1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/delay.h> 19 #include <linux/property.h> 20 21 #include "nhi.h" 22 #include "nhi_regs.h" 23 #include "tb.h" 24 25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 26 27 /* 28 * Used to enable end-to-end workaround for missing RX packets. Do not 29 * use this ring for anything else. 30 */ 31 #define RING_E2E_UNUSED_HOPID 2 32 #define RING_FIRST_USABLE_HOPID TB_PATH_MIN_HOPID 33 34 /* 35 * Minimal number of vectors when we use MSI-X. Two for control channel 36 * Rx/Tx and the rest four are for cross domain DMA paths. 37 */ 38 #define MSIX_MIN_VECS 6 39 #define MSIX_MAX_VECS 16 40 41 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 42 43 static int ring_interrupt_index(struct tb_ring *ring) 44 { 45 int bit = ring->hop; 46 if (!ring->is_tx) 47 bit += ring->nhi->hop_count; 48 return bit; 49 } 50 51 /** 52 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 53 * 54 * ring->nhi->lock must be held. 55 */ 56 static void ring_interrupt_active(struct tb_ring *ring, bool active) 57 { 58 int reg = REG_RING_INTERRUPT_BASE + 59 ring_interrupt_index(ring) / 32 * 4; 60 int bit = ring_interrupt_index(ring) & 31; 61 int mask = 1 << bit; 62 u32 old, new; 63 64 if (ring->irq > 0) { 65 u32 step, shift, ivr, misc; 66 void __iomem *ivr_base; 67 int index; 68 69 if (ring->is_tx) 70 index = ring->hop; 71 else 72 index = ring->hop + ring->nhi->hop_count; 73 74 /* 75 * Ask the hardware to clear interrupt status bits automatically 76 * since we already know which interrupt was triggered. 77 */ 78 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 79 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) { 80 misc |= REG_DMA_MISC_INT_AUTO_CLEAR; 81 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC); 82 } 83 84 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 85 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 86 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 87 ivr = ioread32(ivr_base + step); 88 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 89 if (active) 90 ivr |= ring->vector << shift; 91 iowrite32(ivr, ivr_base + step); 92 } 93 94 old = ioread32(ring->nhi->iobase + reg); 95 if (active) 96 new = old | mask; 97 else 98 new = old & ~mask; 99 100 dev_dbg(&ring->nhi->pdev->dev, 101 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 102 active ? "enabling" : "disabling", reg, bit, old, new); 103 104 if (new == old) 105 dev_WARN(&ring->nhi->pdev->dev, 106 "interrupt for %s %d is already %s\n", 107 RING_TYPE(ring), ring->hop, 108 active ? "enabled" : "disabled"); 109 iowrite32(new, ring->nhi->iobase + reg); 110 } 111 112 /** 113 * nhi_disable_interrupts() - disable interrupts for all rings 114 * 115 * Use only during init and shutdown. 116 */ 117 static void nhi_disable_interrupts(struct tb_nhi *nhi) 118 { 119 int i = 0; 120 /* disable interrupts */ 121 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 122 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 123 124 /* clear interrupt status bits */ 125 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 126 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 127 } 128 129 /* ring helper methods */ 130 131 static void __iomem *ring_desc_base(struct tb_ring *ring) 132 { 133 void __iomem *io = ring->nhi->iobase; 134 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 135 io += ring->hop * 16; 136 return io; 137 } 138 139 static void __iomem *ring_options_base(struct tb_ring *ring) 140 { 141 void __iomem *io = ring->nhi->iobase; 142 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 143 io += ring->hop * 32; 144 return io; 145 } 146 147 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 148 { 149 /* 150 * The other 16-bits in the register is read-only and writes to it 151 * are ignored by the hardware so we can save one ioread32() by 152 * filling the read-only bits with zeroes. 