xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/property.h>
22 #include <linux/string_helpers.h>
23 
24 #include "nhi.h"
25 #include "nhi_regs.h"
26 #include "tb.h"
27 
28 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
29 
30 #define RING_FIRST_USABLE_HOPID	1
31 
32 /*
33  * Minimal number of vectors when we use MSI-X. Two for control channel
34  * Rx/Tx and the rest four are for cross domain DMA paths.
35  */
36 #define MSIX_MIN_VECS		6
37 #define MSIX_MAX_VECS		16
38 
39 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
40 
41 #define QUIRK_AUTO_CLEAR_INT	BIT(0)
42 
43 static int ring_interrupt_index(struct tb_ring *ring)
44 {
45 	int bit = ring->hop;
46 	if (!ring->is_tx)
47 		bit += ring->nhi->hop_count;
48 	return bit;
49 }
50 
51 /*
52  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
53  *
54  * ring->nhi->lock must be held.
55  */
56 static void ring_interrupt_active(struct tb_ring *ring, bool active)
57 {
58 	int reg = REG_RING_INTERRUPT_BASE +
59 		  ring_interrupt_index(ring) / 32 * 4;
60 	int bit = ring_interrupt_index(ring) & 31;
61 	int mask = 1 << bit;
62 	u32 old, new;
63 
64 	if (ring->irq > 0) {
65 		u32 step, shift, ivr, misc;
66 		void __iomem *ivr_base;
67 		int index;
68 
69 		if (ring->is_tx)
70 			index = ring->hop;
71 		else
72 			index = ring->hop + ring->nhi->hop_count;
73 
74 		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
75 			/*
76 			 * Ask the hardware to clear interrupt status
77 			 * bits automatically since we already know
78 			 * which interrupt was triggered.
79 			 */
80 			misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
81 			if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
82 				misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
83 				iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
84 			}
85 		}
86 
87 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
88 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
89 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
90 		ivr = ioread32(ivr_base + step);
91 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
92 		if (active)
93 			ivr |= ring->vector << shift;
94 		iowrite32(ivr, ivr_base + step);
95 	}
96 
97 	old = ioread32(ring->nhi->iobase + reg);
98 	if (active)
99 		new = old | mask;
100 	else
101 		new = old & ~mask;
102 
103 	dev_dbg(&ring->nhi->pdev->dev,
104 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
105 		active ? "enabling" : "disabling", reg, bit, old, new);
106 
107 	if (new == old)
108 		dev_WARN(&ring->nhi->pdev->dev,
109 					 "interrupt for %s %d is already %s\n",
110 					 RING_TYPE(ring), ring->hop,
111 					 active ? "enabled" : "disabled");
112 	iowrite32(new, ring->nhi->iobase + reg);
113 }
114 
115 /*
116  * nhi_disable_interrupts() - disable interrupts for all rings
117  *
118  * Use only during init and shutdown.
119  */
120 static void nhi_disable_interrupts(struct tb_nhi *nhi)
121 {
122 	int i = 0;
123 	/* disable interrupts */
124 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
125 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
126 
127 	/* clear interrupt status bits */
128 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
129 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
130 }
131 
132 /* ring helper methods */
133 
134 static void __iomem *ring_desc_base(struct tb_ring *ring)
135 {
136 	void __iomem *io = ring->nhi->iobase;
137 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
138 	io += ring->hop * 16;
139 	return io;
140 }
141 
142 static void __iomem *ring_options_base(struct tb_ring *ring)
143 {
144 	void __iomem *io = ring->nhi->iobase;
145 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
146 	io += ring->hop * 32;
147 	return io;
148 }
149 
150 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
151 {
152 	/*
153 	 * The other 16-bits in the register is read-only and writes to it
154 	 * are ignored by the hardware so we can save one ioread32() by
155 	 * filling the read-only bits with zeroes.
156 	 */
157 	iowrite32(cons, ring_desc_base(ring) + 8);
158 }
159 
160 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
161 {
162 	/* See ring_iowrite_cons() above for explanation */
163 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
164 }
165 
166 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
167 {
168 	iowrite32(value, ring_desc_base(ring) + offset);
169 }
170 
171 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
172 {
173 	iowrite32(value, ring_desc_base(ring) + offset);
174 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
175 }
176 
177 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
178 {
179 	iowrite32(value, ring_options_base(ring) + offset);
180 }
181 
182 static bool ring_full(struct tb_ring *ring)
183 {
184 	return ((ring->head + 1) % ring->size) == ring->tail;
185 }
186 
187 static bool ring_empty(struct tb_ring *ring)
188 {
189 	return ring->head == ring->tail;
190 }
191 
192 /*
193  * ring_write_descriptors() - post frames from ring->queue to the controller
194  *
195  * ring->lock is held.
196  */
197 static void ring_write_descriptors(struct tb_ring *ring)
198 {
199 	struct ring_frame *frame, *n;
200 	struct ring_desc *descriptor;
201 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
202 		if (ring_full(ring))
203 			break;
204 		list_move_tail(&frame->list, &ring->in_flight);
205 		descriptor = &ring->descriptors[ring->head];
206 		descriptor->phys = frame->buffer_phy;
207 		descriptor->time = 0;
208 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
209 		if (ring->is_tx) {
210 			descriptor->length = frame->size;
211 			descriptor->eof = frame->eof;
212 			descriptor->sof = frame->sof;
213 		}
214 		ring->head = (ring->head + 1) % ring->size;
215 		if (ring->is_tx)
216 			ring_iowrite_prod(ring, ring->head);
217 		else
218 			ring_iowrite_cons(ring, ring->head);
219 	}
220 }
221 
222 /*
223  * ring_work() - progress completed frames
224  *
225  * If the ring is shutting down then all frames are marked as canceled and
226  * their callbacks are invoked.
