhi->iobase + reg); 340 if (mask) 341 val &= ~BIT(bit); 342 else 343 val |= BIT(bit); 344 iowrite32(val, ring->nhi->iobase + reg); 345 } 346 347 /* Both @nhi->lock and @ring->lock should be held */ 348 static void __ring_interrupt(struct tb_ring *ring) 349 { 350 if (!ring->running) 351 return; 352 353 if (ring->start_poll) { 354 __ring_interrupt_mask(ring, true); 355 ring->start_poll(ring->poll_data); 356 } else { 357 schedule_work(&ring->work); 358 } 359 } 360 361 /** 362 * tb_ring_poll_complete() - Re-start interrupt for the ring 363 * @ring: Ring to re-start the interrupt 364 * 365 * This will re-start (unmask) the ring interrupt once the user is done 366 * with polling. 367 */ 368 void tb_ring_poll_complete(struct tb_ring *ring) 369 { 370 unsigned long flags; 371 372 spin_lock_irqsave(&ring->nhi->lock, flags); 373 spin_lock(&ring->lock); 374 if (ring->start_poll) 375 __ring_interrupt_mask(ring, false); 376 spin_unlock(&ring->lock); 377 spin_unlock_irqrestore(&ring->nhi->lock, flags); 378 } 379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 380 381 static irqreturn_t ring_msix(int irq, void *data) 382 { 383 struct tb_ring *ring = data; 384 385 spin_lock(&ring->nhi->lock); 386 spin_lock(&ring->lock); 387 __ring_interrupt(ring); 388 spin_unlock(&ring->lock); 389 spin_unlock(&ring->nhi->lock); 390 391 return IRQ_HANDLED; 392 } 393 394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 395 { 396 struct tb_nhi *nhi = ring->nhi; 397 unsigned long irqflags; 398 int ret; 399 400 if (!nhi->pdev->msix_enabled) 401 return 0; 402 403 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 404 if (ret < 0) 405 return ret; 406 407 ring->vector = ret; 408 409 ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector); 410 if (ring->irq < 0) 411 return ring->irq; 412 413 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 414 return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 415 } 416 417 static void ring_release_msix(struct tb_ring *ring) 418 { 419 if (ring->irq <= 0) 420 return; 421 422 free_irq(ring->irq, ring); 423 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 424 ring->vector = 0; 425 ring->irq = 0; 426 } 427 428 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 429 { 430 int ret = 0; 431 432 spin_lock_irq(&nhi->lock); 433 434 if (ring->hop < 0) { 435 unsigned int i; 436 437 /* 438 * Automatically allocate HopID from the non-reserved 439 * range 1 .. hop_count - 1. 440 */ 441 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) { 442 if (ring->is_tx) { 443 if (!nhi->tx_rings[i]) { 444 ring->hop = i; 445 break; 446 } 447 } else { 448 if (!nhi->rx_rings[i]) { 449 ring->hop = i; 450 break; 451 } 452 } 453 } 454 } 455 456 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 457 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 458 ret = -EINVAL; 459 goto err_unlock; 460 } 461 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 462 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 463 ring->hop); 464 ret = -EBUSY; 465 goto err_unlock; 466 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 467 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 468 ring->hop); 469 ret = -EBUSY; 470 goto err_unlock; 471 } 472 473 if (ring->is_tx) 474 nhi->tx_rings[ring->hop] = ring; 475 else 476 nhi->rx_rings[ring->hop] = ring; 477 478 err_unlock: 479 spin_unlock_irq(&nhi->lock); 480 481 return ret; 482 } 483 484 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 485 bool transmit, unsigned int flags, 486 u16 sof_mask, u16 eof_mask, 487 void (*start_poll)(void *), 488 void *poll_data) 489 { 490 struct tb_ring *ring = NULL; 491 492 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 493 transmit ? "TX" : "RX", hop, size); 494 495 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 496 if (!ring) 497 return NULL; 498 499 spin_lock_init(&ring->lock); 500 INIT_LIST_HEAD(&ring->queue); 501 INIT_LIST_HEAD(&ring->in_flight); 502 INIT_WORK(&ring->work, ring_work); 503 504 ring->nhi = nhi; 505 ring->hop = hop; 506 ring->is_tx = transmit; 507 ring->size = size; 508 ring->flags = flags; 509 ring->sof_mask = sof_mask; 510 ring->eof_mask = eof_mask; 511 ring->head = 0; 512 ring->tail = 0; 513 ring->running = false; 514 ring->start_poll = start_poll; 515 ring->poll_data = poll_data; 516 517 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 518 size * sizeof(*ring->descriptors), 519 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 520 if (!ring->descriptors) 521 goto err_free_ring; 522 523 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 524 goto err_free_descs; 525 526 if (nhi_alloc_hop(nhi, ring)) 527 goto err_release_msix; 528 529 return ring; 530 531 err_release_msix: 532 ring_release_msix(ring); 533 err_free_descs: 534 dma_free_coherent(&ring->nhi->pdev->dev, 535 ring->size * sizeof(*ring->descriptors), 536 ring->descriptors, ring->descriptors_dma); 537 err_free_ring: 538 kfree(ring); 539 540 return NULL; 541 } 542 543 /** 544 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 545 * @nhi: Pointer to the NHI the ring is to be allocated 546 * @hop: HopID (ring) to allocate 547 * @size: Number of entries in the ring 548 * @flags: Flags for the ring 549 */ 550 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 551 unsigned int flags) 552 { 553 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL); 554 } 555 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 556 557 /** 558 * tb_ring_alloc_rx() - Allocate DMA ring for receive 559 * @nhi: Pointer to the NHI the ring is to be allocated 560 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 561 * @size: Number of entries in the ring 562 * @flags: Flags for the ring 563 * @sof_mask: Mask of PDF values that start a frame 564 * @eof_mask: Mask of PDF values that end a frame 565 * @start_poll: If not %NULL the ring will call this function when an 566 * interrupt is triggered and masked, instead of callback 567 * in each Rx frame. 568 * @poll_data: Optional data passed to @start_poll 569 */ 570 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 571 unsigned int flags, u16 sof_mask, u16 eof_mask, 572 void (*start_poll)(void *), void *poll_data) 573 { 574 return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask, 575 start_poll, poll_data); 576 } 577 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 578 579 /** 580 * tb_ring_start() - enable a ring 581 * 582 * Must not be invoked in parallel with tb_ring_stop(). 583 */ 584 void tb_ring_start(struct tb_ring *ring) 585 { 586 u16 frame_size; 587 u32 flags; 588 589 spin_lock_irq(&ring->nhi->lock); 590 spin_lock(&ring->lock); 591 if (ring->nhi->going_away) 592 goto err; 593 if (ring->running) { 594 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 595 goto err; 596 } 597 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 598 RING_TYPE(ring), ring->hop); 599 600 if (ring->flags & RING_FLAG_FRAME) { 601 /* Means 4096 */ 602 frame_size = 0; 603 flags = RING_FLAG_ENABLE; 604 } else { 605 frame_size = TB_FRAME_SIZE; 606 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 607 } 608 609 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 610 if (ring->is_tx) { 611 ring_iowrite32desc(ring, ring->size, 12); 612 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 613 ring_iowrite32options(ring, flags, 0); 614 } else { 615 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 616 617 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 618 ring_iowrite32options(ring, sof_eof_mask, 4); 619 ring_iowrite32options(ring, flags, 0); 620 } 621 ring_interrupt_active(ring, true); 622 ring->running = true; 623 err: 624 spin_unlock(&ring->lock); 625 spin_unlock_irq(&ring->nhi->lock); 626 } 627 EXPORT_SYMBOL_GPL(tb_ring_start); 628 629 /** 630 * tb_ring_stop() - shutdown a ring 631 * 632 * Must not be invoked from a callback. 633 * 634 * This method will disable the ring. Further calls to 635 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 636 * called. 637 * 638 * All enqueued frames will be canceled and their callbacks will be executed 639 * with frame->canceled set to true (on the callback thread). This method 640 * returns only after all callback invocations have finished. 