xref: /openbmc/linux/drivers/thunderbolt/icm.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Internal Thunderbolt Connection Manager. This is a firmware running on
4  * the Thunderbolt host controller performing most of the low-level
5  * handling.
6  *
7  * Copyright (C) 2017, Intel Corporation
8  * Authors: Michael Jamet <michael.jamet@intel.com>
9  *          Mika Westerberg <mika.westerberg@linux.intel.com>
10  */
11 
12 #include <linux/delay.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/pci.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/platform_data/x86/apple.h>
18 #include <linux/sizes.h>
19 #include <linux/slab.h>
20 #include <linux/workqueue.h>
21 
22 #include "ctl.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25 
26 #define PCIE2CIO_CMD			0x30
27 #define PCIE2CIO_CMD_TIMEOUT		BIT(31)
28 #define PCIE2CIO_CMD_START		BIT(30)
29 #define PCIE2CIO_CMD_WRITE		BIT(21)
30 #define PCIE2CIO_CMD_CS_MASK		GENMASK(20, 19)
31 #define PCIE2CIO_CMD_CS_SHIFT		19
32 #define PCIE2CIO_CMD_PORT_MASK		GENMASK(18, 13)
33 #define PCIE2CIO_CMD_PORT_SHIFT		13
34 
35 #define PCIE2CIO_WRDATA			0x34
36 #define PCIE2CIO_RDDATA			0x38
37 
38 #define PHY_PORT_CS1			0x37
39 #define PHY_PORT_CS1_LINK_DISABLE	BIT(14)
40 #define PHY_PORT_CS1_LINK_STATE_MASK	GENMASK(29, 26)
41 #define PHY_PORT_CS1_LINK_STATE_SHIFT	26
42 
43 #define ICM_TIMEOUT			5000	/* ms */
44 #define ICM_APPROVE_TIMEOUT		10000	/* ms */
45 #define ICM_MAX_LINK			4
46 
47 static bool start_icm;
48 module_param(start_icm, bool, 0444);
49 MODULE_PARM_DESC(start_icm, "start ICM firmware if it is not running (default: false)");
50 
51 /**
52  * struct icm - Internal connection manager private data
53  * @request_lock: Makes sure only one message is send to ICM at time
54  * @rescan_work: Work used to rescan the surviving switches after resume
55  * @upstream_port: Pointer to the PCIe upstream port this host
56  *		   controller is connected. This is only set for systems
57  *		   where ICM needs to be started manually
58  * @vnd_cap: Vendor defined capability where PCIe2CIO mailbox resides
59  *	     (only set when @upstream_port is not %NULL)
60  * @safe_mode: ICM is in safe mode
61  * @max_boot_acl: Maximum number of preboot ACL entries (%0 if not supported)
62  * @rpm: Does the controller support runtime PM (RTD3)
63  * @can_upgrade_nvm: Can the NVM firmware be upgrade on this controller
64  * @veto: Is RTD3 veto in effect
65  * @is_supported: Checks if we can support ICM on this controller
66  * @cio_reset: Trigger CIO reset
67  * @get_mode: Read and return the ICM firmware mode (optional)
68  * @get_route: Find a route string for given switch
69  * @save_devices: Ask ICM to save devices to ACL when suspending (optional)
70  * @driver_ready: Send driver ready message to ICM
71  * @set_uuid: Set UUID for the root switch (optional)
72  * @device_connected: Handle device connected ICM message
73  * @device_disconnected: Handle device disconnected ICM message
74  * @xdomain_connected - Handle XDomain connected ICM message
75  * @xdomain_disconnected - Handle XDomain disconnected ICM message
76  * @rtd3_veto: Handle RTD3 veto notification ICM message
77  */
78 struct icm {
79 	struct mutex request_lock;
80 	struct delayed_work rescan_work;
81 	struct pci_dev *upstream_port;
82 	size_t max_boot_acl;
83 	int vnd_cap;
84 	bool safe_mode;
85 	bool rpm;
86 	bool can_upgrade_nvm;
87 	bool veto;
88 	bool (*is_supported)(struct tb *tb);
89 	int (*cio_reset)(struct tb *tb);
90 	int (*get_mode)(struct tb *tb);
91 	int (*get_route)(struct tb *tb, u8 link, u8 depth, u64 *route);
92 	void (*save_devices)(struct tb *tb);
93 	int (*driver_ready)(struct tb *tb,
94 			    enum tb_security_level *security_level,
95 			    size_t *nboot_acl, bool *rpm);
96 	void (*set_uuid)(struct tb *tb);
97 	void (*device_connected)(struct tb *tb,
98 				 const struct icm_pkg_header *hdr);
99 	void (*device_disconnected)(struct tb *tb,
100 				    const struct icm_pkg_header *hdr);
101 	void (*xdomain_connected)(struct tb *tb,
102 				  const struct icm_pkg_header *hdr);
103 	void (*xdomain_disconnected)(struct tb *tb,
104 				     const struct icm_pkg_header *hdr);
105 	void (*rtd3_veto)(struct tb *tb, const struct icm_pkg_header *hdr);
106 };
107 
108 struct icm_notification {
109 	struct work_struct work;
110 	struct icm_pkg_header *pkg;
111 	struct tb *tb;
112 };
113 
114 struct ep_name_entry {
115 	u8 len;
116 	u8 type;
117 	u8 data[];
118 };
119 
120 #define EP_NAME_INTEL_VSS	0x10
121 
122 /* Intel Vendor specific structure */
123 struct intel_vss {
124 	u16 vendor;
125 	u16 model;
126 	u8 mc;
127 	u8 flags;
128 	u16 pci_devid;
129 	u32 nvm_version;
130 };
131 
132 #define INTEL_VSS_FLAGS_RTD3	BIT(0)
133 
134 static const struct intel_vss *parse_intel_vss(const void *ep_name, size_t size)
135 {
136 	const void *end = ep_name + size;
137 
138 	while (ep_name < end) {
139 		const struct ep_name_entry *ep = ep_name;
140 
141 		if (!ep->len)
142 			break;
143 		if (ep_name + ep->len > end)
144 			break;
145 