227  *
228  * Otherwise we collect all completed frame from the ring buffer, write new
229  * frame to the ring buffer and invoke the callbacks for the completed frames.
230  */
231 static void ring_work(struct work_struct *work)
232 {
233 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
234 	struct ring_frame *frame;
235 	bool canceled = false;
236 	unsigned long flags;
237 	LIST_HEAD(done);
238 
239 	spin_lock_irqsave(&ring->lock, flags);
240 
241 	if (!ring->running) {
242 		/*  Move all frames to done and mark them as canceled. */
243 		list_splice_tail_init(&ring->in_flight, &done);
244 		list_splice_tail_init(&ring->queue, &done);
245 		canceled = true;
246 		goto invoke_callback;
247 	}
248 
249 	while (!ring_empty(ring)) {
250 		if (!(ring->descriptors[ring->tail].flags
251 				& RING_DESC_COMPLETED))
252 			break;
253 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
254 					 list);
255 		list_move_tail(&frame->list, &done);
256 		if (!ring->is_tx) {
257 			frame->size = ring->descriptors[ring->tail].length;
258 			frame->eof = ring->descriptors[ring->tail].eof;
259 			frame->sof = ring->descriptors[ring->tail].sof;
260 			frame->flags = ring->descriptors[ring->tail].flags;
261 		}
262 		ring->tail = (ring->tail + 1) % ring->size;
263 	}
264 	ring_write_descriptors(ring);
265 
266 invoke_callback:
267 	/* allow callbacks to schedule new work */
268 	spin_unlock_irqrestore(&ring->lock, flags);
269 	while (!list_empty(&done)) {
270 		frame = list_first_entry(&done, typeof(*frame), list);
271 		/*
272 		 * The callback may reenqueue or delete frame.
273 		 * Do not hold on to it.
274 		 */
275 		list_del_init(&frame->list);
276 		if (frame->callback)
277 			frame->callback(ring, frame, canceled);
278 	}
279 }
280 
281 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
282 {
283 	unsigned long flags;
284 	int ret = 0;
285 
286 	spin_lock_irqsave(&ring->lock, flags);
287 	if (ring->running) {
288 		list_add_tail(&frame->list, &ring->queue);
289 		ring_write_descriptors(ring);
290 	} else {
291 		ret = -ESHUTDOWN;
292 	}
293 	spin_unlock_irqrestore(&ring->lock, flags);
294 	return ret;
295 }
296 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
297 
298 /**
299  * tb_ring_poll() - Poll one completed frame from the ring
300  * @ring: Ring to poll
301  *
302  * This function can be called when @start_poll callback of the @ring
303  * has been called. It will read one completed frame from the ring and
304  * return it to the caller. Returns %NULL if there is no more completed
305  * frames.
306  */
307 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
308 {
309 	struct ring_frame *frame = NULL;
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&ring->lock, flags);
313 	if (!ring->running)
314 		goto unlock;
315 	if (ring_empty(ring))
316 		goto unlock;
317 
318 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
319 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
320 					 list);
321 		list_del_init(&frame->list);
322 
323 		if (!ring->is_tx) {
324 			frame->size = ring->descriptors[ring->tail].length;
325 			frame->eof = ring->descriptors[ring->tail].eof;
326 			frame->sof = ring->descriptors[ring->tail].sof;
327 			frame->flags = ring->descriptors[ring->tail].flags;
328 		}
329 
330 		ring->tail = (ring->tail + 1) % ring->size;
331 	}
332 
333 unlock:
334 	spin_unlock_irqrestore(&ring->lock, flags);
335 	return frame;
336 }
337 EXPORT_SYMBOL_GPL(tb_ring_poll);
338 
339 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
340 {
341 	int idx = ring_interrupt_index(ring);
342 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
343 	int bit = idx % 32;
344 	u32 val;
345 
346 	val = ioread32(ring->nhi->iobase + reg);
347 	if (mask)
348 		val &= ~BIT(bit);
349 	else
350 		val |= BIT(bit);
351 	iowrite32(val, ring->nhi->iobase + reg);
352 }
353 
354 /* Both @nhi->lock and @ring->lock should be held */
355 static void __ring_interrupt(struct tb_ring *ring)
356 {
357 	if (!ring->running)
358 		return;
359 
360 	if (ring->start_poll) {
361 		__ring_interrupt_mask(ring, true);
362 		ring->start_poll(ring->poll_data);
363 	} else {
364 		schedule_work(&ring->work);
365 	}
366 }
367 
368 /**
369  * tb_ring_poll_complete() - Re-start interrupt for the ring
370  * @ring: Ring to re-start the interrupt
371  *
372  * This will re-start (unmask) the ring interrupt once the user is done
373  * with polling.