641 */ 642 void tb_ring_stop(struct tb_ring *ring) 643 { 644 spin_lock_irq(&ring->nhi->lock); 645 spin_lock(&ring->lock); 646 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 647 RING_TYPE(ring), ring->hop); 648 if (ring->nhi->going_away) 649 goto err; 650 if (!ring->running) { 651 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 652 RING_TYPE(ring), ring->hop); 653 goto err; 654 } 655 ring_interrupt_active(ring, false); 656 657 ring_iowrite32options(ring, 0, 0); 658 ring_iowrite64desc(ring, 0, 0); 659 ring_iowrite32desc(ring, 0, 8); 660 ring_iowrite32desc(ring, 0, 12); 661 ring->head = 0; 662 ring->tail = 0; 663 ring->running = false; 664 665 err: 666 spin_unlock(&ring->lock); 667 spin_unlock_irq(&ring->nhi->lock); 668 669 /* 670 * schedule ring->work to invoke callbacks on all remaining frames. 671 */ 672 schedule_work(&ring->work); 673 flush_work(&ring->work); 674 } 675 EXPORT_SYMBOL_GPL(tb_ring_stop); 676 677 /* 678 * tb_ring_free() - free ring 679 * 680 * When this method returns all invocations of ring->callback will have 681 * finished. 682 * 683 * Ring must be stopped. 684 * 685 * Must NOT be called from ring_frame->callback! 686 */ 687 void tb_ring_free(struct tb_ring *ring) 688 { 689 spin_lock_irq(&ring->nhi->lock); 690 /* 691 * Dissociate the ring from the NHI. This also ensures that 692 * nhi_interrupt_work cannot reschedule ring->work. 693 */ 694 if (ring->is_tx) 695 ring->nhi->tx_rings[ring->hop] = NULL; 696 else 697 ring->nhi->rx_rings[ring->hop] = NULL; 698 699 if (ring->running) { 700 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 701 RING_TYPE(ring), ring->hop); 702 } 703 spin_unlock_irq(&ring->nhi->lock); 704 705 ring_release_msix(ring); 706 707 dma_free_coherent(&ring->nhi->pdev->dev, 708 ring->size * sizeof(*ring->descriptors), 709 ring->descriptors, ring->descriptors_dma); 710 711 ring->descriptors = NULL; 712 ring->descriptors_dma = 0; 713 714 715 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 716 ring->hop); 717 718 /** 719 * ring->work can no longer be scheduled (it is scheduled only 720 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 721 * to finish before freeing the ring. 722 */ 723 flush_work(&ring->work); 724 kfree(ring); 725 } 726 EXPORT_SYMBOL_GPL(tb_ring_free); 727 728 /** 729 * nhi_mailbox_cmd() - Send a command through NHI mailbox 730 * @nhi: Pointer to the NHI structure 731 * @cmd: Command to send 732 * @data: Data to be send with the command 733 * 734 * Sends mailbox command to the firmware running on NHI. Returns %0 in 735 * case of success and negative errno in case of failure. 736 */ 737 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 738 { 739 ktime_t timeout; 740 u32 val; 741 742 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 743 744 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 745 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 746 val |= REG_INMAIL_OP_REQUEST | cmd; 747 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 748 749 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 750 do { 751 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 752 if (!(val & REG_INMAIL_OP_REQUEST)) 753 break; 754 usleep_range(10, 20); 755 } while (ktime_before(ktime_get(), timeout)); 756 757 if (val & REG_INMAIL_OP_REQUEST) 758 return -ETIMEDOUT; 759 if (val & REG_INMAIL_ERROR) 760 return -EIO; 761 762 return 0; 763 } 764 765 /** 766 * nhi_mailbox_mode() - Return current firmware operation mode 767 * @nhi: Pointer to the NHI structure 768 * 769 * The function reads current firmware operation mode using NHI mailbox 770 * registers and returns it to the caller. 