146 		if (ep->type == EP_NAME_INTEL_VSS)
147 			return (const struct intel_vss *)ep->data;
148 
149 		ep_name += ep->len;
150 	}
151 
152 	return NULL;
153 }
154 
155 static bool intel_vss_is_rtd3(const void *ep_name, size_t size)
156 {
157 	const struct intel_vss *vss;
158 
159 	vss = parse_intel_vss(ep_name, size);
160 	if (vss)
161 		return !!(vss->flags & INTEL_VSS_FLAGS_RTD3);
162 
163 	return false;
164 }
165 
166 static inline struct tb *icm_to_tb(struct icm *icm)
167 {
168 	return ((void *)icm - sizeof(struct tb));
169 }
170 
171 static inline u8 phy_port_from_route(u64 route, u8 depth)
172 {
173 	u8 link;
174 
175 	link = depth ? route >> ((depth - 1) * 8) : route;
176 	return tb_phy_port_from_link(link);
177 }
178 
179 static inline u8 dual_link_from_link(u8 link)
180 {
181 	return link ? ((link - 1) ^ 0x01) + 1 : 0;
182 }
183 
184 static inline u64 get_route(u32 route_hi, u32 route_lo)
185 {
186 	return (u64)route_hi << 32 | route_lo;
187 }
188 
189 static inline u64 get_parent_route(u64 route)
190 {
191 	int depth = tb_route_length(route);
192 	return depth ? route & ~(0xffULL << (depth - 1) * TB_ROUTE_SHIFT) : 0;
193 }
194 
195 static int pci2cio_wait_completion(struct icm *icm, unsigned long timeout_msec)
196 {
197 	unsigned long end = jiffies + msecs_to_jiffies(timeout_msec);
198 	u32 cmd;
199 
200 	do {
201 		pci_read_config_dword(icm->upstream_port,
202 				      icm->vnd_cap + PCIE2CIO_CMD, &cmd);
203 		if (!(cmd & PCIE2CIO_CMD_START)) {
204 			if (cmd & PCIE2CIO_CMD_TIMEOUT)
205 				break;
206 			return 0;
207 		}
208 
209 		msleep(50);
210 	} while (time_before(jiffies, end));
211 
212 	return -ETIMEDOUT;
213 }
214 
215 static int pcie2cio_read(struct icm *icm, enum tb_cfg_space cs,
216 			 unsigned int port, unsigned int index, u32 *data)
217 {
218 	struct pci_dev *pdev = icm->upstream_port;
219 	int ret, vnd_cap = icm->vnd_cap;
220 	u32 cmd;
221 
222 	cmd = index;
223 	cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK;
224 	cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK;
225 	cmd |= PCIE2CIO_CMD_START;
226 	pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd);
227 
228 	ret = pci2cio_wait_completion(icm, 5000);
229 	if (ret)
230 		return ret;
231 
232 	pci_read_config_dword(pdev, vnd_cap + PCIE2CIO_RDDATA, data);
233 	return 0;
234 }
235 
236 static int pcie2cio_write(struct icm *icm, enum tb_cfg_space cs,
237 			  unsigned int port, unsigned int index, u32 data)
238 {
239 	struct pci_dev *pdev = icm->upstream_port;
240 	int vnd_cap = icm->vnd_cap;
241 	u32 cmd;
242 
243 	pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_WRDATA, data);
244 
245 	cmd = index;
246 	cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK;
247 	cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK;
248 	cmd |= PCIE2CIO_CMD_WRITE | PCIE2CIO_CMD_START;
249 	pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd);
250 
251 	return pci2cio_wait_completion(icm, 5000);
252 }
253 
254 static bool icm_match(const struct tb_cfg_request *req,
255 		      const struct ctl_pkg *pkg)
256 {
257 	const struct icm_pkg_header *res_hdr = pkg->buffer;
258 	const struct icm_pkg_header *req_hdr = req->request;
259 
260 	if (pkg->frame.eof != req->response_type)
261 		return false;
262 	if (res_hdr->code != req_hdr->code)
263 		return false;
264 
265 	return true;
266 }
267 
268 static bool icm_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg)
269 {
270 	const struct icm_pkg_header *hdr = pkg->buffer;
271 
272 	if (hdr->packet_id < req->npackets) {
273 		size_t offset = hdr->packet_id * req->response_size;
274 
275 		memcpy(req->response + offset, pkg->buffer, req->response_size);
276 	}
277 
278 	return hdr->packet_id == hdr->total_packets - 1;
279 }
280 
281 static int icm_request(struct tb *tb, const void *request, size_t request_size,
282 		       void *response, size_t response_size, size_t npackets,
283 		       unsigned int timeout_msec)
284 {
285 	struct icm *icm = tb_priv(tb);
286 	int retries = 3;
287 
288 	do {
289 		struct tb_cfg_request *req;
290 		struct tb_cfg_result res;
291 
292 		req = tb_cfg_request_alloc();
293 		if (!req)
294 			return -ENOMEM;
295 
296 		req->match = icm_match;
297 		req->copy = icm_copy;
298 		req->request = request;
299 		req->request_size = request_size;
300 		req->request_type = TB_CFG_PKG_ICM_CMD;
301 		req->response = response;
302 		req->npackets = npackets;
303 		req->response_size = response_size;
304 		req->response_type = TB_CFG_PKG_ICM_RESP;
305 
306 		mutex_lock(&icm->request_lock);
307 		res = tb_cfg_request_sync(tb->ctl, req, timeout_msec);
308 		mutex_unlock(&icm->request_lock);
309 
310 		tb_cfg_request_put(req);
311 
312 		if (res.err != -ETIMEDOUT)
313 			return res.err == 1 ? -EIO : res.err;
314 
315 		usleep_range(20, 50);
316 	} while (retries--);
317 
318 	return -ETIMEDOUT;
319 }
320 
321 /*
322  * If rescan is queued to run (we are resuming), postpone it to give the
323  * firmware some more time to send device connected notifications for next
324  * devices in the chain.
