1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/delay.h> 19 #include <linux/property.h> 20 #include <linux/platform_data/x86/apple.h> 21 22 #include "nhi.h" 23 #include "nhi_regs.h" 24 #include "tb.h" 25 26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 27 28 #define RING_FIRST_USABLE_HOPID 1 29 30 /* 31 * Minimal number of vectors when we use MSI-X. Two for control channel 32 * Rx/Tx and the rest four are for cross domain DMA paths. 33 */ 34 #define MSIX_MIN_VECS 6 35 #define MSIX_MAX_VECS 16 36 37 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 38 39 static int ring_interrupt_index(struct tb_ring *ring) 40 { 41 int bit = ring->hop; 42 if (!ring->is_tx) 43 bit += ring->nhi->hop_count; 44 return bit; 45 } 46 47 /** 48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 49 * 50 * ring->nhi->lock must be held. 51 */ 52 static void ring_interrupt_active(struct tb_ring *ring, bool active) 53 { 54 int reg = REG_RING_INTERRUPT_BASE + 55 ring_interrupt_index(ring) / 32 * 4; 56 int bit = ring_interrupt_index(ring) & 31; 57 int mask = 1 << bit; 58 u32 old, new; 59 60 if (ring->irq > 0) { 61 u32 step, shift, ivr, misc; 62 void __iomem *ivr_base; 63 int index; 64 65 if (ring->is_tx) 66 index = ring->hop; 67 else 68 index = ring->hop + ring->nhi->hop_count; 69 70 /* 71 * Ask the hardware to clear interrupt status bits automatically 72 * since we already know which interrupt was triggered. 73 */ 74 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 75 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) { 76 misc |= REG_DMA_MISC_INT_AUTO_CLEAR; 77 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC); 78 } 79 80 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 81 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 82 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 83 ivr = ioread32(ivr_base + step); 84 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 85 if (active) 86 ivr |= ring->vector << shift; 87 iowrite32(ivr, ivr_base + step); 88 } 89 90 old = ioread32(ring->nhi->iobase + reg); 91 if (active) 92 new = old | mask; 93 else 94 new = old & ~mask; 95 96 dev_dbg(&ring->nhi->pdev->dev, 97 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 98 active ? "enabling" : "disabling", reg, bit, old, new); 99 100 if (new == old) 101 dev_WARN(&ring->nhi->pdev->dev, 102 "interrupt for %s %d is already %s\n", 103 RING_TYPE(ring), ring->hop, 104 active ? "enabled" : "disabled"); 105 iowrite32(new, ring->nhi->iobase + reg); 106 } 107 108 /** 109 * nhi_disable_interrupts() - disable interrupts for all rings 110 * 111 * Use only during init and shutdown. 112 */ 113 static void nhi_disable_interrupts(struct tb_nhi *nhi) 114 { 115 int i = 0; 116 /* disable interrupts */ 117 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 118 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 119 120 /* clear interrupt status bits */ 121 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 122 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 123 } 124 125 /* ring helper methods */ 126 127 static void __iomem *ring_desc_base(struct tb_ring *ring) 128 { 129 void __iomem *io = ring->nhi->iobase; 130 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 131 io += ring->hop * 16; 132 return io; 133 } 134 135 static void __iomem *ring_options_base(struct tb_ring *ring) 136 { 137 void __iomem *io = ring->nhi->iobase; 138 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 139 io += ring->hop * 32; 140 return io; 141 } 142 143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 144 { 145 /* 146 * The other 16-bits in the register is read-only and writes to it 147 * are ignored by the hardware so we can save one ioread32() by 148 * filling the read-only bits with zeroes. 149 */ 150 iowrite32(cons, ring_desc_base(ring) + 8); 151 } 152 153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 154 { 155 /* See ring_iowrite_cons() above for explanation */ 156 iowrite32(prod << 16, ring_desc_base(ring) + 8); 157 } 158 159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 160 { 161 iowrite32(value, ring_desc_base(ring) + offset); 162 } 163 164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 165 { 166 iowrite32(value, ring_desc_base(ring) + offset); 167 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 168 } 169 170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 171 { 172 iowrite32(value, ring_options_base(ring) + offset); 173 } 174 175 static bool ring_full(struct tb_ring *ring) 176 { 177 return ((ring->head + 1) % ring->size) == ring->tail; 178 } 179 180 static bool ring_empty(struct tb_ring *ring) 181 { 182 return ring->head == ring->tail; 183 } 184 185 /** 186 * ring_write_descriptors() - post frames from ring->queue to the controller 187 * 188 * ring->lock is held. 189 */ 190 static void ring_write_descriptors(struct tb_ring *ring) 191 { 192 struct ring_frame *frame, *n; 193 struct ring_desc *descriptor; 194 list_for_each_entry_safe(frame, n, &ring->queue, list) { 195 if (ring_full(ring)) 196 break; 197 list_move_tail(&frame->list, &ring->in_flight); 198 descriptor = &ring->descriptors[ring->head]; 199 descriptor->phys = frame->buffer_phy; 200 descriptor->time = 0; 201 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 202 if (ring->is_tx) { 203 descriptor->length = frame->size; 204 descriptor->eof = frame->eof; 205 descriptor->sof = frame->sof; 206 } 207 ring->head = (ring->head + 1) % ring->size; 208 if (ring->is_tx) 209 ring_iowrite_prod(ring, ring->head); 210 else 211 ring_iowrite_cons(ring, ring->head); 212 } 213 } 214 215 /** 216 * ring_work() - progress completed frames 217 * 218 * If the ring is shutting down then all frames are marked as canceled and 219 * their callbacks are invoked. 220 * 221 * Otherwise we collect all completed frame from the ring buffer, write new 222 * frame to the ring buffer and invoke the callbacks for the completed frames. 223 */ 224 static void ring_work(struct work_struct *work) 225 { 226 struct tb_ring *ring = container_of(work, typeof(*ring), work); 227 struct ring_frame *frame; 228 bool canceled = false; 229 unsigned long flags; 230 LIST_HEAD(done); 231 232 spin_lock_irqsave(&ring->lock, flags); 233 234 if (!ring->running) { 235 /* Move all frames to done and mark them as canceled. */ 236 list_splice_tail_init(&ring->in_flight, &done); 237 list_splice_tail_init(&ring->queue, &done); 238 canceled = true; 239 goto invoke_callback; 240 } 241 242 while (!ring_empty(ring)) { 243 if (!(ring->descriptors[ring->tail].flags 244 & RING_DESC_COMPLETED)) 245 break; 246 frame = list_first_entry(&ring->in_flight, typeof(*frame), 247 list); 248 list_move_tail(&frame->list, &done); 249 if (!ring->is_tx) { 250 frame->size = ring->descriptors[ring->tail].length; 251 frame->eof = ring->descriptors[ring->tail].eof; 252 frame->sof = ring->descriptors[ring->tail].sof; 253 frame->flags = ring->descriptors[ring->tail].flags; 254 } 255 ring->tail = (ring->tail + 1) % ring->size; 256 } 257 ring_write_descriptors(ring); 258 259 invoke_callback: 260 /* allow callbacks to schedule new work */ 261 spin_unlock_irqrestore(&ring->lock, flags); 262 while (!list_empty(&done)) { 263 frame = list_first_entry(&done, typeof(*frame), list); 264 /* 265 * The callback may reenqueue or delete frame. 266 * Do not hold on to it. 267 */ 268 list_del_init(&frame->list); 269 if (frame->callback) 270 frame->callback(ring, frame, canceled); 271 } 272 } 273 274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 275 { 276 unsigned long flags; 277 int ret = 0; 278 279 spin_lock_irqsave(&ring->lock, flags); 280 if (ring->running) { 281 list_add_tail(&frame->list, &ring->queue); 282 ring_write_descriptors(ring); 283 } else { 284 ret = -ESHUTDOWN; 285 } 286 spin_unlock_irqrestore(&ring->lock, flags); 287 return ret; 288 } 289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 290 291 /** 292 * tb_ring_poll() - Poll one completed frame from the ring 293 * @ring: Ring to poll 294 * 295 * This function can be called when @start_poll callback of the @ring 296 * has been called. It will read one completed frame from the ring and 297 * return it to the caller. Returns %NULL if there is no more completed 298 * frames. 299 */ 300 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 301 { 302 struct ring_frame *frame = NULL; 303 unsigned long flags; 304 305 spin_lock_irqsave(&ring->lock, flags); 306 if (!ring->running) 307 goto unlock; 308 if (ring_empty(ring)) 309 goto unlock; 310 311 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 312 frame = list_first_entry(&ring->in_flight, typeof(*frame), 313 list); 314 list_del_init(&frame->list); 315 316 if (!ring->is_tx) { 317 frame->size = ring->descriptors[ring->tail].length; 318 frame->eof = ring->descriptors[ring->tail].eof; 319 frame->sof = ring->descriptors[ring->tail].sof; 320 frame->flags = ring->descriptors[ring->tail].flags; 321 } 322 323 ring->tail = (ring->tail + 1) % ring->size; 324 } 325 326 unlock: 327 spin_unlock_irqrestore(&ring->lock, flags); 328 return frame; 329 } 330 EXPORT_SYMBOL_GPL(tb_ring_poll); 331 332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 333 { 334 int idx = ring_interrupt_index(ring); 335 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 336 int bit = idx % 32; 337 u32 val; 338 339 val = ioread32(ring->nhi->iobase + reg); 340 if (mask) 341 val &= ~BIT(bit); 342 else 343 val |= BIT(bit); 344 iowrite32(val, ring->nhi->iobase + reg); 345 } 346 347 /* Both @nhi->lock and @ring->lock should be held */ 348 static void __ring_interrupt(struct tb_ring *ring) 349 { 350 if (!ring->running) 351 return; 352 353 if (ring->start_poll) { 354 __ring_interrupt_mask(ring, true); 355 ring->start_poll(ring->poll_data); 356 } else { 357 schedule_work(&ring->work); 358 } 359 } 360 361 /** 362 * tb_ring_poll_complete() - Re-start interrupt for the ring 363 * @ring: Ring to re-start the interrupt 364 * 365 * This will re-start (unmask) the ring interrupt once the user is done 366 * with polling. 