374  */
375 void tb_ring_poll_complete(struct tb_ring *ring)
376 {
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(&ring->nhi->lock, flags);
380 	spin_lock(&ring->lock);
381 	if (ring->start_poll)
382 		__ring_interrupt_mask(ring, false);
383 	spin_unlock(&ring->lock);
384 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
385 }
386 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
387 
388 static void ring_clear_msix(const struct tb_ring *ring)
389 {
390 	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
391 		return;
392 
393 	if (ring->is_tx)
394 		ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE);
395 	else
396 		ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE +
397 			 4 * (ring->nhi->hop_count / 32));
398 }
399 
400 static irqreturn_t ring_msix(int irq, void *data)
401 {
402 	struct tb_ring *ring = data;
403 
404 	spin_lock(&ring->nhi->lock);
405 	ring_clear_msix(ring);
406 	spin_lock(&ring->lock);
407 	__ring_interrupt(ring);
408 	spin_unlock(&ring->lock);
409 	spin_unlock(&ring->nhi->lock);
410 
411 	return IRQ_HANDLED;
412 }
413 
414 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
415 {
416 	struct tb_nhi *nhi = ring->nhi;
417 	unsigned long irqflags;
418 	int ret;
419 
420 	if (!nhi->pdev->msix_enabled)
421 		return 0;
422 
423 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
424 	if (ret < 0)
425 		return ret;
426 
427 	ring->vector = ret;
428 
429 	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
430 	if (ret < 0)
431 		goto err_ida_remove;
432 
433 	ring->irq = ret;
434 
435 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
436 	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
437 	if (ret)
438 		goto err_ida_remove;
439 
440 	return 0;
441 
442 err_ida_remove:
443 	ida_simple_remove(&nhi->msix_ida, ring->vector);
444 
445 	return ret;
446 }
447 
448 static void ring_release_msix(struct tb_ring *ring)
449 {
450 	if (ring->irq <= 0)
451 		return;
452 
453 	free_irq(ring->irq, ring);
454 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
455 	ring->vector = 0;
456 	ring->irq = 0;
457 }
458 
459 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
460 {
461 	int ret = 0;
462 
463 	spin_lock_irq(&nhi->lock);
464 
465 	if (ring->hop < 0) {
466 		unsigned int i;
467 
468 		/*
469 		 * Automatically allocate HopID from the non-reserved
470 		 * range 1 .. hop_count - 1.
471 		 */
472 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
473 			if (ring->is_tx) {
474 				if (!nhi->tx_rings[i]) {
475 					ring->hop = i;
476 					break;
477 				}
478 			} else {
479 				if (!nhi->rx_rings[i]) {
480 					ring->hop = i;
481 					break;
482 				}
483 			}
484 		}
485 	}
486 
487 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
488 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
489 		ret = -EINVAL;
490 		goto err_unlock;
491 	}
492 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
493 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
494 			 ring->hop);
495 		ret = -EBUSY;
496 		goto err_unlock;
497 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
498 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
499 			 ring->hop);
500 		ret = -EBUSY;
501 		goto err_unlock;
502 	}
503 
504 	if (ring->is_tx)
505 		nhi->tx_rings[ring->hop] = ring;
506 	else
507 		nhi->rx_rings[ring->hop] = ring;
508 
509 err_unlock:
510 	spin_unlock_irq(&nhi->lock);
511 
512 	return ret;
513 }
514 
515 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
516 				     bool transmit, unsigned int flags,
517 				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
518 				     void (*start_poll)(void *),
519 				     void *poll_data)
520 {
521 	struct tb_ring *ring = NULL;
522 
523 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
524 		transmit ? "TX" : "RX", hop, size);
525 
526 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
527 	if (!ring)
528 		return NULL;
529 
530 	spin_lock_init(&ring->lock);
531 	INIT_LIST_HEAD(&ring->queue);
532 	INIT_LIST_HEAD(&ring->in_flight);
533 	INIT_WORK(&ring->work, ring_work);
534 
535 	ring->nhi = nhi;
536 	ring->hop = hop;
537 	ring->is_tx = transmit;
538 	ring->size = size;
539 	ring->flags = flags;
540 	ring->e2e_tx_hop = e2e_tx_hop;
541 	ring->sof_mask = sof_mask;
542 	ring->eof_mask = eof_mask;
543 	ring->head = 0;
544 	ring->tail = 0;
545 	ring->running = false;
546 	ring->start_poll = start_poll;
547 	ring->poll_data = poll_data;
548 
549 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
550 			size * sizeof(*ring->descriptors),
551 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
552 	if (!ring->descriptors)
553 		goto err_free_ring;
554 
555 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
556 		goto err_free_descs;
557 
558 	if (nhi_alloc_hop(nhi, ring))
559 		goto err_release_msix;
560 
561 	return ring;
562 
563 err_release_msix:
564 	ring_release_msix(ring);
565 err_free_descs:
566 	dma_free_coherent(&ring->nhi->pdev->dev,
567 			  ring->size * sizeof(*ring->descriptors),
568 			  ring->descriptors, ring->descriptors_dma);
569 err_free_ring:
570 	kfree(ring);
571 
572 	return NULL;
573 }
574 
575 /**
576  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
577  * @nhi: Pointer to the NHI the ring is to be allocated
578  * @hop: HopID (ring) to allocate
579  * @size: Number of entries in the ring
580  * @flags: Flags for the ring
581  */
582 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
583 				 unsigned int flags)
584 {
585 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
586 }
587 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
588 
589 /**
590  * tb_ring_alloc_rx() - Allocate DMA ring for receive
591  * @nhi: Pointer to the NHI the ring is to be allocated
592  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
593  * @size: Number of entries in the ring
594  * @flags: Flags for the ring
595  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
596  * @sof_mask: Mask of PDF values that start a frame
597  * @eof_mask: Mask of PDF values that end a frame
598  * @start_poll: If not %NULL the ring will call this function when an
599  *		interrupt is triggered and masked, instead of callback
600  *		in each Rx frame.