325  */
326 static void icm_postpone_rescan(struct tb *tb)
327 {
328 	struct icm *icm = tb_priv(tb);
329 
330 	if (delayed_work_pending(&icm->rescan_work))
331 		mod_delayed_work(tb->wq, &icm->rescan_work,
332 				 msecs_to_jiffies(500));
333 }
334 
335 static void icm_veto_begin(struct tb *tb)
336 {
337 	struct icm *icm = tb_priv(tb);
338 
339 	if (!icm->veto) {
340 		icm->veto = true;
341 		/* Keep the domain powered while veto is in effect */
342 		pm_runtime_get(&tb->dev);
343 	}
344 }
345 
346 static void icm_veto_end(struct tb *tb)
347 {
348 	struct icm *icm = tb_priv(tb);
349 
350 	if (icm->veto) {
351 		icm->veto = false;
352 		/* Allow the domain suspend now */
353 		pm_runtime_mark_last_busy(&tb->dev);
354 		pm_runtime_put_autosuspend(&tb->dev);
355 	}
356 }
357 
358 static bool icm_firmware_running(const struct tb_nhi *nhi)
359 {
360 	u32 val;
361 
362 	val = ioread32(nhi->iobase + REG_FW_STS);
363 	return !!(val & REG_FW_STS_ICM_EN);
364 }
365 
366 static bool icm_fr_is_supported(struct tb *tb)
367 {
368 	return !x86_apple_machine;
369 }
370 
371 static inline int icm_fr_get_switch_index(u32 port)
372 {
373 	int index;
374 
375 	if ((port & ICM_PORT_TYPE_MASK) != TB_TYPE_PORT)
376 		return 0;
377 
378 	index = port >> ICM_PORT_INDEX_SHIFT;
379 	return index != 0xff ? index : 0;
380 }
381 
382 static int icm_fr_get_route(struct tb *tb, u8 link, u8 depth, u64 *route)
383 {
384 	struct icm_fr_pkg_get_topology_response *switches, *sw;
385 	struct icm_fr_pkg_get_topology request = {
386 		.hdr = { .code = ICM_GET_TOPOLOGY },
387 	};
388 	size_t npackets = ICM_GET_TOPOLOGY_PACKETS;
389 	int ret, index;
390 	u8 i;
391 
392 	switches = kcalloc(npackets, sizeof(*switches), GFP_KERNEL);
393 	if (!switches)
394 		return -ENOMEM;
395 
396 	ret = icm_request(tb, &request, sizeof(request), switches,
397 			  sizeof(*switches), npackets, ICM_TIMEOUT);
398 	if (ret)
399 		goto err_free;
400 
401 	sw = &switches[0];
402 	index = icm_fr_get_switch_index(sw->ports[link]);
403 	if (!index) {
404 		ret = -ENODEV;
405 		goto err_free;
406 	}
407 
408 	sw = &switches[index];
409 	for (i = 1; i < depth; i++) {
410 		unsigned int j;
411 
412 		if (!(sw->first_data & ICM_SWITCH_USED)) {
413 			ret = -ENODEV;
414 			goto err_free;
415 		}
416 
417 		for (j = 0; j < ARRAY_SIZE(sw->ports); j++) {
418 			index = icm_fr_get_switch_index(sw->ports[j]);
419 			if (index > sw->switch_index) {
420 				sw = &switches[index];
421 				break;
422 			}
423 		}
424 	}
425 
426 	*route = get_route(sw->route_hi, sw->route_lo);
427 
428 err_free:
429 	kfree(switches);
430 	return ret;
431 }
432 
433 static void icm_fr_save_devices(struct tb *tb)
434 {
435 	nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_SAVE_DEVS, 0);
436 }
437 
438 static int
439 icm_fr_driver_ready(struct tb *tb, enum tb_security_level *security_level,
440 		    size_t *nboot_acl, bool *rpm)
441 {
442 	struct icm_fr_pkg_driver_ready_response reply;
443 	struct icm_pkg_driver_ready request = {
444 		.hdr.code = ICM_DRIVER_READY,
445 	};
446 	int ret;
447 
448 	memset(&reply, 0, sizeof(reply));
449 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
450 			  1, ICM_TIMEOUT);
451 	if (ret)
452 		return ret;
453 
454 	if (security_level)
455 		*security_level = reply.security_level & ICM_FR_SLEVEL_MASK;
456 
457 	return 0;
458 }
459 
460 static int icm_fr_approve_switch(struct tb *tb, struct tb_switch *sw)
461 {
462 	struct icm_fr_pkg_approve_device request;
463 	struct icm_fr_pkg_approve_device reply;
464 	int ret;
465 
466 	memset(&request, 0, sizeof(request));
467 	memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
468 	request.hdr.code = ICM_APPROVE_DEVICE;
469 	request.connection_id = sw->connection_id;
470 	request.connection_key = sw->connection_key;
471 
472 	memset(&reply, 0, sizeof(reply));
473 	/* Use larger timeout as establishing tunnels can take some time */
474 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
475 			  1, ICM_APPROVE_TIMEOUT);
476 	if (ret)
477 		return ret;
478 
479 	if (reply.hdr.flags & ICM_FLAGS_ERROR) {
480 		tb_warn(tb, "PCIe tunnel creation failed\n");
481 		return -EIO;
482 	}
483 
484 	return 0;
485 }
486 
487 static int icm_fr_add_switch_key(struct tb *tb, struct tb_switch *sw)
488 {
489 	struct icm_fr_pkg_add_device_key request;
490 	struct icm_fr_pkg_add_device_key_response reply;
491 	int ret;
492 
493 	memset(&request, 0, sizeof(request));
494 	memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
495 	request.hdr.code = ICM_ADD_DEVICE_KEY;
496 	request.connection_id = sw->connection_id;
497 	request.connection_key = sw->connection_key;
498 	memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE);
499 
500 	memset(&reply, 0, sizeof(reply));
501 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
502 			  1, ICM_TIMEOUT);
503 	if (ret)
504 		return ret;
505 
506 	if (reply.hdr.flags & ICM_FLAGS_ERROR) {
507 		tb_warn(tb, "Adding key to switch failed\n");
508 		return -EIO;
509 	}
510 
511 	return 0;
512 }
513 
514 static int icm_fr_challenge_switch_key(struct tb *tb, struct tb_switch *sw,
515 				       const u8 *challenge, u8 *response)
516 {
517 	struct icm_fr_pkg_challenge_device request;
518 	struct icm_fr_pkg_challenge_device_response reply;
519 	int ret;
520 
521 	memset(&request, 0, sizeof(request));
522 	memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
523 	request.hdr.code = ICM_CHALLENGE_DEVICE;
524 	request.connection_id = sw->connection_id;
525 	request.connection_key = sw->connection_key;
526 	memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE);
527 
528 	memset(&reply, 0, sizeof(reply));
529 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
530 			  1, ICM_TIMEOUT);
531 	if (ret)
532 		return ret;
533 
534 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
535 		return -EKEYREJECTED;
536 	if (reply.hdr.flags & ICM_FLAGS_NO_KEY)
537 		return -ENOKEY;
538 
539 	memcpy(response, reply.response, TB_SWITCH_KEY_SIZE);
540 
541 	return 0;
542 }
543 
544 static int icm_fr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd)
545 {
546 	struct icm_fr_pkg_approve_xdomain_response reply;
547 	struct icm_fr_pkg_approve_xdomain request;
548 	int ret;
549 
550 	memset(&request, 0, sizeof(request));
551 	request.hdr.code = ICM_APPROVE_XDOMAIN;
552 	request.link_info = xd->depth << ICM_LINK_INFO_DEPTH_SHIFT | xd->link;
553 	memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid));
554 
555 	request.transmit_path = xd->transmit_path;
556 	request.transmit_ring = xd->transmit_ring;