771 */ 772 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 773 { 774 u32 val; 775 776 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 777 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 778 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 779 780 return (enum nhi_fw_mode)val; 781 } 782 783 static void nhi_interrupt_work(struct work_struct *work) 784 { 785 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 786 int value = 0; /* Suppress uninitialized usage warning. */ 787 int bit; 788 int hop = -1; 789 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 790 struct tb_ring *ring; 791 792 spin_lock_irq(&nhi->lock); 793 794 /* 795 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 796 * (TX, RX, RX overflow). We iterate over the bits and read a new 797 * dwords as required. The registers are cleared on read. 798 */ 799 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 800 if (bit % 32 == 0) 801 value = ioread32(nhi->iobase 802 + REG_RING_NOTIFY_BASE 803 + 4 * (bit / 32)); 804 if (++hop == nhi->hop_count) { 805 hop = 0; 806 type++; 807 } 808 if ((value & (1 << (bit % 32))) == 0) 809 continue; 810 if (type == 2) { 811 dev_warn(&nhi->pdev->dev, 812 "RX overflow for ring %d\n", 813 hop); 814 continue; 815 } 816 if (type == 0) 817 ring = nhi->tx_rings[hop]; 818 else 819 ring = nhi->rx_rings[hop]; 820 if (ring == NULL) { 821 dev_warn(&nhi->pdev->dev, 822 "got interrupt for inactive %s ring %d\n", 823 type ? "RX" : "TX", 824 hop); 825 continue; 826 } 827 828 spin_lock(&ring->lock); 829 __ring_interrupt(ring); 830 spin_unlock(&ring->lock); 831 } 832 spin_unlock_irq(&nhi->lock); 833 } 834 835 static irqreturn_t nhi_msi(int irq, void *data) 836 { 837 struct tb_nhi *nhi = data; 838 schedule_work(&nhi->interrupt_work); 839 return IRQ_HANDLED; 840 } 841 842 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 843 { 844 struct pci_dev *pdev = to_pci_dev(dev); 845 struct tb *tb = pci_get_drvdata(pdev); 846 struct tb_nhi *nhi = tb->nhi; 847 int ret; 848 849 ret = tb_domain_suspend_noirq(tb); 850 if (ret) 851 return ret; 852 853 if (nhi->ops && nhi->ops->suspend_noirq) { 854 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 855 if (ret) 856 return ret; 857 } 858 859 return 0; 860 } 861 862 static int nhi_suspend_noirq(struct device *dev) 863 { 864 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 865 } 866 867 static int nhi_freeze_noirq(struct device *dev) 868 { 869 struct pci_dev *pdev = to_pci_dev(dev); 870 struct tb *tb = pci_get_drvdata(pdev); 871 872 return tb_domain_freeze_noirq(tb); 873 } 874 875 static int nhi_thaw_noirq(struct device *dev) 876 { 877 struct pci_dev *pdev = to_pci_dev(dev); 878 struct tb *tb = pci_get_drvdata(pdev); 879 880 return tb_domain_thaw_noirq(tb); 881 } 882 883 static bool nhi_wake_supported(struct pci_dev *pdev) 884 { 885 u8 val; 886 887 /* 888 * If power rails are sustainable for wakeup from S4 this 889 * property is set by the BIOS. 890 */ 891 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 892 return !!val; 893 894 return true; 895 } 896 897 static int nhi_poweroff_noirq(struct device *dev) 898 { 899 struct pci_dev *pdev = to_pci_dev(dev); 900 bool wakeup; 901 902 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 903 return __nhi_suspend_noirq(dev, wakeup); 904 } 905 906 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 907 { 908 /* Throttling is specified in 256ns increments */ 909 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 910 unsigned int i; 911 912 /* 913 * Configure interrupt throttling for all vectors even if we 914 * only use few. 915 */ 916 for (i = 0; i < MSIX_MAX_VECS; i++) { 917 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 918 iowrite32(throttle, nhi->iobase + reg); 919 } 920 } 921 922 static int nhi_resume_noirq(struct device *dev) 923 { 924 struct pci_dev *pdev = to_pci_dev(dev); 925 struct tb *tb = pci_get_drvdata(pdev); 926 struct tb_nhi *nhi = tb->nhi; 927 int ret; 928 929 /* 930 * Check that the device is still there. It may be that the user 931 * unplugged last device which causes the host controller to go 932 * away on PCs. 933 */ 934 if (!pci_device_is_present(pdev)) { 935 nhi->going_away = true; 936 } else { 937 if (nhi->ops && nhi->ops->resume_noirq) { 938 ret = nhi->ops->resume_noirq(nhi); 939 if (ret) 940 return ret; 941 } 942 nhi_enable_int_throttling(tb->nhi); 943 } 944 945 return tb_domain_resume_noirq(tb); 946 } 947 948 static int nhi_suspend(struct device *dev) 949 { 950 struct pci_dev *pdev = to_pci_dev(dev); 951 struct tb *tb = pci_get_drvdata(pdev); 952 953 return tb_domain_suspend(tb); 954 } 955 956 static void nhi_complete(struct device *dev) 957 { 958 struct pci_dev *pdev = to_pci_dev(dev); 959 struct tb *tb = pci_get_drvdata(pdev); 960 961 /* 962 * If we were runtime suspended when system suspend started, 963 * schedule runtime resume now. It should bring the domain back 964 * to functional state. 