xref: /openbmc/linux/drivers/thunderbolt/nhi.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Thunderbolt driver - NHI driver
3  *
4  * The NHI (native host interface) is the pci device that allows us to send and
5  * receive frames from the thunderbolt bus.
6  *
7  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
8  * Copyright (C) 2018, Intel Corporation
9  */
10 
11 #include <linux/pm_runtime.h>
12 #include <linux/slab.h>
13 #include <linux/errno.h>
14 #include <linux/pci.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/delay.h>
18 
19 #include "nhi.h"
20 #include "nhi_regs.h"
21 #include "tb.h"
22 
23 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
24 
25 /*
26  * Used to enable end-to-end workaround for missing RX packets. Do not
27  * use this ring for anything else.
28  */
29 #define RING_E2E_UNUSED_HOPID	2
30 /* HopIDs 0-7 are reserved by the Thunderbolt protocol */
31 #define RING_FIRST_USABLE_HOPID	8
32 
33 /*
34  * Minimal number of vectors when we use MSI-X. Two for control channel
35  * Rx/Tx and the rest four are for cross domain DMA paths.
36  */
37 #define MSIX_MIN_VECS		6
38 #define MSIX_MAX_VECS		16
39 
40 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
41 
42 static int ring_interrupt_index(struct tb_ring *ring)
43 {
44 	int bit = ring->hop;
45 	if (!ring->is_tx)
46 		bit += ring->nhi->hop_count;
47 	return bit;
48 }
49 
50 /**
51  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
52  *
53  * ring->nhi->lock must be held.
54  */
55 static void ring_interrupt_active(struct tb_ring *ring, bool active)
56 {
57 	int reg = REG_RING_INTERRUPT_BASE +
58 		  ring_interrupt_index(ring) / 32 * 4;
59 	int bit = ring_interrupt_index(ring) & 31;
60 	int mask = 1 << bit;
61 	u32 old, new;
62 
63 	if (ring->irq > 0) {
64 		u32 step, shift, ivr, misc;
65 		void __iomem *ivr_base;
66 		int index;
67 
68 		if (ring->is_tx)
69 			index = ring->hop;
70 		else
71 			index = ring->hop + ring->nhi->hop_count;
72 
73 		/*
74 		 * Ask the hardware to clear interrupt status bits automatically
75 		 * since we already know which interrupt was triggered.
76 		 */
77 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
78 		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
79 			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
80 			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
81 		}
82 
83 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
84 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
85 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
86 		ivr = ioread32(ivr_base + step);
87 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
88 		if (active)
89 			ivr |= ring->vector << shift;
90 		iowrite32(ivr, ivr_base + step);
91 	}
92 
93 	old = ioread32(ring->nhi->iobase + reg);
94 	if (active)
95 		new = old | mask;
96 	else
97 		new = old & ~mask;
98 
99 	dev_dbg(&ring->nhi->pdev->dev,
100 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
101 		active ? "enabling" : "disabling", reg, bit, old, new);
102 
103 	if (new == old)
104 		dev_WARN(&ring->nhi->pdev->dev,
105 					 "interrupt for %s %d is already %s\n",
106 					 RING_TYPE(ring), ring->hop,
107 					 active ? "enabled" : "disabled");
108 	iowrite32(new, ring->nhi->iobase + reg);
109 }
110 
111 /**
112  * nhi_disable_interrupts() - disable interrupts for all rings
113  *
114  * Use only during init and shutdown.
115  */
116 static void nhi_disable_interrupts(struct tb_nhi *nhi)
117 {
118 	int i = 0;
119 	/* disable interrupts */
120 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
121 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
122 
123 	/* clear interrupt status bits */
124 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
125 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
126 }
127 
128 /* ring helper methods */
129 
130 static void __iomem *ring_desc_base(struct tb_ring *ring)
131 {
132 	void __iomem *io = ring->nhi->iobase;
133 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
134 	io += ring->hop * 16;
135 	return io;
136 }
137 
138 static void __iomem *ring_options_base(struct tb_ring *ring)
139 {
140 	void __iomem *io = ring->nhi->iobase;
141 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
142 	io += ring->hop * 32;
143 	return io;
144 }
145 
146 static void ring_iowrite16desc(struct tb_ring *ring, u32 value, u32 offset)
147 {
148 	iowrite16(value, ring_desc_base(ring) + offset);
149 }
150 
151 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
152 {
153 	iowrite32(value, ring_desc_base(ring) + offset);
154 }
155 
156 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
157 {
158 	iowrite32(value, ring_desc_base(ring) + offset);
159 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
160 }
161 
162 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
163 {
164 	iowrite32(value, ring_options_base(ring) + offset);
165 }
166 
167 static bool ring_full(struct tb_ring *ring)
168 {
169 	return ((ring->head + 1) % ring->size) == ring->tail;
170 }
171 
172 static bool ring_empty(struct tb_ring *ring)
173 {
174 	return ring->head == ring->tail;
175 }
176 
177 /**
178  * ring_write_descriptors() - post frames from ring->queue to the controller
179  *
180  * ring->lock is held.