367 */ 368 void tb_ring_poll_complete(struct tb_ring *ring) 369 { 370 unsigned long flags; 371 372 spin_lock_irqsave(&ring->nhi->lock, flags); 373 spin_lock(&ring->lock); 374 if (ring->start_poll) 375 __ring_interrupt_mask(ring, false); 376 spin_unlock(&ring->lock); 377 spin_unlock_irqrestore(&ring->nhi->lock, flags); 378 } 379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 380 381 static irqreturn_t ring_msix(int irq, void *data) 382 { 383 struct tb_ring *ring = data; 384 385 spin_lock(&ring->nhi->lock); 386 spin_lock(&ring->lock); 387 __ring_interrupt(ring); 388 spin_unlock(&ring->lock); 389 spin_unlock(&ring->nhi->lock); 390 391 return IRQ_HANDLED; 392 } 393 394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 395 { 396 struct tb_nhi *nhi = ring->nhi; 397 unsigned long irqflags; 398 int ret; 399 400 if (!nhi->pdev->msix_enabled) 401 return 0; 402 403 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 404 if (ret < 0) 405 return ret; 406 407 ring->vector = ret; 408 409 ret = pci_irq_vector(ring->nhi->pdev, ring->vector); 410 if (ret < 0) 411 goto err_ida_remove; 412 413 ring->irq = ret; 414 415 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 416 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 417 if (ret) 418 goto err_ida_remove; 419 420 return 0; 421 422 err_ida_remove: 423 ida_simple_remove(&nhi->msix_ida, ring->vector); 424 425 return ret; 426 } 427 428 static void ring_release_msix(struct tb_ring *ring) 429 { 430 if (ring->irq <= 0) 431 return; 432 433 free_irq(ring->irq, ring); 434 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 435 ring->vector = 0; 436 ring->irq = 0; 437 } 438 439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 440 { 441 int ret = 0; 442 443 spin_lock_irq(&nhi->lock); 444 445 if (ring->hop < 0) { 446 unsigned int i; 447 448 /* 449 * Automatically allocate HopID from the non-reserved 450 * range 1 .. hop_count - 1. 451 */ 452 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) { 453 if (ring->is_tx) { 454 if (!nhi->tx_rings[i]) { 455 ring->hop = i; 456 break; 457 } 458 } else { 459 if (!nhi->rx_rings[i]) { 460 ring->hop = i; 461 break; 462 } 463 } 464 } 465 } 466 467 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 468 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 469 ret = -EINVAL; 470 goto err_unlock; 471 } 472 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 473 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 474 ring->hop); 475 ret = -EBUSY; 476 goto err_unlock; 477 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 478 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 479 ring->hop); 480 ret = -EBUSY; 481 goto err_unlock; 482 } 483 484 if (ring->is_tx) 485 nhi->tx_rings[ring->hop] = ring; 486 else 487 nhi->rx_rings[ring->hop] = ring; 488 489 err_unlock: 490 spin_unlock_irq(&nhi->lock); 491 492 return ret; 493 } 494 495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 496 bool transmit, unsigned int flags, 497 int e2e_tx_hop, u16 sof_mask, u16 eof_mask, 498 void (*start_poll)(void *), 499 void *poll_data) 500 { 501 struct tb_ring *ring = NULL; 502 503 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 504 transmit ? "TX" : "RX", hop, size); 505 506 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 507 if (!ring) 508 return NULL; 509 510 spin_lock_init(&ring->lock); 511 INIT_LIST_HEAD(&ring->queue); 512 INIT_LIST_HEAD(&ring->in_flight); 513 INIT_WORK(&ring->work, ring_work); 514 515 ring->nhi = nhi; 516 ring->hop = hop; 517 ring->is_tx = transmit; 518 ring->size = size; 519 ring->flags = flags; 520 ring->e2e_tx_hop = e2e_tx_hop; 521 ring->sof_mask = sof_mask; 522 ring->eof_mask = eof_mask; 523 ring->head = 0; 524 ring->tail = 0; 525 ring->running = false; 526 ring->start_poll = start_poll; 527 ring->poll_data = poll_data; 528 529 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 530 size * sizeof(*ring->descriptors), 531 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 532 if (!ring->descriptors) 533 goto err_free_ring; 534 535 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 536 goto err_free_descs; 537 538 if (nhi_alloc_hop(nhi, ring)) 539 goto err_release_msix; 540 541 return ring; 542 543 err_release_msix: 544 ring_release_msix(ring); 545 err_free_descs: 546 dma_free_coherent(&ring->nhi->pdev->dev, 547 ring->size * sizeof(*ring->descriptors), 548 ring->descriptors, ring->descriptors_dma); 549 err_free_ring: 550 kfree(ring); 551 552 return NULL; 553 } 554 555 /** 556 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 557 * @nhi: Pointer to the NHI the ring is to be allocated 558 * @hop: HopID (ring) to allocate 559 * @size: Number