153 */ 154 iowrite32(cons, ring_desc_base(ring) + 8); 155 } 156 157 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 158 { 159 /* See ring_iowrite_cons() above for explanation */ 160 iowrite32(prod << 16, ring_desc_base(ring) + 8); 161 } 162 163 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 164 { 165 iowrite32(value, ring_desc_base(ring) + offset); 166 } 167 168 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 169 { 170 iowrite32(value, ring_desc_base(ring) + offset); 171 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 172 } 173 174 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 175 { 176 iowrite32(value, ring_options_base(ring) + offset); 177 } 178 179 static bool ring_full(struct tb_ring *ring) 180 { 181 return ((ring->head + 1) % ring->size) == ring->tail; 182 } 183 184 static bool ring_empty(struct tb_ring *ring) 185 { 186 return ring->head == ring->tail; 187 } 188 189 /** 190 * ring_write_descriptors() - post frames from ring->queue to the controller 191 * 192 * ring->lock is held. 193 */ 194 static void ring_write_descriptors(struct tb_ring *ring) 195 { 196 struct ring_frame *frame, *n; 197 struct ring_desc *descriptor; 198 list_for_each_entry_safe(frame, n, &ring->queue, list) { 199 if (ring_full(ring)) 200 break; 201 list_move_tail(&frame->list, &ring->in_flight); 202 descriptor = &ring->descriptors[ring->head]; 203 descriptor->phys = frame->buffer_phy; 204 descriptor->time = 0; 205 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 206 if (ring->is_tx) { 207 descriptor->length = frame->size; 208 descriptor->eof = frame->eof; 209 descriptor->sof = frame->sof; 210 } 211 ring->head = (ring->head + 1) % ring->size; 212 if (ring->is_tx) 213 ring_iowrite_prod(ring, ring->head); 214 else 215 ring_iowrite_cons(ring, ring->head); 216 } 217 } 218 219 /** 220 * ring_work() - progress completed frames 221 * 222 * If the ring is shutting down then all frames are marked as canceled and 223 * their callbacks are invoked. 224 * 225 * Otherwise we collect all completed frame from the ring buffer, write new 226 * frame to the ring buffer and invoke the callbacks for the completed frames. 227 */ 228 static void ring_work(struct work_struct *work) 229 { 230 struct tb_ring *ring = container_of(work, typeof(*ring), work); 231 struct ring_frame *frame; 232 bool canceled = false; 233 unsigned long flags; 234 LIST_HEAD(done); 235 236 spin_lock_irqsave(&ring->lock, flags); 237 238 if (!ring->running) { 239 /* Move all frames to done and mark them as canceled. */ 240 list_splice_tail_init(&ring->in_flight, &done); 241 list_splice_tail_init(&ring->queue, &done); 242 canceled = true; 243 goto invoke_callback; 244 } 245 246 while (!ring_empty(ring)) { 247 if (!(ring->descriptors[ring->tail].flags 248 & RING_DESC_COMPLETED)) 249 break; 250 frame = list_first_entry(&ring->in_flight, typeof(*frame), 251 list); 252 list_move_tail(&frame->list, &done); 253 if (!ring->is_tx) { 254 frame->size = ring->descriptors[ring->tail].length; 255 frame->eof = ring->descriptors[ring->tail].eof; 256 frame->sof = ring->descriptors[ring->tail].sof; 257 frame->flags = ring->descriptors[ring->tail].flags; 258 } 259 ring->tail = (ring->tail + 1) % ring->size; 260 } 261 ring_write_descriptors(ring); 262 263 invoke_callback: 264 /* allow callbacks to schedule new work */ 265 spin_unlock_irqrestore(&ring->lock, flags); 266 while (!list_empty(&done)) { 267 frame = list_first_entry(&done, typeof(*frame), list); 268 /* 269 * The callback may reenqueue or delete frame. 270 * Do not hold on to it. 271 */ 272 list_del_init(&frame->list); 273 if (frame->callback) 274 frame->callback(ring, frame, canceled); 275 } 276 } 277 278 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 279 { 280 unsigned long flags; 281 int ret = 0; 282 283 spin_lock_irqsave(&ring->lock, flags); 284 if (ring->running) { 285 list_add_tail(&frame->list, &ring->queue); 286 ring_write_descriptors(ring); 287 } else { 288 ret = -ESHUTDOWN; 289 } 290 spin_unlock_irqrestore(&ring->lock, flags); 291 return ret; 292 } 293 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 294 295 /** 296 * tb_ring_poll() - Poll one completed frame from the ring 297 * @ring: Ring to poll 298 * 299 * This function can be called when @start_poll callback of the @ring 300 * has been called. It will read one completed frame from the ring and 301 * return it to the caller. Returns %NULL if there is no more completed 302 * frames. 