181  */
182 static void ring_write_descriptors(struct tb_ring *ring)
183 {
184 	struct ring_frame *frame, *n;
185 	struct ring_desc *descriptor;
186 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
187 		if (ring_full(ring))
188 			break;
189 		list_move_tail(&frame->list, &ring->in_flight);
190 		descriptor = &ring->descriptors[ring->head];
191 		descriptor->phys = frame->buffer_phy;
192 		descriptor->time = 0;
193 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
194 		if (ring->is_tx) {
195 			descriptor->length = frame->size;
196 			descriptor->eof = frame->eof;
197 			descriptor->sof = frame->sof;
198 		}
199 		ring->head = (ring->head + 1) % ring->size;
200 		ring_iowrite16desc(ring, ring->head, ring->is_tx ? 10 : 8);
201 	}
202 }
203 
204 /**
205  * ring_work() - progress completed frames
206  *
207  * If the ring is shutting down then all frames are marked as canceled and
208  * their callbacks are invoked.
209  *
210  * Otherwise we collect all completed frame from the ring buffer, write new
211  * frame to the ring buffer and invoke the callbacks for the completed frames.
212  */
213 static void ring_work(struct work_struct *work)
214 {
215 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
216 	struct ring_frame *frame;
217 	bool canceled = false;
218 	unsigned long flags;
219 	LIST_HEAD(done);
220 
221 	spin_lock_irqsave(&ring->lock, flags);
222 
223 	if (!ring->running) {
224 		/*  Move all frames to done and mark them as canceled. */
225 		list_splice_tail_init(&ring->in_flight, &done);
226 		list_splice_tail_init(&ring->queue, &done);
227 		canceled = true;
228 		goto invoke_callback;
229 	}
230 
231 	while (!ring_empty(ring)) {
232 		if (!(ring->descriptors[ring->tail].flags
233 				& RING_DESC_COMPLETED))
234 			break;
235 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
236 					 list);
237 		list_move_tail(&frame->list, &done);
238 		if (!ring->is_tx) {
239 			frame->size = ring->descriptors[ring->tail].length;
240 			frame->eof = ring->descriptors[ring->tail].eof;
241 			frame->sof = ring->descriptors[ring->tail].sof;
242 			frame->flags = ring->descriptors[ring->tail].flags;
243 		}
244 		ring->tail = (ring->tail + 1) % ring->size;
245 	}
246 	ring_write_descriptors(ring);
247 
248 invoke_callback:
249 	/* allow callbacks to schedule new work */
250 	spin_unlock_irqrestore(&ring->lock, flags);
251 	while (!list_empty(&done)) {
252 		frame = list_first_entry(&done, typeof(*frame), list);
253 		/*
254 		 * The callback may reenqueue or delete frame.
255 		 * Do not hold on to it.
256 		 */
257 		list_del_init(&frame->list);
258 		if (frame->callback)
259 			frame->callback(ring, frame, canceled);
260 	}
261 }
262 
263 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
264 {
265 	unsigned long flags;
266 	int ret = 0;
267 
268 	spin_lock_irqsave(&ring->lock, flags);
269 	if (ring->running) {
270 		list_add_tail(&frame->list, &ring->queue);
271 		ring_write_descriptors(ring);
272 	} else {
273 		ret = -ESHUTDOWN;
274 	}
275 	spin_unlock_irqrestore(&ring->lock, flags);
276 	return ret;
277 }
278 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
279 
280 /**
281  * tb_ring_poll() - Poll one completed frame from the ring
282  * @ring: Ring to poll
283  *
284  * This function can be called when @start_poll callback of the @ring
285  * has been called. It will read one completed frame from the ring and
286  * return it to the caller. Returns %NULL if there is no more completed
287  * frames.