of entries in the ring 560 * @flags: Flags for the ring 561 */ 562 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 563 unsigned int flags) 564 { 565 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL); 566 } 567 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 568 569 /** 570 * tb_ring_alloc_rx() - Allocate DMA ring for receive 571 * @nhi: Pointer to the NHI the ring is to be allocated 572 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 573 * @size: Number of entries in the ring 574 * @flags: Flags for the ring 575 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags 576 * @sof_mask: Mask of PDF values that start a frame 577 * @eof_mask: Mask of PDF values that end a frame 578 * @start_poll: If not %NULL the ring will call this function when an 579 * interrupt is triggered and masked, instead of callback 580 * in each Rx frame. 581 * @poll_data: Optional data passed to @start_poll 582 */ 583 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 584 unsigned int flags, int e2e_tx_hop, 585 u16 sof_mask, u16 eof_mask, 586 void (*start_poll)(void *), void *poll_data) 587 { 588 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask, 589 start_poll, poll_data); 590 } 591 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 592 593 /** 594 * tb_ring_start() - enable a ring 595 * 596 * Must not be invoked in parallel with tb_ring_stop(). 597 */ 598 void tb_ring_start(struct tb_ring *ring) 599 { 600 u16 frame_size; 601 u32 flags; 602 603 spin_lock_irq(&ring->nhi->lock); 604 spin_lock(&ring->lock); 605 if (ring->nhi->going_away) 606 goto err; 607 if (ring->running) { 608 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 609 goto err; 610 } 611 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 612 RING_TYPE(ring), ring->hop); 613 614 if (ring->flags & RING_FLAG_FRAME) { 615 /* Means 4096 */ 616 frame_size = 0; 617 flags = RING_FLAG_ENABLE; 618 } else { 619 frame_size = TB_FRAME_SIZE; 620 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 621 } 622 623 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 624 if (ring->is_tx) { 625 ring_iowrite32desc(ring, ring->size, 12); 626 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 627 ring_iowrite32options(ring, flags, 0); 628 } else { 629 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 630 631 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 632 ring_iowrite32options(ring, sof_eof_mask, 4); 633 ring_iowrite32options(ring, flags, 0); 634 } 635 636 /* 637 * Now that the ring valid bit is set we can configure E2E if 638 * enabled for the ring. 639 */ 640 if (ring->flags & RING_FLAG_E2E) { 641 if (!ring->is_tx) { 642 u32 hop; 643 644 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT; 645 hop &= REG_RX_OPTIONS_E2E_HOP_MASK; 646 flags |= hop; 647 648 dev_dbg(&ring->nhi->pdev->dev, 649 "enabling E2E for %s %d with TX HopID %d\n", 650 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop); 651 } else { 652 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n", 653 RING_TYPE(ring), ring->hop); 654 } 655 656 flags |= RING_FLAG_E2E_FLOW_CONTROL; 657 ring_iowrite32options(ring, flags, 0); 658 } 659 660 ring_interrupt_active(ring, true); 661 ring->running = true; 662 err: 663 spin_unlock(&ring->lock); 664 spin_unlock_irq(&ring->nhi->lock); 665 } 666 EXPORT_SYMBOL_GPL(tb_ring_start); 667 668 /** 669 * tb_ring_stop() - shutdown a ring 670 * 671 * Must not be invoked from a callback. 672 * 673 * This method will disable the ring. Further calls to 674 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 675 * called. 676 * 677 * All enqueued frames will be canceled and their callbacks will be executed 678 * with frame->canceled set to true (on the callback thread). This method 679 * returns only after all callback invocations have finished. 680 */ 681 void tb_ring_stop(struct tb_ring *ring) 682 { 683 spin_lock_irq(&ring->nhi->lock); 684 spin_lock(&ring->lock); 685 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 686 RING_TYPE(ring), ring->hop); 687 if (ring->nhi->going_away) 688 goto err; 689 if (!ring->running) { 690 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 691 RING_TYPE(ring), ring->hop); 692 goto err; 693 } 694 ring_interrupt_active(ring, false); 695 696 ring_iowrite32options(ring, 0, 0); 697 ring_iowrite64desc(ring, 0, 0); 698 ring_iowrite32desc(ring, 0, 8); 699 ring_iowrite32desc(ring, 0, 12); 700 ring->head = 0; 701 ring->tail = 0; 702 ring->running = false; 703 704 err: 705 spin_unlock(&ring->lock); 706 spin_unlock_irq(&ring->nhi->lock); 707 708 /* 709 * schedule ring->work to invoke callbacks on all remaining frames. 710 */ 711 schedule_work(&ring->work); 712 flush_work(&ring->work); 713 } 714 EXPORT_SYMBOL_GPL(tb_ring_stop); 715 716 /* 717 * tb_ring_free() - free ring 718 * 719 * When this method returns all invocations of ring->callback will have 720 * finished. 