303 */ 304 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 305 { 306 struct ring_frame *frame = NULL; 307 unsigned long flags; 308 309 spin_lock_irqsave(&ring->lock, flags); 310 if (!ring->running) 311 goto unlock; 312 if (ring_empty(ring)) 313 goto unlock; 314 315 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 316 frame = list_first_entry(&ring->in_flight, typeof(*frame), 317 list); 318 list_del_init(&frame->list); 319 320 if (!ring->is_tx) { 321 frame->size = ring->descriptors[ring->tail].length; 322 frame->eof = ring->descriptors[ring->tail].eof; 323 frame->sof = ring->descriptors[ring->tail].sof; 324 frame->flags = ring->descriptors[ring->tail].flags; 325 } 326 327 ring->tail = (ring->tail + 1) % ring->size; 328 } 329 330 unlock: 331 spin_unlock_irqrestore(&ring->lock, flags); 332 return frame; 333 } 334 EXPORT_SYMBOL_GPL(tb_ring_poll); 335 336 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 337 { 338 int idx = ring_interrupt_index(ring); 339 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 340 int bit = idx % 32; 341 u32 val; 342 343 val = ioread32(ring->nhi->iobase + reg); 344 if (mask) 345 val &= ~BIT(bit); 346 else 347 val |= BIT(bit); 348 iowrite32(val, ring->nhi->iobase + reg); 349 } 350 351 /* Both @nhi->lock and @ring->lock should be held */ 352 static void __ring_interrupt(struct tb_ring *ring) 353 { 354 if (!ring->running) 355 return; 356 357 if (ring->start_poll) { 358 __ring_interrupt_mask(ring, true); 359 ring->start_poll(ring->poll_data); 360 } else { 361 schedule_work(&ring->work); 362 } 363 } 364 365 /** 366 * tb_ring_poll_complete() - Re-start interrupt for the ring 367 * @ring: Ring to re-start the interrupt 368 * 369 * This will re-start (unmask) the ring interrupt once the user is done 370 * with polling. 371 */ 372 void tb_ring_poll_complete(struct tb_ring *ring) 373 { 374 unsigned long flags; 375 376 spin_lock_irqsave(&ring->nhi->lock, flags); 377 spin_lock(&ring->lock); 378 if (ring->start_poll) 379 __ring_interrupt_mask(ring, false); 380 spin_unlock(&ring->lock); 381 spin_unlock_irqrestore(&ring->nhi->lock, flags); 382 } 383 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 384 385 static irqreturn_t ring_msix(int irq, void *data) 386 { 387 struct tb_ring *ring = data; 388 389 spin_lock(&ring->nhi->lock); 390 spin_lock(&ring->lock); 391 __ring_interrupt(ring); 392 spin_unlock(&ring->lock); 393 spin_unlock(&ring->nhi->lock); 394 395 return IRQ_HANDLED; 396 } 397 398 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 399 { 400 struct tb_nhi *nhi = ring->nhi; 401 unsigned long irqflags; 402 int ret; 403 404 if (!nhi->pdev->msix_enabled) 405 return 0; 406 407 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 408 if (ret < 0) 409 return ret; 410 411 ring->vector = ret; 412 413 ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector); 414 if (ring->irq < 0) 415 return ring->irq; 416 417 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 418 return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 419 } 420 421 static void ring_release_msix(struct tb_ring *ring) 422 { 423 if (ring->irq <= 0) 424 return; 425 426 free_irq(ring->irq, ring); 427 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 428 ring->vector = 0; 429 ring->irq = 0; 430 } 431 432 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 433 { 434 int ret = 0; 435 436 spin_lock_irq(&nhi->lock); 437 438 if (ring->hop < 0) { 439 unsigned int i; 440 441 /* 442 * Automatically allocate HopID from the non-reserved 443 * range 8 .. hop_count - 1. 444 */ 445 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) { 446 if (ring->is_tx) { 447 if (!nhi->tx_rings[i]) { 448 ring->hop = i; 449 break; 450 } 451 } else { 452 if (!nhi->rx_rings[i]) { 453 ring->hop = i; 454 break; 455 } 456 } 457 } 458 } 459 460 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 461 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 462 ret = -EINVAL; 463 goto err_unlock; 464 } 465 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 466 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 467 ring->hop); 468 ret = -EBUSY; 469 goto err_unlock; 470 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 471 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 472 ring->hop); 473 ret = -EBUSY; 474 goto err_unlock; 475 } 476 477 if (ring->is_tx) 478 nhi->tx_rings[ring->hop] = ring; 479 else 480 nhi->rx_rings[ring->hop] = ring; 481 482 err_unlock: 483 spin_unlock_irq(&nhi->lock); 484 485 return ret; 486 } 487 488 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 489 bool transmit, unsigned int flags, 490 u16 sof_mask, u16 eof_mask, 491 void (*start_poll)(void *), 492 void *poll_data) 493 { 494 struct tb_ring *ring = NULL; 495 496 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 497 transmit ? "TX" : "RX", hop, size); 498 499 /* Tx Ring 2 is reserved for E2E workaround */ 500 if (transmit && hop == RING_E2E_UNUSED_HOPID) 501 return NULL; 502 503 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 504 if (!ring) 505 return NULL; 506 507 spin_lock_init(&ring->lock); 508 