288  */
289 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
290 {
291 	struct ring_frame *frame = NULL;
292 	unsigned long flags;
293 
294 	spin_lock_irqsave(&ring->lock, flags);
295 	if (!ring->running)
296 		goto unlock;
297 	if (ring_empty(ring))
298 		goto unlock;
299 
300 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
301 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
302 					 list);
303 		list_del_init(&frame->list);
304 
305 		if (!ring->is_tx) {
306 			frame->size = ring->descriptors[ring->tail].length;
307 			frame->eof = ring->descriptors[ring->tail].eof;
308 			frame->sof = ring->descriptors[ring->tail].sof;
309 			frame->flags = ring->descriptors[ring->tail].flags;
310 		}
311 
312 		ring->tail = (ring->tail + 1) % ring->size;
313 	}
314 
315 unlock:
316 	spin_unlock_irqrestore(&ring->lock, flags);
317 	return frame;
318 }
319 EXPORT_SYMBOL_GPL(tb_ring_poll);
320 
321 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
322 {
323 	int idx = ring_interrupt_index(ring);
324 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
325 	int bit = idx % 32;
326 	u32 val;
327 
328 	val = ioread32(ring->nhi->iobase + reg);
329 	if (mask)
330 		val &= ~BIT(bit);
331 	else
332 		val |= BIT(bit);
333 	iowrite32(val, ring->nhi->iobase + reg);
334 }
335 
336 /* Both @nhi->lock and @ring->lock should be held */
337 static void __ring_interrupt(struct tb_ring *ring)
338 {
339 	if (!ring->running)
340 		return;
341 
342 	if (ring->start_poll) {
343 		__ring_interrupt_mask(ring, true);
344 		ring->start_poll(ring->poll_data);
345 	} else {
346 		schedule_work(&ring->work);
347 	}
348 }
349 
350 /**
351  * tb_ring_poll_complete() - Re-start interrupt for the ring
352  * @ring: Ring to re-start the interrupt
353  *
354  * This will re-start (unmask) the ring interrupt once the user is done
355  * with polling.
356  */
357 void tb_ring_poll_complete(struct tb_ring *ring)
358 {
359 	unsigned long flags;
360 
361 	spin_lock_irqsave(&ring->nhi->lock, flags);
362 	spin_lock(&ring->lock);
363 	if (ring->start_poll)
364 		__ring_interrupt_mask(ring, false);
365 	spin_unlock(&ring->lock);
366 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
367 }
368 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
369 
370 static irqreturn_t ring_msix(int irq, void *data)
371 {
372 	struct tb_ring *ring = data;
373 
374 	spin_lock(&ring->nhi->lock);
375 	spin_lock(&ring->lock);
376 	__ring_interrupt(ring);
377 	spin_unlock(&ring->lock);
378 	spin_unlock(&ring->nhi->lock);
379 
380 	return IRQ_HANDLED;
381 }
382 
383 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
384 {
385 	struct tb_nhi *nhi = ring->nhi;
386 	unsigned long irqflags;
387 	int ret;
388 
389 	if (!nhi->pdev->msix_enabled)
390 		return 0;
391 
392 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
393 	if (ret < 0)
394 		return ret;
395 
396 	ring->vector = ret;
397 
398 	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
399 	if (ring->irq < 0)
400 		return ring->irq;
401 
402 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
403 	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
404 }
405 
406 static void ring_release_msix(struct tb_ring *ring)
407 {
408 	if (ring->irq <= 0)
409 		return;
410 
411 	free_irq(ring->irq, ring);
412 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
413 	ring->vector = 0;
414 	ring->irq = 0;
415 }
416 
417 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
418 {
419 	int ret = 0;
420 
421 	spin_lock_irq(&nhi->lock);
422 
423 	if (ring->hop < 0) {
424 		unsigned int i;
425 
426 		/*
427 		 * Automatically allocate HopID from the non-reserved
428 		 * range 8 .. hop_count - 1.