601  * @poll_data: Optional data passed to @start_poll
602  */
603 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
604 				 unsigned int flags, int e2e_tx_hop,
605 				 u16 sof_mask, u16 eof_mask,
606 				 void (*start_poll)(void *), void *poll_data)
607 {
608 	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
609 			     start_poll, poll_data);
610 }
611 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
612 
613 /**
614  * tb_ring_start() - enable a ring
615  * @ring: Ring to start
616  *
617  * Must not be invoked in parallel with tb_ring_stop().
618  */
619 void tb_ring_start(struct tb_ring *ring)
620 {
621 	u16 frame_size;
622 	u32 flags;
623 
624 	spin_lock_irq(&ring->nhi->lock);
625 	spin_lock(&ring->lock);
626 	if (ring->nhi->going_away)
627 		goto err;
628 	if (ring->running) {
629 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
630 		goto err;
631 	}
632 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
633 		RING_TYPE(ring), ring->hop);
634 
635 	if (ring->flags & RING_FLAG_FRAME) {
636 		/* Means 4096 */
637 		frame_size = 0;
638 		flags = RING_FLAG_ENABLE;
639 	} else {
640 		frame_size = TB_FRAME_SIZE;
641 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
642 	}
643 
644 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
645 	if (ring->is_tx) {
646 		ring_iowrite32desc(ring, ring->size, 12);
647 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
648 		ring_iowrite32options(ring, flags, 0);
649 	} else {
650 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
651 
652 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
653 		ring_iowrite32options(ring, sof_eof_mask, 4);
654 		ring_iowrite32options(ring, flags, 0);
655 	}
656 
657 	/*
658 	 * Now that the ring valid bit is set we can configure E2E if
659 	 * enabled for the ring.
660 	 */
661 	if (ring->flags & RING_FLAG_E2E) {
662 		if (!ring->is_tx) {
663 			u32 hop;
664 
665 			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
666 			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
667 			flags |= hop;
668 
669 			dev_dbg(&ring->nhi->pdev->dev,
670 				"enabling E2E for %s %d with TX HopID %d\n",
671 				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
672 		} else {
673 			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
674 				RING_TYPE(ring), ring->hop);
675 		}
676 
677 		flags |= RING_FLAG_E2E_FLOW_CONTROL;
678 		ring_iowrite32options(ring, flags, 0);
679 	}
680 
681 	ring_interrupt_active(ring, true);
682 	ring->running = true;
683 err:
684 	spin_unlock(&ring->lock);
685 	spin_unlock_irq(&ring->nhi->lock);
686 }
687 EXPORT_SYMBOL_GPL(tb_ring_start);
688 
689 /**
690  * tb_ring_stop() - shutdown a ring
691  * @ring: Ring to stop
692  *
693  * Must not be invoked from a callback.
694  *
695  * This method will disable the ring. Further calls to
696  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
697  * called.
698  *
699  * All enqueued frames will be canceled and their callbacks will be executed
700  * with frame->canceled set to true (on the callback thread). This method
701  * returns only after all callback invocations have finished.
702  */
703 void tb_ring_stop(struct tb_ring *ring)
704 {
705 	spin_lock_irq(&ring->nhi->lock);
706 	spin_lock(&ring->lock);
707 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
708 		RING_TYPE(ring), ring->hop);
709 	if (ring->nhi->going_away)
710 		goto err;
711 	if (!ring->running) {
712 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
713 			 RING_TYPE(ring), ring->hop);
714 		goto err;
715 	}
716 	ring_interrupt_active(ring, false);
717 
718 	ring_iowrite32options(ring, 0, 0);
719 	ring_iowrite64desc(ring, 0, 0);
720 	ring_iowrite32desc(ring, 0, 8);
721 	ring_iowrite32desc(ring, 0, 12);
722 	ring->head = 0;
723 	ring->tail = 0;
724 	ring->running = false;
725 
726 err:
727 	spin_unlock(&ring->lock);
728 	spin_unlock_irq(&ring->nhi->lock);
729 
730 	/*
731 	 * schedule ring->work to invoke callbacks on all remaining frames.
732 	 */
733 	schedule_work(&ring->work);
734 	flush_work(&ring->work);
735 }
736 EXPORT_SYMBOL_GPL(tb_ring_stop);
737 
738 /*
739  * tb_ring_free() - free ring
740  *
741  * When this method returns all invocations of ring->callback will have
742  * finished.
743  *
744  * Ring must be stopped.
745  *
746  * Must NOT be called from ring_frame->callback!