INIT_LIST_HEAD(&ring->queue); 509 INIT_LIST_HEAD(&ring->in_flight); 510 INIT_WORK(&ring->work, ring_work); 511 512 ring->nhi = nhi; 513 ring->hop = hop; 514 ring->is_tx = transmit; 515 ring->size = size; 516 ring->flags = flags; 517 ring->sof_mask = sof_mask; 518 ring->eof_mask = eof_mask; 519 ring->head = 0; 520 ring->tail = 0; 521 ring->running = false; 522 ring->start_poll = start_poll; 523 ring->poll_data = poll_data; 524 525 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 526 size * sizeof(*ring->descriptors), 527 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 528 if (!ring->descriptors) 529 goto err_free_ring; 530 531 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 532 goto err_free_descs; 533 534 if (nhi_alloc_hop(nhi, ring)) 535 goto err_release_msix; 536 537 return ring; 538 539 err_release_msix: 540 ring_release_msix(ring); 541 err_free_descs: 542 dma_free_coherent(&ring->nhi->pdev->dev, 543 ring->size * sizeof(*ring->descriptors), 544 ring->descriptors, ring->descriptors_dma); 545 err_free_ring: 546 kfree(ring); 547 548 return NULL; 549 } 550 551 /** 552 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 553 * @nhi: Pointer to the NHI the ring is to be allocated 554 * @hop: HopID (ring) to allocate 555 * @size: Number of entries in the ring 556 * @flags: Flags for the ring 557 */ 558 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 559 unsigned int flags) 560 { 561 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL); 562 } 563 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 564 565 /** 566 * tb_ring_alloc_rx() - Allocate DMA ring for receive 567 * @nhi: Pointer to the NHI the ring is to be allocated 568 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 569 * @size: Number of entries in the ring 570 * @flags: Flags for the ring 571 * @sof_mask: Mask of PDF values that start a frame 572 * @eof_mask: Mask of PDF values that end a frame 573 * @start_poll: If not %NULL the ring will call this function when an 574 * interrupt is triggered and masked, instead of callback 575 * in each Rx frame. 576 * @poll_data: Optional data passed to @start_poll 577 */ 578 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 579 unsigned int flags, u16 sof_mask, u16 eof_mask, 580 void (*start_poll)(void *), void *poll_data) 581 { 582 return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask, 583 start_poll, poll_data); 584 } 585 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 586 587 /** 588 * tb_ring_start() - enable a ring 589 * 590 * Must not be invoked in parallel with tb_ring_stop(). 591 */ 592 void tb_ring_start(struct tb_ring *ring) 593 { 594 u16 frame_size; 595 u32 flags; 596 597 spin_lock_irq(&ring->nhi->lock); 598 spin_lock(&ring->lock); 599 if (ring->nhi->going_away) 600 goto err; 601 if (ring->running) { 602 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 603 goto err; 604 } 605 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 606 RING_TYPE(ring), ring->hop); 607 608 if (ring->flags & RING_FLAG_FRAME) { 609 /* Means 4096 */ 610 frame_size = 0; 611 flags = RING_FLAG_ENABLE; 612 } else { 613 frame_size = TB_FRAME_SIZE; 614 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 615 } 616 617 if (ring->flags & RING_FLAG_E2E && !ring->is_tx) { 618 u32 hop; 619 620 /* 621 * In order not to lose Rx packets we enable end-to-end 622 * workaround which transfers Rx credits to an unused Tx 623 * HopID. 624 */ 625 hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT; 626 hop &= REG_RX_OPTIONS_E2E_HOP_MASK; 627 flags |= hop | RING_FLAG_E2E_FLOW_CONTROL; 628 } 629 630 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 631 if (ring->is_tx) { 632 ring_iowrite32desc(ring, ring->size, 12); 633 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 634 ring_iowrite32options(ring, flags, 0); 635 } else { 636 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 637 638 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 639 ring_iowrite32options(ring, sof_eof_mask, 4); 640 ring_iowrite32options(ring, flags, 0); 641 } 642 ring_interrupt_active(ring, true); 643 ring->running = true; 644 err: 645 spin_unlock(&ring->lock); 646 spin_unlock_irq(&ring->nhi->lock); 647 } 648 EXPORT_SYMBOL_GPL(tb_ring_start); 649 650 /** 651 * tb_ring_stop() - shutdown a ring 652 * 653 * Must not be invoked from a callback. 654 * 655 * This method will disable the ring. Further calls to 656 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 657 * called. 