429 		 */
430 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
431 			if (ring->is_tx) {
432 				if (!nhi->tx_rings[i]) {
433 					ring->hop = i;
434 					break;
435 				}
436 			} else {
437 				if (!nhi->rx_rings[i]) {
438 					ring->hop = i;
439 					break;
440 				}
441 			}
442 		}
443 	}
444 
445 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
446 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
447 		ret = -EINVAL;
448 		goto err_unlock;
449 	}
450 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
451 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
452 			 ring->hop);
453 		ret = -EBUSY;
454 		goto err_unlock;
455 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
456 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
457 			 ring->hop);
458 		ret = -EBUSY;
459 		goto err_unlock;
460 	}
461 
462 	if (ring->is_tx)
463 		nhi->tx_rings[ring->hop] = ring;
464 	else
465 		nhi->rx_rings[ring->hop] = ring;
466 
467 err_unlock:
468 	spin_unlock_irq(&nhi->lock);
469 
470 	return ret;
471 }
472 
473 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
474 				     bool transmit, unsigned int flags,
475 				     u16 sof_mask, u16 eof_mask,
476 				     void (*start_poll)(void *),
477 				     void *poll_data)
478 {
479 	struct tb_ring *ring = NULL;
480 
481 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
482 		transmit ? "TX" : "RX", hop, size);
483 
484 	/* Tx Ring 2 is reserved for E2E workaround */
485 	if (transmit && hop == RING_E2E_UNUSED_HOPID)
486 		return NULL;
487 
488 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
489 	if (!ring)
490 		return NULL;
491 
492 	spin_lock_init(&ring->lock);
493 	INIT_LIST_HEAD(&ring->queue);
494 	INIT_LIST_HEAD(&ring->in_flight);
495 	INIT_WORK(&ring->work, ring_work);
496 
497 	ring->nhi = nhi;
498 	ring->hop = hop;
499 	ring->is_tx = transmit;
500 	ring->size = size;
501 	ring->flags = flags;
502 	ring->sof_mask = sof_mask;
503 	ring->eof_mask = eof_mask;
504 	ring->head = 0;
505 	ring->tail = 0;
506 	ring->running = false;
507 	ring->start_poll = start_poll;
508 	ring->poll_data = poll_data;
509 
510 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
511 			size * sizeof(*ring->descriptors),
512 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
513 	if (!ring->descriptors)
514 		goto err_free_ring;
515 
516 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
517 		goto err_free_descs;
518 
519 	if (nhi_alloc_hop(nhi, ring))
520 		goto err_release_msix;
521 
522 	return ring;
523 
524 err_release_msix:
525 	ring_release_msix(ring);
526 err_free_descs:
527 	dma_free_coherent(&ring->nhi->pdev->dev,
528 			  ring->size * sizeof(*ring->descriptors),
529 			  ring->descriptors, ring->descriptors_dma);
530 err_free_ring:
531 	kfree(ring);
532 
533 	return NULL;
534 }
535 
536 /**
537  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
538  * @nhi: Pointer to the NHI the ring is to be allocated
539  * @hop: HopID (ring) to allocate
540  * @size: Number of entries in the ring
541  * @flags: Flags for the ring
542  */
543 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
544 				 unsigned int flags)
545 {
546 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
547 }
548 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
549 
550 /**
551  * tb_ring_alloc_rx() - Allocate DMA ring for receive
552  * @nhi: Pointer to the NHI the ring is to be allocated
553  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
554  * @size: Number of entries in the ring
555  * @flags: Flags for the ring
556  * @sof_mask: Mask of PDF values that start a frame
557  * @eof_mask: Mask of PDF values that end a frame
558  * @start_poll: If not %NULL the ring will call this function when an
559  *		interrupt is triggered and masked, instead of callback
560  *		in each Rx frame.
561  * @poll_data: Optional data passed to @start_poll
562  */
563 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
564 				 unsigned int flags, u16 sof_mask, u16 eof_mask,
565 				 void (*start_poll)(void *), void *poll_data)
566 {
567 	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
568 			     start_poll, poll_data);
569 }
570 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
571 
572 /**
573  * tb_ring_start() - enable a ring
574  *
575  * Must not be invoked in parallel with tb_ring_stop().
576  */
577 void tb_ring_start(struct tb_ring *ring)
578 {
579 	u16 frame_size;
580 	u32 flags;
581 
582 	spin_lock_irq(&ring->nhi->lock);
583 	spin_lock(&ring->lock);
584 	if (ring->nhi->going_away)
585 		goto err;
586 	if (ring->running) {
587 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
588 		goto err;
589 	}
590 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
591 		RING_TYPE(ring), ring->hop);
592 
593 	if (ring->flags & RING_FLAG_FRAME) {
594 		/* Means 4096 */
595 		frame_size = 0;
596 		flags = RING_FLAG_ENABLE;
597 	} else {
598 		frame_size = TB_FRAME_SIZE;
599 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
600 	}
601 
602 	if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
603 		u32 hop;
604 
605 		/*
606 		 * In order not to lose Rx packets we enable end-to-end
607 		 * workaround which transfers Rx credits to an unused Tx
608 		 * HopID.