557 	request.receive_path = xd->receive_path;
558 	request.receive_ring = xd->receive_ring;
559 
560 	memset(&reply, 0, sizeof(reply));
561 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
562 			  1, ICM_TIMEOUT);
563 	if (ret)
564 		return ret;
565 
566 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
567 		return -EIO;
568 
569 	return 0;
570 }
571 
572 static int icm_fr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd)
573 {
574 	u8 phy_port;
575 	u8 cmd;
576 
577 	phy_port = tb_phy_port_from_link(xd->link);
578 	if (phy_port == 0)
579 		cmd = NHI_MAILBOX_DISCONNECT_PA;
580 	else
581 		cmd = NHI_MAILBOX_DISCONNECT_PB;
582 
583 	nhi_mailbox_cmd(tb->nhi, cmd, 1);
584 	usleep_range(10, 50);
585 	nhi_mailbox_cmd(tb->nhi, cmd, 2);
586 	return 0;
587 }
588 
589 static struct tb_switch *alloc_switch(struct tb_switch *parent_sw, u64 route,
590 				      const uuid_t *uuid)
591 {
592 	struct tb *tb = parent_sw->tb;
593 	struct tb_switch *sw;
594 
595 	sw = tb_switch_alloc(tb, &parent_sw->dev, route);
596 	if (IS_ERR(sw)) {
597 		tb_warn(tb, "failed to allocate switch at %llx\n", route);
598 		return sw;
599 	}
600 
601 	sw->uuid = kmemdup(uuid, sizeof(*uuid), GFP_KERNEL);
602 	if (!sw->uuid) {
603 		tb_switch_put(sw);
604 		return ERR_PTR(-ENOMEM);
605 	}
606 
607 	init_completion(&sw->rpm_complete);
608 	return sw;
609 }
610 
611 static int add_switch(struct tb_switch *parent_sw, struct tb_switch *sw)
612 {
613 	u64 route = tb_route(sw);
614 	int ret;
615 
616 	/* Link the two switches now */
617 	tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw);
618 	tb_upstream_port(sw)->remote = tb_port_at(route, parent_sw);
619 
620 	ret = tb_switch_add(sw);
621 	if (ret)
622 		tb_port_at(tb_route(sw), parent_sw)->remote = NULL;
623 
624 	return ret;
625 }
626 
627 static void update_switch(struct tb_switch *parent_sw, struct tb_switch *sw,
628 			  u64 route, u8 connection_id, u8 connection_key,
629 			  u8 link, u8 depth, bool boot)
630 {
631 	/* Disconnect from parent */
632 	tb_port_at(tb_route(sw), parent_sw)->remote = NULL;
633 	/* Re-connect via updated port*/
634 	tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw);
635 
636 	/* Update with the new addressing information */
637 	sw->config.route_hi = upper_32_bits(route);
638 	sw->config.route_lo = lower_32_bits(route);
639 	sw->connection_id = connection_id;
640 	sw->connection_key = connection_key;
641 	sw->link = link;
642 	sw->depth = depth;
643 	sw->boot = boot;
644 
645 	/* This switch still exists */
646 	sw->is_unplugged = false;
647 
648 	/* Runtime resume is now complete */
649 	complete(&sw->rpm_complete);
650 }
651 
652 static void remove_switch(struct tb_switch *sw)
653 {
654 	struct tb_switch *parent_sw;
655 
656 	parent_sw = tb_to_switch(sw->dev.parent);
657 	tb_port_at(tb_route(sw), parent_sw)->remote = NULL;
658 	tb_switch_remove(sw);
659 }
660 
661 static void add_xdomain(struct tb_switch *sw, u64 route,
662 			const uuid_t *local_uuid, const uuid_t *remote_uuid,
663 			u8 link, u8 depth)
664 {
665 	struct tb_xdomain *xd;
666 
667 	pm_runtime_get_sync(&sw->dev);
668 
669 	xd = tb_xdomain_alloc(sw->tb, &sw->dev, route, local_uuid, remote_uuid);
670 	if (!xd)
671 		goto out;
672 
673 	xd->link = link;
674 	xd->depth = depth;
675 
676 	tb_port_at(route, sw)->xdomain = xd;
677 
678 	tb_xdomain_add(xd);
679 
680 out:
681 	pm_runtime_mark_last_busy(&sw->dev);
682 	pm_runtime_put_autosuspend(&sw->dev);
683 }
684 
685 static void update_xdomain(struct tb_xdomain *xd, u64 route, u8 link)
686 {
687 	xd->link = link;
688 	xd->route = route;
689 	xd->is_unplugged = false;
690 }
691 
692 static void remove_xdomain(struct tb_xdomain *xd)
693 {
694 	struct tb_switch *sw;
695 
696 	sw = tb_to_switch(xd->dev.parent);
697 	tb_port_at(xd->route, sw)->xdomain = NULL;
698 	tb_xdomain_remove(xd);
699 }
700 
701 static void
702 icm_fr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr)
703 {
704 	const struct icm_fr_event_device_connected *pkg =
705 		(const struct icm_fr_event_device_connected *)hdr;
706 	enum tb_security_level security_level;
707 	struct tb_switch *sw, *parent_sw;
708 	bool boot, dual_lane, speed_gen3;
709 	struct icm *icm = tb_priv(tb);
710 	bool authorized = false;
711 	struct tb_xdomain *xd;
712 	u8 link, depth;
713 	u64 route;
714 	int ret;
715 
716 	icm_postpone_rescan(tb);
717 
718 	link = pkg->link_info & ICM_LINK_INFO_LINK_MASK;
719 	depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >>
720 		ICM_LINK_INFO_DEPTH_SHIFT;
721 	authorized = pkg->link_info & ICM_LINK_INFO_APPROVED;
722 	security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >>
723 			 ICM_FLAGS_SLEVEL_SHIFT;
724 	boot = pkg->link_info & ICM_LINK_INFO_BOOT;
725 	dual_lane = pkg->hdr.flags & ICM_FLAGS_DUAL_LANE;
726 	speed_gen3 = pkg->hdr.flags & ICM_FLAGS_SPEED_GEN3;
727 
728 	if (pkg->link_info & ICM_LINK_INFO_REJECTED) {
729 		tb_info(tb, "switch at %u.%u was rejected by ICM firmware because topology limit exceeded\n",
730 			link, depth);
731 		return;
732 	}
733 
734 	sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid);
735 	if (sw) {
736 		u8 phy_port, sw_phy_port;
737 
738 		parent_sw = tb_to_switch(sw->dev.parent);
739 		sw_phy_port = tb_phy_port_from_link(sw->link);
740 		phy_port = tb_phy_port_from_link(link);
741 
742 		/*
743 		 * On resume ICM will send us connected events for the
744 		 * devices that still are present. However, that
745 		 * information might have changed for example by the
746 		 * fact that a switch on a dual-link connection might
747 		 * have been enumerated using the other link now. Make
748 		 * sure our book keeping matches that.
749 		 */
750 		if (sw->depth == depth && sw_phy_port == phy_port &&
751 		    !!sw->authorized == authorized) {
752 			/*
753 			 * It was enumerated through another link so update
754 			 * route string accordingly.
755 			 */
756 			if (sw->link != link) {
757 				ret = icm->get_route(tb, link, depth, &route);
758 				if (ret) {
759 					tb_err(tb, "failed to update route string for switch at %u.%u\n",
760 					       link, depth);
761 					tb_switch_put(sw);
762 					return;
763 				}
764 			} else {
765 				route = tb_route(sw);
766 			}
767 
768 			update_switch(parent_sw, sw, route, pkg->connection_id,
769 				      pkg->connection_key, link, depth, boot);
770 			tb_switch_put(sw);
771 			return;
772 		}
773 
774 		/*
775 		 * User connected the same switch to another physical
776 		 * port or to another part of the topology. Remove the
777 		 * existing switch now before adding the new one.