965 */ 966 if (pm_runtime_suspended(&pdev->dev)) 967 pm_runtime_resume(&pdev->dev); 968 else 969 tb_domain_complete(tb); 970 } 971 972 static int nhi_runtime_suspend(struct device *dev) 973 { 974 struct pci_dev *pdev = to_pci_dev(dev); 975 struct tb *tb = pci_get_drvdata(pdev); 976 struct tb_nhi *nhi = tb->nhi; 977 int ret; 978 979 ret = tb_domain_runtime_suspend(tb); 980 if (ret) 981 return ret; 982 983 if (nhi->ops && nhi->ops->runtime_suspend) { 984 ret = nhi->ops->runtime_suspend(tb->nhi); 985 if (ret) 986 return ret; 987 } 988 return 0; 989 } 990 991 static int nhi_runtime_resume(struct device *dev) 992 { 993 struct pci_dev *pdev = to_pci_dev(dev); 994 struct tb *tb = pci_get_drvdata(pdev); 995 struct tb_nhi *nhi = tb->nhi; 996 int ret; 997 998 if (nhi->ops && nhi->ops->runtime_resume) { 999 ret = nhi->ops->runtime_resume(nhi); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 nhi_enable_int_throttling(nhi); 1005 return tb_domain_runtime_resume(tb); 1006 } 1007 1008 static void nhi_shutdown(struct tb_nhi *nhi) 1009 { 1010 int i; 1011 1012 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1013 1014 for (i = 0; i < nhi->hop_count; i++) { 1015 if (nhi->tx_rings[i]) 1016 dev_WARN(&nhi->pdev->dev, 1017 "TX ring %d is still active\n", i); 1018 if (nhi->rx_rings[i]) 1019 dev_WARN(&nhi->pdev->dev, 1020 "RX ring %d is still active\n", i); 1021 } 1022 nhi_disable_interrupts(nhi); 1023 /* 1024 * We have to release the irq before calling flush_work. Otherwise an 1025 * already executing IRQ handler could call schedule_work again. 1026 */ 1027 if (!nhi->pdev->msix_enabled) { 1028 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1029 flush_work(&nhi->interrupt_work); 1030 } 1031 ida_destroy(&nhi->msix_ida); 1032 1033 if (nhi->ops && nhi->ops->shutdown) 1034 nhi->ops->shutdown(nhi); 1035 } 1036 1037 static int nhi_init_msi(struct tb_nhi *nhi) 1038 { 1039 struct pci_dev *pdev = nhi->pdev; 1040 int res, irq, nvec; 1041 1042 /* In case someone left them on. */ 1043 nhi_disable_interrupts(nhi); 1044 1045 nhi_enable_int_throttling(nhi); 1046 1047 ida_init(&nhi->msix_ida); 1048 1049 /* 1050 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1051 * get all MSI-X vectors and if we succeed, each ring will have 1052 * one MSI-X. If for some reason that does not work out, we 1053 * fallback to a single MSI. 1054 */ 1055 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1056 PCI_IRQ_MSIX); 1057 if (nvec < 0) { 1058 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1059 if (nvec < 0) 1060 return nvec; 1061 1062 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1063 1064 irq = pci_irq_vector(nhi->pdev, 0); 1065 if (irq < 0) 1066 return irq; 1067 1068 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1069 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1070 if (res) { 1071 dev_err(&pdev->dev, "request_irq failed, aborting\n"); 1072 return res; 1073 } 1074 } 1075 1076 return 0; 1077 } 1078 1079 static bool nhi_imr_valid(struct pci_dev *pdev) 1080 { 1081 u8 val; 1082 1083 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1084 return !!val; 1085 1086 return true; 1087 } 1088 1089 /* 1090 * During suspend the Thunderbolt controller is reset and all PCIe 1091 * tunnels are lost. The NHI driver will try to reestablish all tunnels 1092 * during resume. This adds device links between the tunneled PCIe 1093 * downstream ports and the NHI so that the device core will make sure 1094 * NHI is resumed first before the rest. 1095 */ 1096 static void tb_apple_add_links(struct tb_nhi *nhi) 1097 { 1098 struct pci_dev *upstream, *pdev; 1099 1100 if (!x86_apple_machine) 1101 return; 1102 1103 switch (nhi->pdev->device) { 1104 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1105 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1106 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 1107 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 1108 break; 1109 default: 1110 return; 1111 } 1112 1113 upstream = pci_upstream_bridge(nhi->pdev); 1114 while (upstream) { 1115 if (!pci_is_pcie(upstream)) 1116 return; 1117 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 1118 break; 1119 upstream = pci_upstream_bridge(upstream); 1120 } 1121 1122 if (!upstream) 1123 return; 1124 1125 /* 1126 * For each hotplug downstream port, create add device link 1127 * back to NHI so that PCIe tunnels can be re-established after 1128 * sleep. 1129 */ 1130 for_each_pci_bridge(pdev, upstream->subordinate) { 1131 const struct device_link *link; 1132 1133 if (!pci_is_pcie(pdev)) 1134 continue; 1135 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 1136 !pdev->is_hotplug_bridge) 1137 continue; 1138 1139 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 1140 DL_FLAG_AUTOREMOVE_SUPPLIER | 1141 DL_FLAG_PM_RUNTIME); 1142 if (link) { 1143 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 1144 dev_name(&pdev->dev)); 1145 } else { 1146 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 1147 dev_name(&pdev->dev)); 1148 } 1149 } 1150 } 1151 1152 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1153 { 1154 struct tb_nhi *nhi; 1155 struct tb *tb; 1156 int res; 1157 1158 if (!nhi_imr_valid(pdev)) { 1159 dev_warn(&pdev->dev, "firmware image not valid, aborting\n"); 1160 return -ENODEV; 1161 } 1162 1163 res = pcim_enable_device(pdev); 1164 if (res) { 1165 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n"); 1166 return res; 1167 } 1168 1169 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1170 if (res) { 1171 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 1172 return res; 1173 } 1174 1175 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1176 if (!nhi) 1177 return -ENOMEM; 1178 1179 nhi->pdev = pdev; 1180 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1181 /* cannot fail - table is allocated bin pcim_iomap_regions */ 1182 nhi->iobase = pcim_iomap_table(pdev)[0]; 1183 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1184 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count); 1185 1186 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1187 sizeof(*nhi->tx_rings), GFP_KERNEL); 1188 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1189 sizeof(*nhi->rx_rings), GFP_KERNEL); 1190 if (!nhi->tx_rings || !nhi->rx_rings) 1191 return -ENOMEM; 1192 1193 res = nhi_init_msi(nhi); 1194 if (res) { 1195 dev_err(&pdev->dev, "cannot enable MSI, aborting\n"); 1196 return res; 1197 } 1198 1199 spin_lock_init(&nhi->lock); 1200 1201 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1202 if (res) 1203 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1204 if (res) { 1205 dev_err(&pdev->dev, "failed to set DMA mask\n"); 1206 return res; 1207 } 1208 1209 pci_set_master(pdev); 1210 1211 if (nhi->ops && nhi->ops->init) { 1212 res = nhi->ops->init(nhi); 1213 if (res) 1214 return res; 1215 } 1216 1217 tb_apple_add_links(nhi); 1218 tb_acpi_add_links(nhi); 1219 1220 tb = icm_probe(nhi); 1221 if (!tb) 1222 tb = tb_probe(nhi); 1223 if (!tb) { 1224 dev_err(&nhi->pdev->dev, 1225 "failed to determine connection manager, aborting\n"); 1226 return -ENODEV; 1227 } 1228 1229 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n"); 1230 1231 res = tb_domain_add(tb); 1232 if (res) { 1233 /* 1234 * At this point the RX/TX rings might already have been 1235 * activated. Do a proper shutdown. 