609 		 */
610 		hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
611 		hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
612 		flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
613 	}
614 
615 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
616 	if (ring->is_tx) {
617 		ring_iowrite32desc(ring, ring->size, 12);
618 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
619 		ring_iowrite32options(ring, flags, 0);
620 	} else {
621 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
622 
623 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
624 		ring_iowrite32options(ring, sof_eof_mask, 4);
625 		ring_iowrite32options(ring, flags, 0);
626 	}
627 	ring_interrupt_active(ring, true);
628 	ring->running = true;
629 err:
630 	spin_unlock(&ring->lock);
631 	spin_unlock_irq(&ring->nhi->lock);
632 }
633 EXPORT_SYMBOL_GPL(tb_ring_start);
634 
635 /**
636  * tb_ring_stop() - shutdown a ring
637  *
638  * Must not be invoked from a callback.
639  *
640  * This method will disable the ring. Further calls to
641  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
642  * called.
643  *
644  * All enqueued frames will be canceled and their callbacks will be executed
645  * with frame->canceled set to true (on the callback thread). This method
646  * returns only after all callback invocations have finished.
647  */
648 void tb_ring_stop(struct tb_ring *ring)
649 {
650 	spin_lock_irq(&ring->nhi->lock);
651 	spin_lock(&ring->lock);
652 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
653 		RING_TYPE(ring), ring->hop);
654 	if (ring->nhi->going_away)
655 		goto err;
656 	if (!ring->running) {
657 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
658 			 RING_TYPE(ring), ring->hop);
659 		goto err;
660 	}
661 	ring_interrupt_active(ring, false);
662 
663 	ring_iowrite32options(ring, 0, 0);
664 	ring_iowrite64desc(ring, 0, 0);
665 	ring_iowrite16desc(ring, 0, ring->is_tx ? 10 : 8);
666 	ring_iowrite32desc(ring, 0, 12);
667 	ring->head = 0;
668 	ring->tail = 0;
669 	ring->running = false;
670 
671 err:
672 	spin_unlock(&ring->lock);
673 	spin_unlock_irq(&ring->nhi->lock);
674 
675 	/*
676 	 * schedule ring->work to invoke callbacks on all remaining frames.
677 	 */
678 	schedule_work(&ring->work);
679 	flush_work(&ring->work);
680 }
681 EXPORT_SYMBOL_GPL(tb_ring_stop);
682 
683 /*
684  * tb_ring_free() - free ring
685  *
686  * When this method returns all invocations of ring->callback will have
687  * finished.
688  *
689  * Ring must be stopped.
690  *
691  * Must NOT be called from ring_frame->callback!
692  */
693 void tb_ring_free(struct tb_ring *ring)
694 {
695 	spin_lock_irq(&ring->nhi->lock);
696 	/*
697 	 * Dissociate the ring from the NHI. This also ensures that
698 	 * nhi_interrupt_work cannot reschedule ring->work.
699 	 */
700 	if (ring->is_tx)
701 		ring->nhi->tx_rings[ring->hop] = NULL;
702 	else
703 		ring->nhi->rx_rings[ring->hop] = NULL;
704 
705 	if (ring->running) {
706 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
707 			 RING_TYPE(ring), ring->hop);
708 	}
709 	spin_unlock_irq(&ring->nhi->lock);
710 
711 	ring_release_msix(ring);
712 
713 	dma_free_coherent(&ring->nhi->pdev->dev,
714 			  ring->size * sizeof(*ring->descriptors),
715 			  ring->descriptors, ring->descriptors_dma);
716 
717 	ring->descriptors = NULL;
718 	ring->descriptors_dma = 0;
719 
720 
721 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
722 		ring->hop);
723 
724 	/**
725 	 * ring->work can no longer be scheduled (it is scheduled only
726 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
727 	 * to finish before freeing the ring.
728 	 */
729 	flush_work(&ring->work);
730 	kfree(ring);
731 }
732 EXPORT_SYMBOL_GPL(tb_ring_free);
733 
734 /**
735  * nhi_mailbox_cmd() - Send a command through NHI mailbox
736  * @nhi: Pointer to the NHI structure
737  * @cmd: Command to send
738  * @data: Data to be send with the command
739  *
740  * Sends mailbox command to the firmware running on NHI. Returns %0 in
741  * case of success and negative errno in case of failure.