747  */
748 void tb_ring_free(struct tb_ring *ring)
749 {
750 	spin_lock_irq(&ring->nhi->lock);
751 	/*
752 	 * Dissociate the ring from the NHI. This also ensures that
753 	 * nhi_interrupt_work cannot reschedule ring->work.
754 	 */
755 	if (ring->is_tx)
756 		ring->nhi->tx_rings[ring->hop] = NULL;
757 	else
758 		ring->nhi->rx_rings[ring->hop] = NULL;
759 
760 	if (ring->running) {
761 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
762 			 RING_TYPE(ring), ring->hop);
763 	}
764 	spin_unlock_irq(&ring->nhi->lock);
765 
766 	ring_release_msix(ring);
767 
768 	dma_free_coherent(&ring->nhi->pdev->dev,
769 			  ring->size * sizeof(*ring->descriptors),
770 			  ring->descriptors, ring->descriptors_dma);
771 
772 	ring->descriptors = NULL;
773 	ring->descriptors_dma = 0;
774 
775 
776 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
777 		ring->hop);
778 
779 	/*
780 	 * ring->work can no longer be scheduled (it is scheduled only
781 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
782 	 * to finish before freeing the ring.
783 	 */
784 	flush_work(&ring->work);
785 	kfree(ring);
786 }
787 EXPORT_SYMBOL_GPL(tb_ring_free);
788 
789 /**
790  * nhi_mailbox_cmd() - Send a command through NHI mailbox
791  * @nhi: Pointer to the NHI structure
792  * @cmd: Command to send
793  * @data: Data to be send with the command
794  *
795  * Sends mailbox command to the firmware running on NHI. Returns %0 in
796  * case of success and negative errno in case of failure.
797  */
798 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
799 {
800 	ktime_t timeout;
801 	u32 val;
802 
803 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
804 
805 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
806 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
807 	val |= REG_INMAIL_OP_REQUEST | cmd;
808 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
809 
810 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
811 	do {
812 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
813 		if (!(val & REG_INMAIL_OP_REQUEST))
814 			break;
815 		usleep_range(10, 20);
816 	} while (ktime_before(ktime_get(), timeout));
817 
818 	if (val & REG_INMAIL_OP_REQUEST)
819 		return -ETIMEDOUT;
820 	if (val & REG_INMAIL_ERROR)
821 		return -EIO;
822 
823 	return 0;
824 }
825 
826 /**
827  * nhi_mailbox_mode() - Return current firmware operation mode
828  * @nhi: Pointer to the NHI structure
829  *
830  * The function reads current firmware operation mode using NHI mailbox
831  * registers and returns it to the caller.
832  */
833 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
834 {
835 	u32 val;
836 
837 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
838 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
839 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
840 
841 	return (enum nhi_fw_mode)val;
842 }
843 
844 static void nhi_interrupt_work(struct work_struct *work)
845 {
846 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
847 	int value = 0; /* Suppress uninitialized usage warning. */
848 	int bit;
849 	int hop = -1;
850 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
851 	struct tb_ring *ring;
852 
853 	spin_lock_irq(&nhi->lock);
854 
855 	/*
856 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
857 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
858 	 * dwords as required. The registers are cleared on read.
859 	 */
860 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
861 		if (bit % 32 == 0)
862 			value = ioread32(nhi->iobase
863 					 + REG_RING_NOTIFY_BASE
864 					 + 4 * (bit / 32));
865 		if (++hop == nhi->hop_count) {
866 			hop = 0;
867 			type++;
868 		}
869 		if ((value & (1 << (bit % 32))) == 0)
870 			continue;
871 		if (type == 2) {
872 			dev_warn(&nhi->pdev->dev,
873 				 "RX overflow for ring %d\n",
874 				 hop);
875 			continue;
876 		}
877 		if (type == 0)
878 			ring = nhi->tx_rings[hop];
879 		else
880 			ring = nhi->rx_rings[hop];
881 		if (ring == NULL) {
882 			dev_warn(&nhi->pdev->dev,
883 				 "got interrupt for inactive %s ring %d\n",
884 				 type ? "RX" : "TX",
885 				 hop);
886 			continue;
887 		}
888 
889 		spin_lock(&ring->lock);
890 		__ring_interrupt(ring);
891 		spin_unlock(&ring->lock);
892 	}
893 	spin_unlock_irq(&nhi->lock);
894 }
895 
896 static irqreturn_t nhi_msi(int irq, void *data)
897 {
898 	struct tb_nhi *nhi = data;
899 	schedule_work(&nhi->interrupt_work);
900 	return IRQ_HANDLED;
901 }
902 
903 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
904 {
905 	struct pci_dev *pdev = to_pci_dev(dev);
906 	struct tb *tb = pci_get_drvdata(pdev);
907 	struct tb_nhi *nhi = tb->nhi;
908 	int ret;
909 
910 	ret = tb_domain_suspend_noirq(tb);
911 	if (ret)
912 		return ret;
913 
914 	if (nhi->ops && nhi->ops->suspend_noirq) {
915 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
916 		if (ret)
917 			return ret;
918 	}
919 
920 	return 0;
921 }
922 
923 static int nhi_suspend_noirq(struct device *dev)
924 {
925 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
926 }
927 
928 static int nhi_freeze_noirq(struct device *dev)
929 {
930 	struct pci_dev *pdev = to_pci_dev(dev);
931 	struct tb *tb = pci_get_drvdata(pdev);
932 
933 	return tb_domain_freeze_noirq(tb);
934 }
935 
936 static int nhi_thaw_noirq(struct device *dev)
937 {
938 	struct pci_dev *pdev = to_pci_dev(dev);
939 	struct tb *tb = pci_get_drvdata(pdev);
940 
941 	return tb_domain_thaw_noirq(tb);
942 }
943 
944 static bool nhi_wake_supported(struct pci_dev *pdev)
945 {
946 	u8 val;
947 
948 	/*
949 	 * If power rails are sustainable for wakeup from S4 this
950 	 * property is set by the BIOS.