658 * 659 * All enqueued frames will be canceled and their callbacks will be executed 660 * with frame->canceled set to true (on the callback thread). This method 661 * returns only after all callback invocations have finished. 662 */ 663 void tb_ring_stop(struct tb_ring *ring) 664 { 665 spin_lock_irq(&ring->nhi->lock); 666 spin_lock(&ring->lock); 667 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 668 RING_TYPE(ring), ring->hop); 669 if (ring->nhi->going_away) 670 goto err; 671 if (!ring->running) { 672 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 673 RING_TYPE(ring), ring->hop); 674 goto err; 675 } 676 ring_interrupt_active(ring, false); 677 678 ring_iowrite32options(ring, 0, 0); 679 ring_iowrite64desc(ring, 0, 0); 680 ring_iowrite32desc(ring, 0, 8); 681 ring_iowrite32desc(ring, 0, 12); 682 ring->head = 0; 683 ring->tail = 0; 684 ring->running = false; 685 686 err: 687 spin_unlock(&ring->lock); 688 spin_unlock_irq(&ring->nhi->lock); 689 690 /* 691 * schedule ring->work to invoke callbacks on all remaining frames. 692 */ 693 schedule_work(&ring->work); 694 flush_work(&ring->work); 695 } 696 EXPORT_SYMBOL_GPL(tb_ring_stop); 697 698 /* 699 * tb_ring_free() - free ring 700 * 701 * When this method returns all invocations of ring->callback will have 702 * finished. 703 * 704 * Ring must be stopped. 705 * 706 * Must NOT be called from ring_frame->callback! 707 */ 708 void tb_ring_free(struct tb_ring *ring) 709 { 710 spin_lock_irq(&ring->nhi->lock); 711 /* 712 * Dissociate the ring from the NHI. This also ensures that 713 * nhi_interrupt_work cannot reschedule ring->work. 714 */ 715 if (ring->is_tx) 716 ring->nhi->tx_rings[ring->hop] = NULL; 717 else 718 ring->nhi->rx_rings[ring->hop] = NULL; 719 720 if (ring->running) { 721 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 722 RING_TYPE(ring), ring->hop); 723 } 724 spin_unlock_irq(&ring->nhi->lock); 725 726 ring_release_msix(ring); 727 728 dma_free_coherent(&ring->nhi->pdev->dev, 729 ring->size * sizeof(*ring->descriptors), 730 ring->descriptors, ring->descriptors_dma); 731 732 ring->descriptors = NULL; 733 ring->descriptors_dma = 0; 734 735 736 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 737 ring->hop); 738 739 /** 740 * ring->work can no longer be scheduled (it is scheduled only 741 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 742 * to finish before freeing the ring. 743 */ 744 flush_work(&ring->work); 745 kfree(ring); 746 } 747 EXPORT_SYMBOL_GPL(tb_ring_free); 748 749 /** 750 * nhi_mailbox_cmd() - Send a command through NHI mailbox 751 * @nhi: Pointer to the NHI structure 752 * @cmd: Command to send 753 * @data: Data to be send with the command 754 * 755 * Sends mailbox command to the firmware running on NHI. Returns %0 in 756 * case of success and negative errno in case of failure. 757 */ 758 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 759 { 760 ktime_t timeout; 761 u32 val; 762 763 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 764 765 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 766 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 767 val |= REG_INMAIL_OP_REQUEST | cmd; 768 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 769 770 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 771 do { 772 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 773 if (!(val & REG_INMAIL_OP_REQUEST)) 774 break; 775 usleep_range(10, 20); 776 } while (ktime_before(ktime_get(), timeout)); 777 778 if (val & REG_INMAIL_OP_REQUEST) 779 return -ETIMEDOUT; 780 if (val & REG_INMAIL_ERROR) 781 return -EIO; 782 783 return 0; 784 } 785 786 /** 787 * nhi_mailbox_mode() - Return current firmware operation mode 788 * @nhi: Pointer to the NHI structure 789 * 790 * The function reads current firmware operation mode using NHI mailbox 791 * registers and returns it to the caller. 