742  */
743 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
744 {
745 	ktime_t timeout;
746 	u32 val;
747 
748 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
749 
750 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
751 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
752 	val |= REG_INMAIL_OP_REQUEST | cmd;
753 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
754 
755 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
756 	do {
757 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
758 		if (!(val & REG_INMAIL_OP_REQUEST))
759 			break;
760 		usleep_range(10, 20);
761 	} while (ktime_before(ktime_get(), timeout));
762 
763 	if (val & REG_INMAIL_OP_REQUEST)
764 		return -ETIMEDOUT;
765 	if (val & REG_INMAIL_ERROR)
766 		return -EIO;
767 
768 	return 0;
769 }
770 
771 /**
772  * nhi_mailbox_mode() - Return current firmware operation mode
773  * @nhi: Pointer to the NHI structure
774  *
775  * The function reads current firmware operation mode using NHI mailbox
776  * registers and returns it to the caller.
777  */
778 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
779 {
780 	u32 val;
781 
782 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
783 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
784 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
785 
786 	return (enum nhi_fw_mode)val;
787 }
788 
789 static void nhi_interrupt_work(struct work_struct *work)
790 {
791 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
792 	int value = 0; /* Suppress uninitialized usage warning. */
793 	int bit;
794 	int hop = -1;
795 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
796 	struct tb_ring *ring;
797 
798 	spin_lock_irq(&nhi->lock);
799 
800 	/*
801 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
802 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
803 	 * dwords as required. The registers are cleared on read.
804 	 */
805 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
806 		if (bit % 32 == 0)
807 			value = ioread32(nhi->iobase
808 					 + REG_RING_NOTIFY_BASE
809 					 + 4 * (bit / 32));
810 		if (++hop == nhi->hop_count) {
811 			hop = 0;
812 			type++;
813 		}
814 		if ((value & (1 << (bit % 32))) == 0)
815 			continue;
816 		if (type == 2) {
817 			dev_warn(&nhi->pdev->dev,
818 				 "RX overflow for ring %d\n",
819 				 hop);
820 			continue;
821 		}
822 		if (type == 0)
823 			ring = nhi->tx_rings[hop];
824 		else
825 			ring = nhi->rx_rings[hop];
826 		if (ring == NULL) {
827 			dev_warn(&nhi->pdev->dev,
828 				 "got interrupt for inactive %s ring %d\n",
829 				 type ? "RX" : "TX",
830 				 hop);
831 			continue;
832 		}
833 
834 		spin_lock(&ring->lock);
835 		__ring_interrupt(ring);
836 		spin_unlock(&ring->lock);
837 	}
838 	spin_unlock_irq(&nhi->lock);
839 }
840 
841 static irqreturn_t nhi_msi(int irq, void *data)
842 {
843 	struct tb_nhi *nhi = data;
844 	schedule_work(&nhi->interrupt_work);
845 	return IRQ_HANDLED;
846 }
847 
848 static int nhi_suspend_noirq(struct device *dev)
849 {
850 	struct pci_dev *pdev = to_pci_dev(dev);
851 	struct tb *tb = pci_get_drvdata(pdev);
852 
853 	return tb_domain_suspend_noirq(tb);
854 }
855 
856 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
857 {
858 	/* Throttling is specified in 256ns increments */
859 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
860 	unsigned int i;
861 
862 	/*
863 	 * Configure interrupt throttling for all vectors even if we
864 	 * only use few.
865 	 */
866 	for (i = 0; i < MSIX_MAX_VECS; i++) {
867 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
868 		iowrite32(throttle, nhi->iobase + reg);
869 	}
870 }
871 
872 static int nhi_resume_noirq(struct device *dev)
873 {
874 	struct pci_dev *pdev = to_pci_dev(dev);
875 	struct tb *tb = pci_get_drvdata(pdev);
876 
877 	/*
878 	 * Check that the device is still there. It may be that the user
879 	 * unplugged last device which causes the host controller to go
880 	 * away on PCs.