721 * 722 * Ring must be stopped. 723 * 724 * Must NOT be called from ring_frame->callback! 725 */ 726 void tb_ring_free(struct tb_ring *ring) 727 { 728 spin_lock_irq(&ring->nhi->lock); 729 /* 730 * Dissociate the ring from the NHI. This also ensures that 731 * nhi_interrupt_work cannot reschedule ring->work. 732 */ 733 if (ring->is_tx) 734 ring->nhi->tx_rings[ring->hop] = NULL; 735 else 736 ring->nhi->rx_rings[ring->hop] = NULL; 737 738 if (ring->running) { 739 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 740 RING_TYPE(ring), ring->hop); 741 } 742 spin_unlock_irq(&ring->nhi->lock); 743 744 ring_release_msix(ring); 745 746 dma_free_coherent(&ring->nhi->pdev->dev, 747 ring->size * sizeof(*ring->descriptors), 748 ring->descriptors, ring->descriptors_dma); 749 750 ring->descriptors = NULL; 751 ring->descriptors_dma = 0; 752 753 754 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 755 ring->hop); 756 757 /** 758 * ring->work can no longer be scheduled (it is scheduled only 759 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 760 * to finish before freeing the ring. 761 */ 762 flush_work(&ring->work); 763 kfree(ring); 764 } 765 EXPORT_SYMBOL_GPL(tb_ring_free); 766 767 /** 768 * nhi_mailbox_cmd() - Send a command through NHI mailbox 769 * @nhi: Pointer to the NHI structure 770 * @cmd: Command to send 771 * @data: Data to be send with the command 772 * 773 * Sends mailbox command to the firmware running on NHI. Returns %0 in 774 * case of success and negative errno in case of failure. 775 */ 776 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 777 { 778 ktime_t timeout; 779 u32 val; 780 781 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 782 783 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 784 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 785 val |= REG_INMAIL_OP_REQUEST | cmd; 786 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 787 788 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 789 do { 790 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 791 if (!(val & REG_INMAIL_OP_REQUEST)) 792 break; 793 usleep_range(10, 20); 794 } while (ktime_before(ktime_get(), timeout)); 795 796 if (val & REG_INMAIL_OP_REQUEST) 797 return -ETIMEDOUT; 798 if (val & REG_INMAIL_ERROR) 799 return -EIO; 800 801 return 0; 802 } 803 804 /** 805 * nhi_mailbox_mode() - Return current firmware operation mode 806 * @nhi: Pointer to the NHI structure 807 * 808 * The function reads current firmware operation mode using NHI mailbox 809 * registers and returns it to the caller. 810 */ 811 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 812 { 813 u32 val; 814 815 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 816 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 817 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 818 819 return (enum nhi_fw_mode)val; 820 } 821 822 static void nhi_interrupt_work(struct work_struct *work) 823 { 824 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 825 int value = 0; /* Suppress uninitialized usage warning. */ 826 int bit; 827 int hop = -1; 828 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 829 struct tb_ring *ring; 830 831 spin_lock_irq(&nhi->lock); 832 833 /* 834 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 835 * (TX, RX, RX overflow). We iterate over the bits and read a new 836 * dwords as required. The registers are cleared on read. 837 */ 838 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 839 if (bit % 32 == 0) 840 value = ioread32(nhi->iobase 841 + REG_RING_NOTIFY_BASE 842 + 4 * (bit / 32)); 843 if (++hop == nhi->hop_count) { 844 hop = 0; 845 type++; 846 } 847 if ((value & (1 << (bit % 32))) == 0) 848 continue; 849 if (type == 2) { 850 dev_warn(&nhi->pdev->dev, 851 "RX overflow for ring %d\n", 852 hop); 853 continue; 854 } 855 if (type == 0) 856 ring = nhi->tx_rings[hop]; 857 else 858 ring = nhi->rx_rings[hop]; 859 if (ring == NULL) { 860 dev_warn(&nhi->pdev->dev, 861 "got interrupt for inactive %s ring %d\n", 862 type ? "RX" : "TX", 863 hop); 864 continue; 865 } 866 867 spin_lock(&ring->lock); 868 __ring_interrupt(ring); 869 spin_unlock(&ring->lock); 870 } 871 spin_unlock_irq(&nhi->lock); 872 } 873 874 static irqreturn_t nhi_msi(int irq, void *data) 875 { 876 struct tb_nhi *nhi = data; 877 schedule_work(&nhi->interrupt_work); 878 return IRQ_HANDLED; 879 } 880 881 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 882 { 883 struct pci_dev *pdev = to_pci_dev(dev); 884 struct tb *tb = pci_get_drvdata(pdev); 885 struct tb_nhi *nhi = tb->nhi; 886 int ret; 887 888 ret = tb_domain_suspend_noirq(tb); 889 if (ret) 890 return ret; 891 892 if (nhi->ops && nhi->ops->suspend_noirq) { 893 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 894 if (ret) 895 return ret; 896 } 897 898 return 0; 899 } 900 901 static int nhi_suspend_noirq(struct device *dev) 902 { 903 