792 */ 793 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 794 { 795 u32 val; 796 797 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 798 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 799 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 800 801 return (enum nhi_fw_mode)val; 802 } 803 804 static void nhi_interrupt_work(struct work_struct *work) 805 { 806 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 807 int value = 0; /* Suppress uninitialized usage warning. */ 808 int bit; 809 int hop = -1; 810 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 811 struct tb_ring *ring; 812 813 spin_lock_irq(&nhi->lock); 814 815 /* 816 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 817 * (TX, RX, RX overflow). We iterate over the bits and read a new 818 * dwords as required. The registers are cleared on read. 819 */ 820 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 821 if (bit % 32 == 0) 822 value = ioread32(nhi->iobase 823 + REG_RING_NOTIFY_BASE 824 + 4 * (bit / 32)); 825 if (++hop == nhi->hop_count) { 826 hop = 0; 827 type++; 828 } 829 if ((value & (1 << (bit % 32))) == 0) 830 continue; 831 if (type == 2) { 832 dev_warn(&nhi->pdev->dev, 833 "RX overflow for ring %d\n", 834 hop); 835 continue; 836 } 837 if (type == 0) 838 ring = nhi->tx_rings[hop]; 839 else 840 ring = nhi->rx_rings[hop]; 841 if (ring == NULL) { 842 dev_warn(&nhi->pdev->dev, 843 "got interrupt for inactive %s ring %d\n", 844 type ? "RX" : "TX", 845 hop); 846 continue; 847 } 848 849 spin_lock(&ring->lock); 850 __ring_interrupt(ring); 851 spin_unlock(&ring->lock); 852 } 853 spin_unlock_irq(&nhi->lock); 854 } 855 856 static irqreturn_t nhi_msi(int irq, void *data) 857 { 858 struct tb_nhi *nhi = data; 859 schedule_work(&nhi->interrupt_work); 860 return IRQ_HANDLED; 861 } 862 863 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 864 { 865 struct pci_dev *pdev = to_pci_dev(dev); 866 struct tb *tb = pci_get_drvdata(pdev); 867 struct tb_nhi *nhi = tb->nhi; 868 int ret; 869 870 ret = tb_domain_suspend_noirq(tb); 871 if (ret) 872 return ret; 873 874 if (nhi->ops && nhi->ops->suspend_noirq) { 875 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 876 if (ret) 877 return ret; 878 } 879 880 return 0; 881 } 882 883 static int nhi_suspend_noirq(struct device *dev) 884 { 885 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 886 } 887 888 static bool nhi_wake_supported(struct pci_dev *pdev) 889 { 890 u8 val; 891 892 /* 893 * If power rails are sustainable for wakeup from S4 this 894 * property is set by the BIOS. 895 */ 896 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 897 return !!val; 898 899 return true; 900 } 901 902 static int nhi_poweroff_noirq(struct device *dev) 903 { 904 struct pci_dev *pdev = to_pci_dev(dev); 905 bool wakeup; 906 907 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 908 return __nhi_suspend_noirq(dev, wakeup); 909 } 910 911 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 912 { 913 /* Throttling is specified in 256ns increments */ 914 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 915 unsigned int i; 916 917 /* 918 * Configure interrupt throttling for all vectors even if we 919 * only use few. 920 */ 921 for (i = 0; i < MSIX_MAX_VECS; i++) { 922 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 923 iowrite32(throttle, nhi->iobase + reg); 924 } 925 } 926 927 static int nhi_resume_noirq(struct device *dev) 928 { 929 struct pci_dev *pdev = to_pci_dev(dev); 930 struct tb *tb = pci_get_drvdata(pdev); 931 struct tb_nhi *nhi = tb->nhi; 932 int ret; 933 934 /* 935 * Check that the device is still there. It may be that the user 936 * unplugged last device which causes the host controller to go 937 * away on PCs. 938 */ 939 if (!pci_device_is_present(pdev)) { 940 nhi->going_away = true; 941 } else { 942 if (nhi->ops && nhi->ops->resume_noirq) { 943 ret = nhi->ops->resume_noirq(nhi); 944 if (ret) 945 return ret; 946 } 947 nhi_enable_int_throttling(tb->nhi); 948 } 949 950 return tb_domain_resume_noirq(tb); 951 } 952 953 static int nhi_suspend(struct device *dev) 954 { 955 struct pci_dev *pdev = to_pci_dev(dev); 956 struct tb *tb = pci_get_drvdata(pdev); 957 958 return tb_domain_suspend(tb); 959 } 960 961 static void nhi_complete(struct device *dev) 962 { 963 struct pci_dev *pdev = to_pci_dev(dev); 964 struct tb *tb = pci_get_drvdata(pdev); 965 966 /* 967 * If we were runtime suspended when system suspend started, 968 * schedule runtime resume now. It should bring the domain back 969 * to functional state. 