951 	 */
952 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
953 		return !!val;
954 
955 	return true;
956 }
957 
958 static int nhi_poweroff_noirq(struct device *dev)
959 {
960 	struct pci_dev *pdev = to_pci_dev(dev);
961 	bool wakeup;
962 
963 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
964 	return __nhi_suspend_noirq(dev, wakeup);
965 }
966 
967 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
968 {
969 	/* Throttling is specified in 256ns increments */
970 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
971 	unsigned int i;
972 
973 	/*
974 	 * Configure interrupt throttling for all vectors even if we
975 	 * only use few.
976 	 */
977 	for (i = 0; i < MSIX_MAX_VECS; i++) {
978 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
979 		iowrite32(throttle, nhi->iobase + reg);
980 	}
981 }
982 
983 static int nhi_resume_noirq(struct device *dev)
984 {
985 	struct pci_dev *pdev = to_pci_dev(dev);
986 	struct tb *tb = pci_get_drvdata(pdev);
987 	struct tb_nhi *nhi = tb->nhi;
988 	int ret;
989 
990 	/*
991 	 * Check that the device is still there. It may be that the user
992 	 * unplugged last device which causes the host controller to go
993 	 * away on PCs.
994 	 */
995 	if (!pci_device_is_present(pdev)) {
996 		nhi->going_away = true;
997 	} else {
998 		if (nhi->ops && nhi->ops->resume_noirq) {
999 			ret = nhi->ops->resume_noirq(nhi);
1000 			if (ret)
1001 				return ret;
1002 		}
1003 		nhi_enable_int_throttling(tb->nhi);
1004 	}
1005 
1006 	return tb_domain_resume_noirq(tb);
1007 }
1008 
1009 static int nhi_suspend(struct device *dev)
1010 {
1011 	struct pci_dev *pdev = to_pci_dev(dev);
1012 	struct tb *tb = pci_get_drvdata(pdev);
1013 
1014 	return tb_domain_suspend(tb);
1015 }
1016 
1017 static void nhi_complete(struct device *dev)
1018 {
1019 	struct pci_dev *pdev = to_pci_dev(dev);
1020 	struct tb *tb = pci_get_drvdata(pdev);
1021 
1022 	/*
1023 	 * If we were runtime suspended when system suspend started,
1024 	 * schedule runtime resume now. It should bring the domain back
1025 	 * to functional state.
1026 	 */
1027 	if (pm_runtime_suspended(&pdev->dev))
1028 		pm_runtime_resume(&pdev->dev);
1029 	else
1030 		tb_domain_complete(tb);
1031 }
1032 
1033 static int nhi_runtime_suspend(struct device *dev)
1034 {
1035 	struct pci_dev *pdev = to_pci_dev(dev);
1036 	struct tb *tb = pci_get_drvdata(pdev);
1037 	struct tb_nhi *nhi = tb->nhi;
1038 	int ret;
1039 
1040 	ret = tb_domain_runtime_suspend(tb);
1041 	if (ret)
1042 		return ret;
1043 
1044 	if (nhi->ops && nhi->ops->runtime_suspend) {
1045 		ret = nhi->ops->runtime_suspend(tb->nhi);
1046 		if (ret)
1047 			return ret;
1048 	}
1049 	return 0;
1050 }
1051 
1052 static int nhi_runtime_resume(struct device *dev)
1053 {
1054 	struct pci_dev *pdev = to_pci_dev(dev);
1055 	struct tb *tb = pci_get_drvdata(pdev);
1056 	struct tb_nhi *nhi = tb->nhi;
1057 	int ret;
1058 
1059 	if (nhi->ops && nhi->ops->runtime_resume) {
1060 		ret = nhi->ops->runtime_resume(nhi);
1061 		if (ret)
1062 			return ret;
1063 	}
1064 
1065 	nhi_enable_int_throttling(nhi);
1066 	return tb_domain_runtime_resume(tb);
1067 }
1068 
1069 static void nhi_shutdown(struct tb_nhi *nhi)
1070 {
1071 	int i;
1072 
1073 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1074 
1075 	for (i = 0; i < nhi->hop_count; i++) {
1076 		if (nhi->tx_rings[i])
1077 			dev_WARN(&nhi->pdev->dev,
1078 				 "TX ring %d is still active\n", i);
1079 		if (nhi->rx_rings[i])
1080 			dev_WARN(&nhi->pdev->dev,
1081 				 "RX ring %d is still active\n", i);
1082 	}
1083 	nhi_disable_interrupts(nhi);
1084 	/*
1085 	 * We have to release the irq before calling flush_work. Otherwise an
1086 	 * already executing IRQ handler could call schedule_work again.