881 	 */
882 	if (!pci_device_is_present(pdev))
883 		tb->nhi->going_away = true;
884 	else
885 		nhi_enable_int_throttling(tb->nhi);
886 
887 	return tb_domain_resume_noirq(tb);
888 }
889 
890 static int nhi_suspend(struct device *dev)
891 {
892 	struct pci_dev *pdev = to_pci_dev(dev);
893 	struct tb *tb = pci_get_drvdata(pdev);
894 
895 	return tb_domain_suspend(tb);
896 }
897 
898 static void nhi_complete(struct device *dev)
899 {
900 	struct pci_dev *pdev = to_pci_dev(dev);
901 	struct tb *tb = pci_get_drvdata(pdev);
902 
903 	/*
904 	 * If we were runtime suspended when system suspend started,
905 	 * schedule runtime resume now. It should bring the domain back
906 	 * to functional state.
907 	 */
908 	if (pm_runtime_suspended(&pdev->dev))
909 		pm_runtime_resume(&pdev->dev);
910 	else
911 		tb_domain_complete(tb);
912 }
913 
914 static int nhi_runtime_suspend(struct device *dev)
915 {
916 	struct pci_dev *pdev = to_pci_dev(dev);
917 	struct tb *tb = pci_get_drvdata(pdev);
918 
919 	return tb_domain_runtime_suspend(tb);
920 }
921 
922 static int nhi_runtime_resume(struct device *dev)
923 {
924 	struct pci_dev *pdev = to_pci_dev(dev);
925 	struct tb *tb = pci_get_drvdata(pdev);
926 
927 	nhi_enable_int_throttling(tb->nhi);
928 	return tb_domain_runtime_resume(tb);
929 }
930 
931 static void nhi_shutdown(struct tb_nhi *nhi)
932 {
933 	int i;
934 
935 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
936 
937 	for (i = 0; i < nhi->hop_count; i++) {
938 		if (nhi->tx_rings[i])
939 			dev_WARN(&nhi->pdev->dev,
940 				 "TX ring %d is still active\n", i);
941 		if (nhi->rx_rings[i])
942 			dev_WARN(&nhi->pdev->dev,
943 				 "RX ring %d is still active\n", i);
944 	}
945 	nhi_disable_interrupts(nhi);
946 	/*
947 	 * We have to release the irq before calling flush_work. Otherwise an
948 	 * already executing IRQ handler could call schedule_work again.
949 	 */
950 	if (!nhi->pdev->msix_enabled) {
951 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
952 		flush_work(&nhi->interrupt_work);
953 	}
954 	ida_destroy(&nhi->msix_ida);
955 }
956 
957 static int nhi_init_msi(struct tb_nhi *nhi)
958 {
959 	struct pci_dev *pdev = nhi->pdev;
960 	int res, irq, nvec;
961 
962 	/* In case someone left them on. */
963 	nhi_disable_interrupts(nhi);
964 
965 	nhi_enable_int_throttling(nhi);
966 
967 	ida_init(&nhi->msix_ida);
968 
969 	/*
970 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
971 	 * get all MSI-X vectors and if we succeed, each ring will have
972 	 * one MSI-X. If for some reason that does not work out, we
973 	 * fallback to a single MSI.
974 	 */
975 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
976 				     PCI_IRQ_MSIX);
977 	if (nvec < 0) {
978 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
979 		if (nvec < 0)
980 			return nvec;
981 
982 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
983 
984 		irq = pci_irq_vector(nhi->pdev, 0);
985 		if (irq < 0)
986 			return irq;
987 
988 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
989 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
990 		if (res) {
991 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
992 			return res;
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1000 {
1001 	struct tb_nhi *nhi;
1002 	struct tb *tb;
1003 	int res;
1004 
1005 	res = pcim_enable_device(pdev);
1006 	if (res) {
1007 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1008 		return res;
1009 	}
1010 
1011 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1012 	if (res) {
1013 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1014 		return res;
1015 	}
1016 
1017 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1018 	if (!nhi)
1019 		return -ENOMEM;
1020 
1021 	nhi->pdev = pdev;
1022 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1023 	nhi->iobase = pcim_iomap_table(pdev)[0];
1024 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1025 	if (nhi->hop_count != 12 && nhi->hop_count != 32)
1026 		dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1027 			 nhi->hop_count);
1028 
1029 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1030 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1031 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1032 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1033 	if (!nhi->tx_rings || !nhi->rx_rings)
1034 		return -ENOMEM;
1035 
1036 	res = nhi_init_msi(nhi);
1037 	if (res) {
1038 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1039 		return res;
1040 	}
1041 
1042 	spin_lock_init(&nhi->lock);
1043 
1044 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1045 	if (res)
1046 		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1047 	if (res) {
1048 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1049 		return res;
1050 	}
1051 
1052 	pci_set_master(pdev);
1053 
1054 	tb = icm_probe(nhi);
1055 	if (!tb)
1056 		tb = tb_probe(nhi);
1057 	if (!tb) {
1058 		dev_err(&nhi->pdev->dev,
1059 			"failed to determine connection manager, aborting\n");
1060 		return -ENODEV;
1061 	}
1062 
1063 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1064 
1065 	res = tb_domain_add(tb);
1066 	if (res) {
1067 		/*
1068 		 * At this point the RX/TX rings might already have been
1069 		 * activated. Do a proper shutdown.