970 */ 971 if (pm_runtime_suspended(&pdev->dev)) 972 pm_runtime_resume(&pdev->dev); 973 else 974 tb_domain_complete(tb); 975 } 976 977 static int nhi_runtime_suspend(struct device *dev) 978 { 979 struct pci_dev *pdev = to_pci_dev(dev); 980 struct tb *tb = pci_get_drvdata(pdev); 981 struct tb_nhi *nhi = tb->nhi; 982 int ret; 983 984 ret = tb_domain_runtime_suspend(tb); 985 if (ret) 986 return ret; 987 988 if (nhi->ops && nhi->ops->runtime_suspend) { 989 ret = nhi->ops->runtime_suspend(tb->nhi); 990 if (ret) 991 return ret; 992 } 993 return 0; 994 } 995 996 static int nhi_runtime_resume(struct device *dev) 997 { 998 struct pci_dev *pdev = to_pci_dev(dev); 999 struct tb *tb = pci_get_drvdata(pdev); 1000 struct tb_nhi *nhi = tb->nhi; 1001 int ret; 1002 1003 if (nhi->ops && nhi->ops->runtime_resume) { 1004 ret = nhi->ops->runtime_resume(nhi); 1005 if (ret) 1006 return ret; 1007 } 1008 1009 nhi_enable_int_throttling(nhi); 1010 return tb_domain_runtime_resume(tb); 1011 } 1012 1013 static void nhi_shutdown(struct tb_nhi *nhi) 1014 { 1015 int i; 1016 1017 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1018 1019 for (i = 0; i < nhi->hop_count; i++) { 1020 if (nhi->tx_rings[i]) 1021 dev_WARN(&nhi->pdev->dev, 1022 "TX ring %d is still active\n", i); 1023 if (nhi->rx_rings[i]) 1024 dev_WARN(&nhi->pdev->dev, 1025 "RX ring %d is still active\n", i); 1026 } 1027 nhi_disable_interrupts(nhi); 1028 /* 1029 * We have to release the irq before calling flush_work. Otherwise an 1030 * already executing IRQ handler could call schedule_work again. 1031 */ 1032 if (!nhi->pdev->msix_enabled) { 1033 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1034 flush_work(&nhi->interrupt_work); 1035 } 1036 ida_destroy(&nhi->msix_ida); 1037 1038 if (nhi->ops && nhi->ops->shutdown) 1039 nhi->ops->shutdown(nhi); 1040 } 1041 1042 static int nhi_init_msi(struct tb_nhi *nhi) 1043 { 1044 struct pci_dev *pdev = nhi->pdev; 1045 int res, irq, nvec; 1046 1047 /* In case someone left them on. */ 1048 nhi_disable_interrupts(nhi); 1049 1050 nhi_enable_int_throttling(nhi); 1051 1052 ida_init(&nhi->msix_ida); 1053 1054 /* 1055 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1056 * get all MSI-X vectors and if we succeed, each ring will have 1057 * one MSI-X. If for some reason that does not work out, we 1058 * fallback to a single MSI. 1059 */ 1060 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1061 PCI_IRQ_MSIX); 1062 if (nvec < 0) { 1063 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1064 if (nvec < 0) 1065 return nvec; 1066 1067 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1068 1069 irq = pci_irq_vector(nhi->pdev, 0); 1070 if (irq < 0) 1071 return irq; 1072 1073 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1074 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1075 if (res) { 1076 dev_err(&pdev->dev, "request_irq failed, aborting\n"); 1077 return res; 1078 } 1079 } 1080 1081 return 0; 1082 } 1083 1084 static bool nhi_imr_valid(struct pci_dev *pdev) 1085 { 1086 u8 val; 1087 1088 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1089 return !!val; 1090 1091 return true; 1092 } 1093 1094 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1095 { 1096 struct tb_nhi *nhi; 1097 struct tb *tb; 1098 int res; 1099 1100 if (!nhi_imr_valid(pdev)) { 1101 dev_warn(&pdev->dev, "firmware image not valid, aborting\n"); 1102 return -ENODEV; 1103 } 1104 1105 res = pcim_enable_device(pdev); 1106 if (res) { 1107 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n"); 1108 return res; 1109 } 1110 1111 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1112 if (res) { 1113 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 1114 return res; 1115 } 1116 1117 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1118 if (!nhi) 1119 return -ENOMEM; 1120 1121 nhi->pdev = pdev; 1122 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1123 /* cannot fail - table is allocated bin pcim_iomap_regions */ 1124 nhi->iobase = pcim_iomap_table(pdev)[0]; 1125 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1126 if (nhi->hop_count != 12 && nhi->hop_count != 32) 1127 dev_warn(&pdev->dev, "unexpected hop count: %d\n", 1128 nhi->hop_count); 1129 1130 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1131 sizeof(*nhi->tx_rings), GFP_KERNEL); 1132 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1133 sizeof(*nhi->rx_rings), GFP_KERNEL); 1134 if (!nhi->tx_rings || !nhi->rx_rings) 1135 return -ENOMEM; 1136 1137 res = nhi_init_msi(nhi); 1138 if (res) { 1139 dev_err(&pdev->dev, "cannot enable MSI, aborting\n"); 1140 return res; 1141 } 1142 1143 spin_lock_init(&nhi->lock); 1144 1145 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1146 if (res) 1147 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1148 if (res) { 1149 dev_err(&pdev->dev, "failed to set DMA mask\n"); 1150 return res; 1151 } 1152 1153 pci_set_master(pdev); 1154 1155 if (nhi->ops && nhi->ops->init) { 1156 res = nhi->ops->init(nhi); 1157 if (res) 1158 return res; 1159 } 1160 1161 tb = icm_probe(nhi); 1162 if (!tb) 1163 tb = tb_probe(nhi); 1164 if (!tb) { 1165 dev_err(&nhi->pdev->dev, 1166 "failed to determine connection manager, aborting\n"); 1167 return -ENODEV; 1168 } 1169 1170 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n"); 1171 1172 res = tb_domain_add(tb); 1173 if (res) { 1174 /* 1175 * At this point the RX/TX rings might already have been 1176 * activated. Do a proper shutdown. 