778 		 */
779 		remove_switch(sw);
780 		tb_switch_put(sw);
781 	}
782 
783 	/*
784 	 * If the switch was not found by UUID, look for a switch on
785 	 * same physical port (taking possible link aggregation into
786 	 * account) and depth. If we found one it is definitely a stale
787 	 * one so remove it first.
788 	 */
789 	sw = tb_switch_find_by_link_depth(tb, link, depth);
790 	if (!sw) {
791 		u8 dual_link;
792 
793 		dual_link = dual_link_from_link(link);
794 		if (dual_link)
795 			sw = tb_switch_find_by_link_depth(tb, dual_link, depth);
796 	}
797 	if (sw) {
798 		remove_switch(sw);
799 		tb_switch_put(sw);
800 	}
801 
802 	/* Remove existing XDomain connection if found */
803 	xd = tb_xdomain_find_by_link_depth(tb, link, depth);
804 	if (xd) {
805 		remove_xdomain(xd);
806 		tb_xdomain_put(xd);
807 	}
808 
809 	parent_sw = tb_switch_find_by_link_depth(tb, link, depth - 1);
810 	if (!parent_sw) {
811 		tb_err(tb, "failed to find parent switch for %u.%u\n",
812 		       link, depth);
813 		return;
814 	}
815 
816 	ret = icm->get_route(tb, link, depth, &route);
817 	if (ret) {
818 		tb_err(tb, "failed to find route string for switch at %u.%u\n",
819 		       link, depth);
820 		tb_switch_put(parent_sw);
821 		return;
822 	}
823 
824 	pm_runtime_get_sync(&parent_sw->dev);
825 
826 	sw = alloc_switch(parent_sw, route, &pkg->ep_uuid);
827 	if (!IS_ERR(sw)) {
828 		sw->connection_id = pkg->connection_id;
829 		sw->connection_key = pkg->connection_key;
830 		sw->link = link;
831 		sw->depth = depth;
832 		sw->authorized = authorized;
833 		sw->security_level = security_level;
834 		sw->boot = boot;
835 		sw->link_speed = speed_gen3 ? 20 : 10;
836 		sw->link_width = dual_lane ? 2 : 1;
837 		sw->rpm = intel_vss_is_rtd3(pkg->ep_name, sizeof(pkg->ep_name));
838 
839 		if (add_switch(parent_sw, sw))
840 			tb_switch_put(sw);
841 	}
842 
843 	pm_runtime_mark_last_busy(&parent_sw->dev);
844 	pm_runtime_put_autosuspend(&parent_sw->dev);
845 
846 	tb_switch_put(parent_sw);
847 }
848 
849 static void
850 icm_fr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
851 {
852 	const struct icm_fr_event_device_disconnected *pkg =
853 		(const struct icm_fr_event_device_disconnected *)hdr;
854 	struct tb_switch *sw;
855 	u8 link, depth;
856 
857 	link = pkg->link_info & ICM_LINK_INFO_LINK_MASK;
858 	depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >>
859 		ICM_LINK_INFO_DEPTH_SHIFT;
860 
861 	if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) {
862 		tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth);
863 		return;
864 	}
865 
866 	sw = tb_switch_find_by_link_depth(tb, link, depth);
867 	if (!sw) {
868 		tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link,
869 			depth);
870 		return;
871 	}
872 
873 	remove_switch(sw);
874 	tb_switch_put(sw);
875 }
876 
877 static void
878 icm_fr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr)
879 {
880 	const struct icm_fr_event_xdomain_connected *pkg =
881 		(const struct icm_fr_event_xdomain_connected *)hdr;
882 	struct tb_xdomain *xd;
883 	struct tb_switch *sw;
884 	u8 link, depth;
885 	u64 route;
886 
887 	link = pkg->link_info & ICM_LINK_INFO_LINK_MASK;
888 	depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >>
889 		ICM_LINK_INFO_DEPTH_SHIFT;
890 
891 	if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) {
892 		tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth);
893 		return;
894 	}
895 
896 	route = get_route(pkg->local_route_hi, pkg->local_route_lo);
897 
898 	xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid);
899 	if (xd) {
900 		u8 xd_phy_port, phy_port;
901 
902 		xd_phy_port = phy_port_from_route(xd->route, xd->depth);
903 		phy_port = phy_port_from_route(route, depth);
904 
905 		if (xd->depth == depth && xd_phy_port == phy_port) {
906 			update_xdomain(xd, route, link);
907 			tb_xdomain_put(xd);
908 			return;
909 		}
910 
911 		/*
912 		 * If we find an existing XDomain connection remove it
913 		 * now. We need to go through login handshake and
914 		 * everything anyway to be able to re-establish the
915 		 * connection.
916 		 */
917 		remove_xdomain(xd);
918 		tb_xdomain_put(xd);
919 	}
920 
921 	/*
922 	 * Look if there already exists an XDomain in the same place
923 	 * than the new one and in that case remove it because it is
924 	 * most likely another host that got disconnected.
925 	 */
926 	xd = tb_xdomain_find_by_link_depth(tb, link, depth);
927 	if (!xd) {
928 		u8 dual_link;
929 
930 		dual_link = dual_link_from_link(link);
931 		if (dual_link)
932 			xd = tb_xdomain_find_by_link_depth(tb, dual_link,
933 							   depth);
934 	}
935 	if (xd) {
936 		remove_xdomain(xd);
937 		tb_xdomain_put(xd);
938 	}
939 
940 	/*
941 	 * If the user disconnected a switch during suspend and
942 	 * connected another host to the same port, remove the switch
943 	 * first.
944 	 */
945 	sw = tb_switch_find_by_route(tb, route);
946 	if (sw) {
947 		remove_switch(sw);
948 		tb_switch_put(sw);
949 	}
950 
951 	sw = tb_switch_find_by_link_depth(tb, link, depth);
952 	if (!sw) {
953 		tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link,
954 			depth);
955 		return;
956 	}
957 
958 	add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, link,
959 		    depth);
960 	tb_switch_put(sw);
961 }
962 
963 static void
964 icm_fr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
965 {
966 	const struct icm_fr_event_xdomain_disconnected *pkg =
967 		(const struct icm_fr_event_xdomain_disconnected *)hdr;
968 	struct tb_xdomain *xd;
969 
970 	/*
971 	 * If the connection is through one or multiple devices, the
972 	 * XDomain device is removed along with them so it is fine if we
973 	 * cannot find it here.