1087 	 */
1088 	if (!nhi->pdev->msix_enabled) {
1089 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1090 		flush_work(&nhi->interrupt_work);
1091 	}
1092 	ida_destroy(&nhi->msix_ida);
1093 
1094 	if (nhi->ops && nhi->ops->shutdown)
1095 		nhi->ops->shutdown(nhi);
1096 }
1097 
1098 static void nhi_check_quirks(struct tb_nhi *nhi)
1099 {
1100 	/*
1101 	 * Intel hardware supports auto clear of the interrupt status
1102 	 * reqister right after interrupt is being issued.
1103 	 */
1104 	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL)
1105 		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1106 }
1107 
1108 static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
1109 {
1110 	if (!pdev->external_facing ||
1111 	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
1112 		return 0;
1113 	*(bool *)data = true;
1114 	return 1; /* Stop walking */
1115 }
1116 
1117 static void nhi_check_iommu(struct tb_nhi *nhi)
1118 {
1119 	struct pci_bus *bus = nhi->pdev->bus;
1120 	bool port_ok = false;
1121 
1122 	/*
1123 	 * Ideally what we'd do here is grab every PCI device that
1124 	 * represents a tunnelling adapter for this NHI and check their
1125 	 * status directly, but unfortunately USB4 seems to make it
1126 	 * obnoxiously difficult to reliably make any correlation.
1127 	 *
1128 	 * So for now we'll have to bodge it... Hoping that the system
1129 	 * is at least sane enough that an adapter is in the same PCI
1130 	 * segment as its NHI, if we can find *something* on that segment
1131 	 * which meets the requirements for Kernel DMA Protection, we'll
1132 	 * take that to imply that firmware is aware and has (hopefully)
1133 	 * done the right thing in general. We need to know that the PCI
1134 	 * layer has seen the ExternalFacingPort property which will then
1135 	 * inform the IOMMU layer to enforce the complete "untrusted DMA"
1136 	 * flow, but also that the IOMMU driver itself can be trusted not
1137 	 * to have been subverted by a pre-boot DMA attack.
1138 	 */
1139 	while (bus->parent)
1140 		bus = bus->parent;
1141 
1142 	pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
1143 
1144 	nhi->iommu_dma_protection = port_ok;
1145 	dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
1146 		str_enabled_disabled(port_ok));
1147 }
1148 
1149 static int nhi_init_msi(struct tb_nhi *nhi)
1150 {
1151 	struct pci_dev *pdev = nhi->pdev;
1152 	int res, irq, nvec;
1153 
1154 	/* In case someone left them on. */
1155 	nhi_disable_interrupts(nhi);
1156 
1157 	nhi_enable_int_throttling(nhi);
1158 
1159 	ida_init(&nhi->msix_ida);
1160 
1161 	/*
1162 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1163 	 * get all MSI-X vectors and if we succeed, each ring will have
1164 	 * one MSI-X. If for some reason that does not work out, we
1165 	 * fallback to a single MSI.
1166 	 */
1167 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1168 				     PCI_IRQ_MSIX);
1169 	if (nvec < 0) {
1170 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1171 		if (nvec < 0)
1172 			return nvec;
1173 
1174 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1175 
1176 		irq = pci_irq_vector(nhi->pdev, 0);
1177 		if (irq < 0)
1178 			return irq;
1179 
1180 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1181 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1182 		if (res) {
1183 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1184 			return res;
1185 		}
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static bool nhi_imr_valid(struct pci_dev *pdev)
1192 {
1193 	u8 val;
1194 
1195 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1196 		return !!val;
1197 
1198 	return true;
1199 }
1200 
1201 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1202 {
1203 	struct tb *tb;
1204 
1205 	/*
1206 	 * USB4 case is simple. If we got control of any of the
1207 	 * capabilities, we use software CM.
1208 	 */
1209 	if (tb_acpi_is_native())
1210 		return tb_probe(nhi);
1211 
1212 	/*
1213 	 * Either firmware based CM is running (we did not get control
1214 	 * from the firmware) or this is pre-USB4 PC so try first
1215 	 * firmware CM and then fallback to software CM.
1216 	 */
1217 	tb = icm_probe(nhi);
1218 	if (!tb)
1219 		tb = tb_probe(nhi);
1220 
1221 	return tb;
1222 }
1223 
1224 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1225 {
1226 	struct tb_nhi *nhi;
1227 	struct tb *tb;
1228 	int res;
1229 
1230 	if (!nhi_imr_valid(pdev)) {
1231 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1232 		return -ENODEV;
1233 	}
1234 
1235 	res = pcim_enable_device(pdev);
1236 	if (res) {
1237 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1238 		return res;
1239 	}
1240 
1241 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1242 	if (res) {
1243 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1244 		return res;
1245 	}
1246 
1247 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1248 	if (!nhi)
1249 		return -ENOMEM;
1250 
1251 	nhi->pdev = pdev;
1252 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1253 	/* cannot fail - table is allocated in pcim_iomap_regions */
1254 	nhi->iobase = pcim_iomap_table(pdev)[0];
1255 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1256 	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1257 
1258 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1259 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1260 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1261 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1262 	if (!nhi->tx_rings || !nhi->rx_rings)
1263 		return -ENOMEM;
1264 
1265 	nhi_check_quirks(nhi);
1266 	nhi_check_iommu(nhi);
1267 
1268 	res = nhi_init_msi(nhi);
1269 	if (res) {
1270 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1271 		return res;
1272 	}
1273 
1274 	spin_lock_init(&nhi->lock);
1275 
1276 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1277 	if (res) {
1278 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1279 		return res;
1280 	}
1281 
1282 	pci_set_master(pdev);
1283 
1284 	if (nhi->ops && nhi->ops->init) {
1285 		res = nhi->ops->init(nhi);
1286 		if (res)
1287 			return res;
1288 	}
1289 
1290 	tb = nhi_select_cm(nhi);
1291 	if (!tb) {
1292 		dev_err(&nhi->pdev->dev,
1293 			"failed to determine connection manager, aborting\n");
1294 		return -ENODEV;
1295 	}
1296 
1297 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1298 
1299 	res = tb_domain_add(tb);
1300 	if (res) {
1301 		/*
1302 		 * At this point the RX/TX rings might already have been
1303 		 * activated. Do a proper shutdown.