1177 */ 1178 tb_domain_put(tb); 1179 nhi_shutdown(nhi); 1180 return res; 1181 } 1182 pci_set_drvdata(pdev, tb); 1183 1184 pm_runtime_allow(&pdev->dev); 1185 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1186 pm_runtime_use_autosuspend(&pdev->dev); 1187 pm_runtime_put_autosuspend(&pdev->dev); 1188 1189 return 0; 1190 } 1191 1192 static void nhi_remove(struct pci_dev *pdev) 1193 { 1194 struct tb *tb = pci_get_drvdata(pdev); 1195 struct tb_nhi *nhi = tb->nhi; 1196 1197 pm_runtime_get_sync(&pdev->dev); 1198 pm_runtime_dont_use_autosuspend(&pdev->dev); 1199 pm_runtime_forbid(&pdev->dev); 1200 1201 tb_domain_remove(tb); 1202 nhi_shutdown(nhi); 1203 } 1204 1205 /* 1206 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1207 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1208 * resume_noirq until we are done. 1209 */ 1210 static const struct dev_pm_ops nhi_pm_ops = { 1211 .suspend_noirq = nhi_suspend_noirq, 1212 .resume_noirq = nhi_resume_noirq, 1213 .freeze_noirq = nhi_suspend_noirq, /* 1214 * we just disable hotplug, the 1215 * pci-tunnels stay alive. 1216 */ 1217 .thaw_noirq = nhi_resume_noirq, 1218 .restore_noirq = nhi_resume_noirq, 1219 .suspend = nhi_suspend, 1220 .freeze = nhi_suspend, 1221 .poweroff_noirq = nhi_poweroff_noirq, 1222 .poweroff = nhi_suspend, 1223 .complete = nhi_complete, 1224 .runtime_suspend = nhi_runtime_suspend, 1225 .runtime_resume = nhi_runtime_resume, 1226 }; 1227 1228 static struct pci_device_id nhi_ids[] = { 1229 /* 1230 * We have to specify class, the TB bridges use the same device and 1231 * vendor (sub)id on gen 1 and gen 2 controllers. 1232 */ 1233 { 1234 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1235 .vendor = PCI_VENDOR_ID_INTEL, 1236 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1237 .subvendor = 0x2222, .subdevice = 0x1111, 1238 }, 1239 { 1240 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1241 .vendor = PCI_VENDOR_ID_INTEL, 1242 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1243 .subvendor = 0x2222, .subdevice = 0x1111, 1244 }, 1245 { 1246 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1247 .vendor = PCI_VENDOR_ID_INTEL, 1248 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1249 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1250 }, 1251 { 1252 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1253 .vendor = PCI_VENDOR_ID_INTEL, 1254 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1255 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1256 }, 1257 1258 /* Thunderbolt 3 */ 1259 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1260 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1261 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1262 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1263 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1264 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1265 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1266 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1267 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1268 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1269 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1270 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1271 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1272 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1273 1274 { 0,} 1275 }; 1276 1277 MODULE_DEVICE_TABLE(pci, nhi_ids); 1278 MODULE_LICENSE("GPL"); 1279 1280 static struct pci_driver nhi_driver = { 1281 .name = "thunderbolt", 1282 .id_table = nhi_ids, 1283 .probe = nhi_probe, 1284 .remove = nhi_remove, 1285 .driver.pm = &nhi_pm_ops, 1286 }; 1287 1288 static int __init nhi_init(void) 1289 { 1290 int ret; 1291 1292 ret = tb_domain_init(); 1293 if (ret) 1294 return ret; 1295 ret = pci_register_driver(&nhi_driver); 1296 if (ret) 1297 tb_domain_exit(); 1298 return ret; 1299 } 1300 1301 static void __exit nhi_unload(void) 1302 { 1303 pci_unregister_driver(&nhi_driver); 1304 tb_domain_exit(); 1305 } 1306 1307 rootfs_initcall(nhi_init); 1308 module_exit(nhi_unload); 1309