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 904 } 905 906 static int nhi_freeze_noirq(struct device *dev) 907 { 908 struct pci_dev *pdev = to_pci_dev(dev); 909 struct tb *tb = pci_get_drvdata(pdev); 910 911 return tb_domain_freeze_noirq(tb); 912 } 913 914 static int nhi_thaw_noirq(struct device *dev) 915 { 916 struct pci_dev *pdev = to_pci_dev(dev); 917 struct tb *tb = pci_get_drvdata(pdev); 918 919 return tb_domain_thaw_noirq(tb); 920 } 921 922 static bool nhi_wake_supported(struct pci_dev *pdev) 923 { 924 u8 val; 925 926 /* 927 * If power rails are sustainable for wakeup from S4 this 928 * property is set by the BIOS. 929 */ 930 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 931 return !!val; 932 933 return true; 934 } 935 936 static int nhi_poweroff_noirq(struct device *dev) 937 { 938 struct pci_dev *pdev = to_pci_dev(dev); 939 bool wakeup; 940 941 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 942 return __nhi_suspend_noirq(dev, wakeup); 943 } 944 945 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 946 { 947 /* Throttling is specified in 256ns increments */ 948 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 949 unsigned int i; 950 951 /* 952 * Configure interrupt throttling for all vectors even if we 953 * only use few. 954 */ 955 for (i = 0; i < MSIX_MAX_VECS; i++) { 956 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 957 iowrite32(throttle, nhi->iobase + reg); 958 } 959 } 960 961 static int nhi_resume_noirq(struct device *dev) 962 { 963 struct pci_dev *pdev = to_pci_dev(dev); 964 struct tb *tb = pci_get_drvdata(pdev); 965 struct tb_nhi *nhi = tb->nhi; 966 int ret; 967 968 /* 969 * Check that the device is still there. It may be that the user 970 * unplugged last device which causes the host controller to go 971 * away on PCs. 972 */ 973 if (!pci_device_is_present(pdev)) { 974 nhi->going_away = true; 975 } else { 976 if (nhi->ops && nhi->ops->resume_noirq) { 977 ret = nhi->ops->resume_noirq(nhi); 978 if (ret) 979 return ret; 980 } 981 nhi_enable_int_throttling(tb->nhi); 982 } 983 984 return tb_domain_resume_noirq(tb); 985 } 986 987 static int nhi_suspend(struct device *dev) 988 { 989 struct pci_dev *pdev = to_pci_dev(dev); 990 struct tb *tb = pci_get_drvdata(pdev); 991 992 return tb_domain_suspend(tb); 993 } 994 995 static void nhi_complete(struct device *dev) 996 { 997 struct pci_dev *pdev = to_pci_dev(dev); 998 struct tb *tb = pci_get_drvdata(pdev); 999 1000 /* 1001 * If we were runtime suspended when system suspend started, 1002 * schedule runtime resume now. It should bring the domain back 1003 * to functional state. 1004 */ 1005 if (pm_runtime_suspended(&pdev->dev)) 1006 pm_runtime_resume(&pdev->dev); 1007 else 1008 tb_domain_complete(tb); 1009 } 1010 1011 static int nhi_runtime_suspend(struct device *dev) 1012 { 1013 struct pci_dev *pdev = to_pci_dev(dev); 1014 struct tb *tb = pci_get_drvdata(pdev); 1015 struct tb_nhi *nhi = tb->nhi; 1016 int ret; 1017 1018 ret = tb_domain_runtime_suspend(tb); 1019 if (ret) 1020 return ret; 1021 1022 if (nhi->ops && nhi->ops->runtime_suspend) { 1023 ret = nhi->ops->runtime_suspend(tb->nhi); 1024 if (ret) 1025 return ret; 1026 } 1027 return 0; 1028 } 1029 1030 static int nhi_runtime_resume(struct device *dev) 1031 { 1032 struct pci_dev *pdev = to_pci_dev(dev); 1033 struct tb *tb = pci_get_drvdata(pdev); 1034 struct tb_nhi *nhi = tb->nhi; 1035 int ret; 1036 1037 if (nhi->ops && nhi->ops->runtime_resume) { 1038 ret = nhi->ops->runtime_resume(nhi); 1039 if (ret) 1040 return ret; 1041 } 1042 1043 nhi_enable_int_throttling(nhi); 1044 return tb_domain_runtime_resume(tb); 1045 } 1046 1047 static void nhi_shutdown(struct tb_nhi *nhi) 1048 { 1049 int i; 1050 1051 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1052 1053 for (i = 0; i < nhi->hop_count; i++) { 1054 if (nhi->tx_rings[i]) 1055 dev_WARN(&nhi->pdev->dev, 1056 "TX ring %d is still active\n", i); 1057 if (nhi->rx_rings[i]) 1058 dev_WARN(&nhi->pdev->dev, 1059 "RX ring %d is still active\n", i); 1060 } 1061 nhi_disable_interrupts(nhi); 1062 /* 1063 * We have to release the irq before calling flush_work. Otherwise an 1064 * already executing IRQ handler could call schedule_work again. 