974 	 */
975 	xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid);
976 	if (xd) {
977 		remove_xdomain(xd);
978 		tb_xdomain_put(xd);
979 	}
980 }
981 
982 static int icm_tr_cio_reset(struct tb *tb)
983 {
984 	return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x777, BIT(1));
985 }
986 
987 static int
988 icm_tr_driver_ready(struct tb *tb, enum tb_security_level *security_level,
989 		    size_t *nboot_acl, bool *rpm)
990 {
991 	struct icm_tr_pkg_driver_ready_response reply;
992 	struct icm_pkg_driver_ready request = {
993 		.hdr.code = ICM_DRIVER_READY,
994 	};
995 	int ret;
996 
997 	memset(&reply, 0, sizeof(reply));
998 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
999 			  1, 20000);
1000 	if (ret)
1001 		return ret;
1002 
1003 	if (security_level)
1004 		*security_level = reply.info & ICM_TR_INFO_SLEVEL_MASK;
1005 	if (nboot_acl)
1006 		*nboot_acl = (reply.info & ICM_TR_INFO_BOOT_ACL_MASK) >>
1007 				ICM_TR_INFO_BOOT_ACL_SHIFT;
1008 	if (rpm)
1009 		*rpm = !!(reply.hdr.flags & ICM_TR_FLAGS_RTD3);
1010 
1011 	return 0;
1012 }
1013 
1014 static int icm_tr_approve_switch(struct tb *tb, struct tb_switch *sw)
1015 {
1016 	struct icm_tr_pkg_approve_device request;
1017 	struct icm_tr_pkg_approve_device reply;
1018 	int ret;
1019 
1020 	memset(&request, 0, sizeof(request));
1021 	memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
1022 	request.hdr.code = ICM_APPROVE_DEVICE;
1023 	request.route_lo = sw->config.route_lo;
1024 	request.route_hi = sw->config.route_hi;
1025 	request.connection_id = sw->connection_id;
1026 
1027 	memset(&reply, 0, sizeof(reply));
1028 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1029 			  1, ICM_APPROVE_TIMEOUT);
1030 	if (ret)
1031 		return ret;
1032 
1033 	if (reply.hdr.flags & ICM_FLAGS_ERROR) {
1034 		tb_warn(tb, "PCIe tunnel creation failed\n");
1035 		return -EIO;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static int icm_tr_add_switch_key(struct tb *tb, struct tb_switch *sw)
1042 {
1043 	struct icm_tr_pkg_add_device_key_response reply;
1044 	struct icm_tr_pkg_add_device_key request;
1045 	int ret;
1046 
1047 	memset(&request, 0, sizeof(request));
1048 	memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
1049 	request.hdr.code = ICM_ADD_DEVICE_KEY;
1050 	request.route_lo = sw->config.route_lo;
1051 	request.route_hi = sw->config.route_hi;
1052 	request.connection_id = sw->connection_id;
1053 	memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE);
1054 
1055 	memset(&reply, 0, sizeof(reply));
1056 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1057 			  1, ICM_TIMEOUT);
1058 	if (ret)
1059 		return ret;
1060 
1061 	if (reply.hdr.flags & ICM_FLAGS_ERROR) {
1062 		tb_warn(tb, "Adding key to switch failed\n");
1063 		return -EIO;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static int icm_tr_challenge_switch_key(struct tb *tb, struct tb_switch *sw,
1070 				       const u8 *challenge, u8 *response)
1071 {
1072 	struct icm_tr_pkg_challenge_device_response reply;
1073 	struct icm_tr_pkg_challenge_device request;
1074 	int ret;
1075 
1076 	memset(&request, 0, sizeof(request));
1077 	memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
1078 	request.hdr.code = ICM_CHALLENGE_DEVICE;
1079 	request.route_lo = sw->config.route_lo;
1080 	request.route_hi = sw->config.route_hi;
1081 	request.connection_id = sw->connection_id;
1082 	memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE);
1083 
1084 	memset(&reply, 0, sizeof(reply));
1085 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1086 			  1, ICM_TIMEOUT);
1087 	if (ret)
1088 		return ret;
1089 
1090 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
1091 		return -EKEYREJECTED;
1092 	if (reply.hdr.flags & ICM_FLAGS_NO_KEY)
1093 		return -ENOKEY;
1094 
1095 	memcpy(response, reply.response, TB_SWITCH_KEY_SIZE);
1096 
1097 	return 0;
1098 }
1099 
1100 static int icm_tr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd)
1101 {
1102 	struct icm_tr_pkg_approve_xdomain_response reply;
1103 	struct icm_tr_pkg_approve_xdomain request;
1104 	int ret;
1105 
1106 	memset(&request, 0, sizeof(request));
1107 	request.hdr.code = ICM_APPROVE_XDOMAIN;
1108 	request.route_hi = upper_32_bits(xd->route);
1109 	request.route_lo = lower_32_bits(xd->route);
1110 	request.transmit_path = xd->transmit_path;
1111 	request.transmit_ring = xd->transmit_ring;
1112 	request.receive_path = xd->receive_path;
1113 	request.receive_ring = xd->receive_ring;
1114 	memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid));
1115 
1116 	memset(&reply, 0, sizeof(reply));
1117 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1118 			  1, ICM_TIMEOUT);
1119 	if (ret)
1120 		return ret;
1121 
1122 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
1123 		return -EIO;
1124 
1125 	return 0;
1126 }
1127 
1128 static int icm_tr_xdomain_tear_down(struct tb *tb, struct tb_xdomain *xd,
1129 				    int stage)
1130 {
1131 	struct icm_tr_pkg_disconnect_xdomain_response reply;
1132 	struct icm_tr_pkg_disconnect_xdomain request;
1133 	int ret;
1134 
1135 	memset(&request, 0, sizeof(request));
1136 	request.hdr.code = ICM_DISCONNECT_XDOMAIN;
1137 	request.stage = stage;
1138 	request.route_hi = upper_32_bits(xd->route);
1139 	request.route_lo = lower_32_bits(xd->route);
1140 	memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid));
1141 
1142 	memset(&reply, 0, sizeof(reply));
1143 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1144 			  1, ICM_TIMEOUT);
1145 	if (ret)
1146 		return ret;
1147 
1148 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
1149 		return -EIO;
1150 
1151 	return 0;
1152 }
1153 
1154 static int icm_tr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd)
1155 {
1156 	int ret;
1157 
1158 	ret = icm_tr_xdomain_tear_down(tb, xd, 1);
1159 	if (ret)
1160 		return ret;
1161 
1162 	usleep_range(10, 50);
1163 	return icm_tr_xdomain_tear_down(tb, xd, 2);
1164 }
1165 
1166 static void
1167 __icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr,
1168 			  bool force_rtd3)
1169 {
1170 	const struct icm_tr_event_device_connected *pkg =
1171 		(const struct icm_tr_event_device_connected *)hdr;
1172 	bool authorized, boot, dual_lane, speed_gen3;
1173 	enum tb_security_level security_level;
1174 	struct tb_switch *sw, *parent_sw;
1175 	struct tb_xdomain *xd;
1176 	u64 route;
1177 
1178 	icm_postpone_rescan(tb);
1179 
1180 	/*
1181 	 * Currently we don't use the QoS information coming with the
1182 	 * device connected message so simply just ignore that extra
1183 	 * packet for now.