1070 		 */
1071 		tb_domain_put(tb);
1072 		nhi_shutdown(nhi);
1073 		return res;
1074 	}
1075 	pci_set_drvdata(pdev, tb);
1076 
1077 	pm_runtime_allow(&pdev->dev);
1078 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1079 	pm_runtime_use_autosuspend(&pdev->dev);
1080 	pm_runtime_put_autosuspend(&pdev->dev);
1081 
1082 	return 0;
1083 }
1084 
1085 static void nhi_remove(struct pci_dev *pdev)
1086 {
1087 	struct tb *tb = pci_get_drvdata(pdev);
1088 	struct tb_nhi *nhi = tb->nhi;
1089 
1090 	pm_runtime_get_sync(&pdev->dev);
1091 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1092 	pm_runtime_forbid(&pdev->dev);
1093 
1094 	tb_domain_remove(tb);
1095 	nhi_shutdown(nhi);
1096 }
1097 
1098 /*
1099  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1100  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1101  * resume_noirq until we are done.
1102  */
1103 static const struct dev_pm_ops nhi_pm_ops = {
1104 	.suspend_noirq = nhi_suspend_noirq,
1105 	.resume_noirq = nhi_resume_noirq,
1106 	.freeze_noirq = nhi_suspend_noirq, /*
1107 					    * we just disable hotplug, the
1108 					    * pci-tunnels stay alive.
1109 					    */
1110 	.thaw_noirq = nhi_resume_noirq,
1111 	.restore_noirq = nhi_resume_noirq,
1112 	.suspend = nhi_suspend,
1113 	.freeze = nhi_suspend,
1114 	.poweroff = nhi_suspend,
1115 	.complete = nhi_complete,
1116 	.runtime_suspend = nhi_runtime_suspend,
1117 	.runtime_resume = nhi_runtime_resume,
1118 };
1119 
1120 static struct pci_device_id nhi_ids[] = {
1121 	/*
1122 	 * We have to specify class, the TB bridges use the same device and
1123 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1124 	 */
1125 	{
1126 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1127 		.vendor = PCI_VENDOR_ID_INTEL,
1128 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1129 		.subvendor = 0x2222, .subdevice = 0x1111,
1130 	},
1131 	{
1132 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1133 		.vendor = PCI_VENDOR_ID_INTEL,
1134 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1135 		.subvendor = 0x2222, .subdevice = 0x1111,
1136 	},
1137 	{
1138 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1139 		.vendor = PCI_VENDOR_ID_INTEL,
1140 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1141 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1142 	},
1143 	{
1144 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1145 		.vendor = PCI_VENDOR_ID_INTEL,
1146 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1147 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1148 	},
1149 
1150 	/* Thunderbolt 3 */
1151 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1152 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1153 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1154 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1155 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1156 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1157 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1158 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1159 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1160 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1161 
1162 	{ 0,}
1163 };
1164 
1165 MODULE_DEVICE_TABLE(pci, nhi_ids);
1166 MODULE_LICENSE("GPL");
1167 
1168 static struct pci_driver nhi_driver = {
1169 	.name = "thunderbolt",
1170 	.id_table = nhi_ids,
1171 	.probe = nhi_probe,
1172 	.remove = nhi_remove,
1173 	.driver.pm = &nhi_pm_ops,
1174 };
1175 
1176 static int __init nhi_init(void)
1177 {
1178 	int ret;
1179 
1180 	ret = tb_domain_init();
1181 	if (ret)
1182 		return ret;
1183 	ret = pci_register_driver(&nhi_driver);
1184 	if (ret)
1185 		tb_domain_exit();
1186 	return ret;
1187 }
1188 
1189 static void __exit nhi_unload(void)
1190 {
1191 	pci_unregister_driver(&nhi_driver);
1192 	tb_domain_exit();
1193 }
1194 
1195 rootfs_initcall(nhi_init);
1196 module_exit(nhi_unload);
1197