1065 */ 1066 if (!nhi->pdev->msix_enabled) { 1067 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1068 flush_work(&nhi->interrupt_work); 1069 } 1070 ida_destroy(&nhi->msix_ida); 1071 1072 if (nhi->ops && nhi->ops->shutdown) 1073 nhi->ops->shutdown(nhi); 1074 } 1075 1076 static int nhi_init_msi(struct tb_nhi *nhi) 1077 { 1078 struct pci_dev *pdev = nhi->pdev; 1079 int res, irq, nvec; 1080 1081 /* In case someone left them on. */ 1082 nhi_disable_interrupts(nhi); 1083 1084 nhi_enable_int_throttling(nhi); 1085 1086 ida_init(&nhi->msix_ida); 1087 1088 /* 1089 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1090 * get all MSI-X vectors and if we succeed, each ring will have 1091 * one MSI-X. If for some reason that does not work out, we 1092 * fallback to a single MSI. 1093 */ 1094 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1095 PCI_IRQ_MSIX); 1096 if (nvec < 0) { 1097 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1098 if (nvec < 0) 1099 return nvec; 1100 1101 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1102 1103 irq = pci_irq_vector(nhi->pdev, 0); 1104 if (irq < 0) 1105 return irq; 1106 1107 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1108 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1109 if (res) { 1110 dev_err(&pdev->dev, "request_irq failed, aborting\n"); 1111 return res; 1112 } 1113 } 1114 1115 return 0; 1116 } 1117 1118 static bool nhi_imr_valid(struct pci_dev *pdev) 1119 { 1120 u8 val; 1121 1122 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1123 return !!val; 1124 1125 return true; 1126 } 1127 1128 /* 1129 * During suspend the Thunderbolt controller is reset and all PCIe 1130 * tunnels are lost. The NHI driver will try to reestablish all tunnels 1131 * during resume. This adds device links between the tunneled PCIe 1132 * downstream ports and the NHI so that the device core will make sure 1133 * NHI is resumed first before the rest. 1134 */ 1135 static void tb_apple_add_links(struct tb_nhi *nhi) 1136 { 1137 struct pci_dev *upstream, *pdev; 1138 1139 if (!x86_apple_machine) 1140 return; 1141 1142 switch (nhi->pdev->device) { 1143 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1144 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1145 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 1146 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 1147 break; 1148 default: 1149 return; 1150 } 1151 1152 upstream = pci_upstream_bridge(nhi->pdev); 1153 while (upstream) { 1154 if (!pci_is_pcie(upstream)) 1155 return; 1156 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 1157 break; 1158 upstream = pci_upstream_bridge(upstream); 1159 } 1160 1161 if (!upstream) 1162 return; 1163 1164 /* 1165 * For each hotplug downstream port, create add device link 1166 * back to NHI so that PCIe tunnels can be re-established after 1167 * sleep. 1168 */ 1169 for_each_pci_bridge(pdev, upstream->subordinate) { 1170 const struct device_link *link; 1171 1172 if (!pci_is_pcie(pdev)) 1173 continue; 1174 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 1175 !pdev->is_hotplug_bridge) 1176 continue; 1177 1178 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 1179 DL_FLAG_AUTOREMOVE_SUPPLIER | 1180 DL_FLAG_PM_RUNTIME); 1181 if (link) { 1182 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 1183 dev_name(&pdev->dev)); 1184 } else { 1185 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 1186 dev_name(&pdev->dev)); 1187 } 1188 } 1189 } 1190 1191 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1192 { 1193 struct tb_nhi *nhi; 1194 struct tb *tb; 1195 int res; 1196 1197 if (!nhi_imr_valid(pdev)) { 1198 dev_warn(&pdev->dev, "firmware image not valid, aborting\n"); 1199 return -ENODEV; 1200 } 1201 1202 res = pcim_enable_device(pdev); 1203 if (res) { 1204 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n"); 1205 return res; 1206 } 1207 1208 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1209 if (res) { 1210 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 1211 return res; 1212 } 1213 1214 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1215 if (!nhi) 1216 return -ENOMEM; 1217 1218 nhi->pdev = pdev; 1219 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1220 /* cannot fail - table is allocated bin pcim_iomap_regions */ 1221 nhi->iobase = pcim_iomap_table(pdev)[0]; 1222 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1223 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count); 1224 1225 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1226 sizeof(*nhi->tx_rings), GFP_KERNEL); 1227 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1228 sizeof(*nhi->rx_rings), GFP_KERNEL); 1229 if (!nhi->tx_rings || !nhi->rx_rings) 1230 return -ENOMEM; 1231 1232 res = nhi_init_msi(nhi); 1233 if (res) { 1234 dev_err(&pdev->dev, "cannot enable MSI, aborting\n"); 1235 return res; 1236 } 1237 1238 spin_lock_init(&nhi->lock); 1239 1240 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1241 if (res) 1242 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1243 if (res) { 1244 dev_err(&pdev->dev, "failed to set DMA mask\n"); 1245 return res; 1246 } 1247 1248 pci_set_master(pdev); 1249 1250 if (nhi->ops && nhi->ops->init) { 1251 res = nhi->ops->init(nhi); 1252 if (res) 1253 return res; 1254 } 1255 1256 tb_apple_add_links(nhi); 1257 tb_acpi_add_links(nhi); 1258 1259 tb = icm_probe(nhi); 1260 if (!tb) 1261 tb = tb_probe(nhi); 1262 if (!tb) { 1263 dev_err(&nhi->pdev->dev, 1264 "failed to determine connection manager, aborting\n"); 1265 return -ENODEV; 1266 } 1267 1268 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n"); 1269 1270 res = tb_domain_add(tb); 1271 if (res) { 1272 /* 1273 * At this point the RX/TX rings might already have been 1274 * activated. Do a proper shutdown. 