1304 		 */
1305 		tb_domain_put(tb);
1306 		nhi_shutdown(nhi);
1307 		return res;
1308 	}
1309 	pci_set_drvdata(pdev, tb);
1310 
1311 	device_wakeup_enable(&pdev->dev);
1312 
1313 	pm_runtime_allow(&pdev->dev);
1314 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1315 	pm_runtime_use_autosuspend(&pdev->dev);
1316 	pm_runtime_put_autosuspend(&pdev->dev);
1317 
1318 	return 0;
1319 }
1320 
1321 static void nhi_remove(struct pci_dev *pdev)
1322 {
1323 	struct tb *tb = pci_get_drvdata(pdev);
1324 	struct tb_nhi *nhi = tb->nhi;
1325 
1326 	pm_runtime_get_sync(&pdev->dev);
1327 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1328 	pm_runtime_forbid(&pdev->dev);
1329 
1330 	tb_domain_remove(tb);
1331 	nhi_shutdown(nhi);
1332 }
1333 
1334 /*
1335  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1336  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1337  * resume_noirq until we are done.
1338  */
1339 static const struct dev_pm_ops nhi_pm_ops = {
1340 	.suspend_noirq = nhi_suspend_noirq,
1341 	.resume_noirq = nhi_resume_noirq,
1342 	.freeze_noirq = nhi_freeze_noirq,  /*
1343 					    * we just disable hotplug, the
1344 					    * pci-tunnels stay alive.
1345 					    */
1346 	.thaw_noirq = nhi_thaw_noirq,
1347 	.restore_noirq = nhi_resume_noirq,
1348 	.suspend = nhi_suspend,
1349 	.poweroff_noirq = nhi_poweroff_noirq,
1350 	.poweroff = nhi_suspend,
1351 	.complete = nhi_complete,
1352 	.runtime_suspend = nhi_runtime_suspend,
1353 	.runtime_resume = nhi_runtime_resume,
1354 };
1355 
1356 static struct pci_device_id nhi_ids[] = {
1357 	/*
1358 	 * We have to specify class, the TB bridges use the same device and
1359 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1360 	 */
1361 	{
1362 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1363 		.vendor = PCI_VENDOR_ID_INTEL,
1364 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1365 		.subvendor = 0x2222, .subdevice = 0x1111,
1366 	},
1367 	{
1368 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1369 		.vendor = PCI_VENDOR_ID_INTEL,
1370 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1371 		.subvendor = 0x2222, .subdevice = 0x1111,
1372 	},
1373 	{
1374 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1375 		.vendor = PCI_VENDOR_ID_INTEL,
1376 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1377 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1378 	},
1379 	{
1380 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1381 		.vendor = PCI_VENDOR_ID_INTEL,
1382 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1383 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1384 	},
1385 
1386 	/* Thunderbolt 3 */
1387 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1388 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1389 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1390 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1391 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1392 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1393 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1394 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1395 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1396 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1397 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1398 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1399 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1400 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1401 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1402 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1403 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1404 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1405 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1406 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1407 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1408 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1409 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1410 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1411 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1412 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1413 
1414 	/* Any USB4 compliant host */
1415 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1416 
1417 	{ 0,}
1418 };
1419 
1420 MODULE_DEVICE_TABLE(pci, nhi_ids);
1421 MODULE_LICENSE("GPL");
1422 
1423 static struct pci_driver nhi_driver = {
1424 	.name = "thunderbolt",
1425 	.id_table = nhi_ids,
1426 	.probe = nhi_probe,
1427 	.remove = nhi_remove,
1428 	.shutdown = nhi_remove,
1429 	.driver.pm = &nhi_pm_ops,
1430 };
1431 
1432 static int __init nhi_init(void)
1433 {
1434 	int ret;
1435 
1436 	ret = tb_domain_init();
1437 	if (ret)
1438 		return ret;
1439 	ret = pci_register_driver(&nhi_driver);
1440 	if (ret)
1441 		tb_domain_exit();
1442 	return ret;
1443 }
1444 
1445 static void __exit nhi_unload(void)
1446 {
1447 	pci_unregister_driver(&nhi_driver);
1448 	tb_domain_exit();
1449 }
1450 
1451 rootfs_initcall(nhi_init);
1452 module_exit(nhi_unload);
1453