1184 	 */
1185 	if (pkg->hdr.packet_id)
1186 		return;
1187 
1188 	route = get_route(pkg->route_hi, pkg->route_lo);
1189 	authorized = pkg->link_info & ICM_LINK_INFO_APPROVED;
1190 	security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >>
1191 			 ICM_FLAGS_SLEVEL_SHIFT;
1192 	boot = pkg->link_info & ICM_LINK_INFO_BOOT;
1193 	dual_lane = pkg->hdr.flags & ICM_FLAGS_DUAL_LANE;
1194 	speed_gen3 = pkg->hdr.flags & ICM_FLAGS_SPEED_GEN3;
1195 
1196 	if (pkg->link_info & ICM_LINK_INFO_REJECTED) {
1197 		tb_info(tb, "switch at %llx was rejected by ICM firmware because topology limit exceeded\n",
1198 			route);
1199 		return;
1200 	}
1201 
1202 	sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid);
1203 	if (sw) {
1204 		/* Update the switch if it is still in the same place */
1205 		if (tb_route(sw) == route && !!sw->authorized == authorized) {
1206 			parent_sw = tb_to_switch(sw->dev.parent);
1207 			update_switch(parent_sw, sw, route, pkg->connection_id,
1208 				      0, 0, 0, boot);
1209 			tb_switch_put(sw);
1210 			return;
1211 		}
1212 
1213 		remove_switch(sw);
1214 		tb_switch_put(sw);
1215 	}
1216 
1217 	/* Another switch with the same address */
1218 	sw = tb_switch_find_by_route(tb, route);
1219 	if (sw) {
1220 		remove_switch(sw);
1221 		tb_switch_put(sw);
1222 	}
1223 
1224 	/* XDomain connection with the same address */
1225 	xd = tb_xdomain_find_by_route(tb, route);
1226 	if (xd) {
1227 		remove_xdomain(xd);
1228 		tb_xdomain_put(xd);
1229 	}
1230 
1231 	parent_sw = tb_switch_find_by_route(tb, get_parent_route(route));
1232 	if (!parent_sw) {
1233 		tb_err(tb, "failed to find parent switch for %llx\n", route);
1234 		return;
1235 	}
1236 
1237 	pm_runtime_get_sync(&parent_sw->dev);
1238 
1239 	sw = alloc_switch(parent_sw, route, &pkg->ep_uuid);
1240 	if (!IS_ERR(sw)) {
1241 		sw->connection_id = pkg->connection_id;
1242 		sw->authorized = authorized;
1243 		sw->security_level = security_level;
1244 		sw->boot = boot;
1245 		sw->link_speed = speed_gen3 ? 20 : 10;
1246 		sw->link_width = dual_lane ? 2 : 1;
1247 		sw->rpm = force_rtd3;
1248 		if (!sw->rpm)
1249 			sw->rpm = intel_vss_is_rtd3(pkg->ep_name,
1250 						    sizeof(pkg->ep_name));
1251 
1252 		if (add_switch(parent_sw, sw))
1253 			tb_switch_put(sw);
1254 	}
1255 
1256 	pm_runtime_mark_last_busy(&parent_sw->dev);
1257 	pm_runtime_put_autosuspend(&parent_sw->dev);
1258 
1259 	tb_switch_put(parent_sw);
1260 }
1261 
1262 static void
1263 icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr)
1264 {
1265 	__icm_tr_device_connected(tb, hdr, false);
1266 }
1267 
1268 static void
1269 icm_tr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
1270 {
1271 	const struct icm_tr_event_device_disconnected *pkg =
1272 		(const struct icm_tr_event_device_disconnected *)hdr;
1273 	struct tb_switch *sw;
1274 	u64 route;
1275 
1276 	route = get_route(pkg->route_hi, pkg->route_lo);
1277 
1278 	sw = tb_switch_find_by_route(tb, route);
1279 	if (!sw) {
1280 		tb_warn(tb, "no switch exists at %llx, ignoring\n", route);
1281 		return;
1282 	}
1283 
1284 	remove_switch(sw);
1285 	tb_switch_put(sw);
1286 }
1287 
1288 static void
1289 icm_tr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr)
1290 {
1291 	const struct icm_tr_event_xdomain_connected *pkg =
1292 		(const struct icm_tr_event_xdomain_connected *)hdr;
1293 	struct tb_xdomain *xd;
1294 	struct tb_switch *sw;
1295 	u64 route;
1296 
1297 	if (!tb->root_switch)
1298 		return;
1299 
1300 	route = get_route(pkg->local_route_hi, pkg->local_route_lo);
1301 
1302 	xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid);
1303 	if (xd) {
1304 		if (xd->route == route) {
1305 			update_xdomain(xd, route, 0);
1306 			tb_xdomain_put(xd);
1307 			return;
1308 		}
1309 
1310 		remove_xdomain(xd);
1311 		tb_xdomain_put(xd);
1312 	}
1313 
1314 	/* An existing xdomain with the same address */
1315 	xd = tb_xdomain_find_by_route(tb, route);
1316 	if (xd) {
1317 		remove_xdomain(xd);
1318 		tb_xdomain_put(xd);
1319 	}
1320 
1321 	/*
1322 	 * If the user disconnected a switch during suspend and
1323 	 * connected another host to the same port, remove the switch
1324 	 * first.
1325 	 */
1326 	sw = tb_switch_find_by_route(tb, route);
1327 	if (sw) {
1328 		remove_switch(sw);
1329 		tb_switch_put(sw);
1330 	}
1331 
1332 	sw = tb_switch_find_by_route(tb, get_parent_route(route));
1333 	if (!sw) {
1334 		tb_warn(tb, "no switch exists at %llx, ignoring\n", route);
1335 		return;
1336 	}
1337 
1338 	add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, 0, 0);
1339 	tb_switch_put(sw);
1340 }
1341 
1342 static void
1343 icm_tr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
1344 {
1345 	const struct icm_tr_event_xdomain_disconnected *pkg =
1346 		(const struct icm_tr_event_xdomain_disconnected *)hdr;
1347 	struct tb_xdomain *xd;
1348 	u64 route;
1349 
1350 	route = get_route(pkg->route_hi, pkg->route_lo);
1351 
1352 	xd = tb_xdomain_find_by_route(tb, route);
1353 	if (xd) {
1354 		remove_xdomain(xd);
1355 		tb_xdomain_put(xd);
1356 	}
1357 }
1358 
1359 static struct pci_dev *get_upstream_port(struct pci_dev *pdev)
1360 {
1361 	struct pci_dev *parent;
1362 
1363 	parent = pci_upstream_bridge(pdev);
1364 	while (parent) {
1365 		if (!pci_is_pcie(parent))
1366 			return NULL;
1367 		if (pci_pcie_type(parent) == PCI_EXP_TYPE_UPSTREAM)
1368 			break;
1369 		parent = pci_upstream_bridge(parent);
1370 	}
1371 
1372 	if (!parent)
1373 		return NULL;
1374 
1375 	switch (parent->device) {
1376 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1377 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1378 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1379 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1380 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1381 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1382 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1383 		return parent;
1384 	}
1385 
1386 	return NULL;
1387 }
1388 
1389 static bool icm_ar_is_supported(struct tb *tb)
1390 {
1391 	struct pci_dev *upstream_port;
1392 	struct icm *icm = tb_priv(tb);
1393 
1394 	/*
1395 	 * Starting from Alpine Ridge we can use ICM on Apple machines
1396 	 * as well. We just need to reset and re-enable it first.