1275 */ 1276 tb_domain_put(tb); 1277 nhi_shutdown(nhi); 1278 return res; 1279 } 1280 pci_set_drvdata(pdev, tb); 1281 1282 device_wakeup_enable(&pdev->dev); 1283 1284 pm_runtime_allow(&pdev->dev); 1285 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1286 pm_runtime_use_autosuspend(&pdev->dev); 1287 pm_runtime_put_autosuspend(&pdev->dev); 1288 1289 return 0; 1290 } 1291 1292 static void nhi_remove(struct pci_dev *pdev) 1293 { 1294 struct tb *tb = pci_get_drvdata(pdev); 1295 struct tb_nhi *nhi = tb->nhi; 1296 1297 pm_runtime_get_sync(&pdev->dev); 1298 pm_runtime_dont_use_autosuspend(&pdev->dev); 1299 pm_runtime_forbid(&pdev->dev); 1300 1301 tb_domain_remove(tb); 1302 nhi_shutdown(nhi); 1303 } 1304 1305 /* 1306 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1307 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1308 * resume_noirq until we are done. 1309 */ 1310 static const struct dev_pm_ops nhi_pm_ops = { 1311 .suspend_noirq = nhi_suspend_noirq, 1312 .resume_noirq = nhi_resume_noirq, 1313 .freeze_noirq = nhi_freeze_noirq, /* 1314 * we just disable hotplug, the 1315 * pci-tunnels stay alive. 1316 */ 1317 .thaw_noirq = nhi_thaw_noirq, 1318 .restore_noirq = nhi_resume_noirq, 1319 .suspend = nhi_suspend, 1320 .poweroff_noirq = nhi_poweroff_noirq, 1321 .poweroff = nhi_suspend, 1322 .complete = nhi_complete, 1323 .runtime_suspend = nhi_runtime_suspend, 1324 .runtime_resume = nhi_runtime_resume, 1325 }; 1326 1327 static struct pci_device_id nhi_ids[] = { 1328 /* 1329 * We have to specify class, the TB bridges use the same device and 1330 * vendor (sub)id on gen 1 and gen 2 controllers. 1331 */ 1332 { 1333 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1334 .vendor = PCI_VENDOR_ID_INTEL, 1335 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1336 .subvendor = 0x2222, .subdevice = 0x1111, 1337 }, 1338 { 1339 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1340 .vendor = PCI_VENDOR_ID_INTEL, 1341 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1342 .subvendor = 0x2222, .subdevice = 0x1111, 1343 }, 1344 { 1345 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1346 .vendor = PCI_VENDOR_ID_INTEL, 1347 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1348 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1349 }, 1350 { 1351 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1352 .vendor = PCI_VENDOR_ID_INTEL, 1353 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1354 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1355 }, 1356 1357 /* Thunderbolt 3 */ 1358 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1359 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1360 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1361 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1362 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1363 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1364 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1365 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1366 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1367 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1368 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1369 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1370 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1371 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1372 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1373 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1374 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1375 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1376 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0), 1377 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1378 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1), 1379 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1380 1381 /* Any USB4 compliant host */ 1382 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1383 1384 { 0,} 1385 }; 1386 1387 MODULE_DEVICE_TABLE(pci, nhi_ids); 1388 MODULE_LICENSE("GPL"); 1389 1390 static struct pci_driver nhi_driver = { 1391 .name = "thunderbolt", 1392 .id_table = nhi_ids, 1393 .probe = nhi_probe, 1394 .remove = nhi_remove, 1395 .shutdown = nhi_remove, 1396 .driver.pm = &nhi_pm_ops, 1397 }; 1398 1399 static int __init nhi_init(void) 1400 { 1401 int ret; 1402 1403 ret = tb_domain_init(); 1404 if (ret) 1405 return ret; 1406 ret = pci_register_driver(&nhi_driver); 1407 if (ret) 1408 tb_domain_exit(); 1409 return ret; 1410 } 1411 1412 static void __exit nhi_unload(void) 1413 { 1414 pci_unregister_driver(&nhi_driver); 1415 tb_domain_exit(); 1416 } 1417 1418 rootfs_initcall(nhi_init); 1419 module_exit(nhi_unload); 1420