1236 */ 1237 tb_domain_put(tb); 1238 nhi_shutdown(nhi); 1239 return res; 1240 } 1241 pci_set_drvdata(pdev, tb); 1242 1243 device_wakeup_enable(&pdev->dev); 1244 1245 pm_runtime_allow(&pdev->dev); 1246 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1247 pm_runtime_use_autosuspend(&pdev->dev); 1248 pm_runtime_put_autosuspend(&pdev->dev); 1249 1250 return 0; 1251 } 1252 1253 static void nhi_remove(struct pci_dev *pdev) 1254 { 1255 struct tb *tb = pci_get_drvdata(pdev); 1256 struct tb_nhi *nhi = tb->nhi; 1257 1258 pm_runtime_get_sync(&pdev->dev); 1259 pm_runtime_dont_use_autosuspend(&pdev->dev); 1260 pm_runtime_forbid(&pdev->dev); 1261 1262 tb_domain_remove(tb); 1263 nhi_shutdown(nhi); 1264 } 1265 1266 /* 1267 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1268 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1269 * resume_noirq until we are done. 1270 */ 1271 static const struct dev_pm_ops nhi_pm_ops = { 1272 .suspend_noirq = nhi_suspend_noirq, 1273 .resume_noirq = nhi_resume_noirq, 1274 .freeze_noirq = nhi_freeze_noirq, /* 1275 * we just disable hotplug, the 1276 * pci-tunnels stay alive. 1277 */ 1278 .thaw_noirq = nhi_thaw_noirq, 1279 .restore_noirq = nhi_resume_noirq, 1280 .suspend = nhi_suspend, 1281 .poweroff_noirq = nhi_poweroff_noirq, 1282 .poweroff = nhi_suspend, 1283 .complete = nhi_complete, 1284 .runtime_suspend = nhi_runtime_suspend, 1285 .runtime_resume = nhi_runtime_resume, 1286 }; 1287 1288 static struct pci_device_id nhi_ids[] = { 1289 /* 1290 * We have to specify class, the TB bridges use the same device and 1291 * vendor (sub)id on gen 1 and gen 2 controllers. 1292 */ 1293 { 1294 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1295 .vendor = PCI_VENDOR_ID_INTEL, 1296 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1297 .subvendor = 0x2222, .subdevice = 0x1111, 1298 }, 1299 { 1300 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1301 .vendor = PCI_VENDOR_ID_INTEL, 1302 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1303 .subvendor = 0x2222, .subdevice = 0x1111, 1304 }, 1305 { 1306 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1307 .vendor = PCI_VENDOR_ID_INTEL, 1308 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1309 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1310 }, 1311 { 1312 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1313 .vendor = PCI_VENDOR_ID_INTEL, 1314 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1315 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1316 }, 1317 1318 /* Thunderbolt 3 */ 1319 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1320 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1321 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1322 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1323 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1324 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1325 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1326 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1327 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1328 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1329 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1330 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1331 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1332 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1333 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1334 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1335 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1336 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1337 1338 /* Any USB4 compliant host */ 1339 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1340 1341 { 0,} 1342 }; 1343 1344 MODULE_DEVICE_TABLE(pci, nhi_ids); 1345 MODULE_LICENSE("GPL"); 1346 1347 static struct pci_driver nhi_driver = { 1348 .name = "thunderbolt", 1349 .id_table = nhi_ids, 1350 .probe = nhi_probe, 1351 .remove = nhi_remove, 1352 .shutdown = nhi_remove, 1353 .driver.pm = &nhi_pm_ops, 1354 }; 1355 1356 static int __init nhi_init(void) 1357 { 1358 int ret; 1359 1360 ret = tb_domain_init(); 1361 if (ret) 1362 return ret; 1363 ret = pci_register_driver(&nhi_driver); 1364 if (ret) 1365 tb_domain_exit(); 1366 return ret; 1367 } 1368 1369 static void __exit nhi_unload(void) 1370 { 1371 pci_unregister_driver(&nhi_driver); 1372 tb_domain_exit(); 1373 } 1374 1375 rootfs_initcall(nhi_init); 1376 module_exit(nhi_unload); 1377