1397 	 * However, only start it if explicitly asked by the user.
1398 	 */
1399 	if (icm_firmware_running(tb->nhi))
1400 		return true;
1401 	if (!start_icm)
1402 		return false;
1403 
1404 	/*
1405 	 * Find the upstream PCIe port in case we need to do reset
1406 	 * through its vendor specific registers.
1407 	 */
1408 	upstream_port = get_upstream_port(tb->nhi->pdev);
1409 	if (upstream_port) {
1410 		int cap;
1411 
1412 		cap = pci_find_ext_capability(upstream_port,
1413 					      PCI_EXT_CAP_ID_VNDR);
1414 		if (cap > 0) {
1415 			icm->upstream_port = upstream_port;
1416 			icm->vnd_cap = cap;
1417 
1418 			return true;
1419 		}
1420 	}
1421 
1422 	return false;
1423 }
1424 
1425 static int icm_ar_cio_reset(struct tb *tb)
1426 {
1427 	return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x50, BIT(9));
1428 }
1429 
1430 static int icm_ar_get_mode(struct tb *tb)
1431 {
1432 	struct tb_nhi *nhi = tb->nhi;
1433 	int retries = 60;
1434 	u32 val;
1435 
1436 	do {
1437 		val = ioread32(nhi->iobase + REG_FW_STS);
1438 		if (val & REG_FW_STS_NVM_AUTH_DONE)
1439 			break;
1440 		msleep(50);
1441 	} while (--retries);
1442 
1443 	if (!retries) {
1444 		dev_err(&nhi->pdev->dev, "ICM firmware not authenticated\n");
1445 		return -ENODEV;
1446 	}
1447 
1448 	return nhi_mailbox_mode(nhi);
1449 }
1450 
1451 static int
1452 icm_ar_driver_ready(struct tb *tb, enum tb_security_level *security_level,
1453 		    size_t *nboot_acl, bool *rpm)
1454 {
1455 	struct icm_ar_pkg_driver_ready_response reply;
1456 	struct icm_pkg_driver_ready request = {
1457 		.hdr.code = ICM_DRIVER_READY,
1458 	};
1459 	int ret;
1460 
1461 	memset(&reply, 0, sizeof(reply));
1462 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1463 			  1, ICM_TIMEOUT);
1464 	if (ret)
1465 		return ret;
1466 
1467 	if (security_level)
1468 		*security_level = reply.info & ICM_AR_INFO_SLEVEL_MASK;
1469 	if (nboot_acl && (reply.info & ICM_AR_INFO_BOOT_ACL_SUPPORTED))
1470 		*nboot_acl = (reply.info & ICM_AR_INFO_BOOT_ACL_MASK) >>
1471 				ICM_AR_INFO_BOOT_ACL_SHIFT;
1472 	if (rpm)
1473 		*rpm = !!(reply.hdr.flags & ICM_AR_FLAGS_RTD3);
1474 
1475 	return 0;
1476 }
1477 
1478 static int icm_ar_get_route(struct tb *tb, u8 link, u8 depth, u64 *route)
1479 {
1480 	struct icm_ar_pkg_get_route_response reply;
1481 	struct icm_ar_pkg_get_route request = {
1482 		.hdr = { .code = ICM_GET_ROUTE },
1483 		.link_info = depth << ICM_LINK_INFO_DEPTH_SHIFT | link,
1484 	};
1485 	int ret;
1486 
1487 	memset(&reply, 0, sizeof(reply));
1488 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1489 			  1, ICM_TIMEOUT);
1490 	if (ret)
1491 		return ret;
1492 
1493 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
1494 		return -EIO;
1495 
1496 	*route = get_route(reply.route_hi, reply.route_lo);
1497 	return 0;
1498 }
1499 
1500 static int icm_ar_get_boot_acl(struct tb *tb, uuid_t *uuids, size_t nuuids)
1501 {
1502 	struct icm_ar_pkg_preboot_acl_response reply;
1503 	struct icm_ar_pkg_preboot_acl request = {
1504 		.hdr = { .code = ICM_PREBOOT_ACL },
1505 	};
1506 	int ret, i;
1507 
1508 	memset(&reply, 0, sizeof(reply));
1509 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1510 			  1, ICM_TIMEOUT);
1511 	if (ret)
1512 		return ret;
1513 
1514 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
1515 		return -EIO;
1516 
1517 	for (i = 0; i < nuuids; i++) {
1518 		u32 *uuid = (u32 *)&uuids[i];
1519 
1520 		uuid[0] = reply.acl[i].uuid_lo;
1521 		uuid[1] = reply.acl[i].uuid_hi;
1522 
1523 		if (uuid[0] == 0xffffffff && uuid[1] == 0xffffffff) {
1524 			/* Map empty entries to null UUID */
1525 			uuid[0] = 0;
1526 			uuid[1] = 0;
1527 		} else if (uuid[0] != 0 || uuid[1] != 0) {
1528 			/* Upper two DWs are always one's */
1529 			uuid[2] = 0xffffffff;
1530 			uuid[3] = 0xffffffff;
1531 		}
1532 	}
1533 
1534 	return ret;
1535 }
1536 
1537 static int icm_ar_set_boot_acl(struct tb *tb, const uuid_t *uuids,
1538 			       size_t nuuids)
1539 {
1540 	struct icm_ar_pkg_preboot_acl_response reply;
1541 	struct icm_ar_pkg_preboot_acl request = {
1542 		.hdr = {
1543 			.code = ICM_PREBOOT_ACL,
1544 			.flags = ICM_FLAGS_WRITE,
1545 		},
1546 	};
1547 	int ret, i;
1548 
1549 	for (i = 0; i < nuuids; i++) {
1550 		const u32 *uuid = (const u32 *)&uuids[i];
1551 
1552 		if (uuid_is_null(&uuids[i])) {
1553 			/*
1554 			 * Map null UUID to the empty (all one) entries
1555 			 * for ICM.
1556 			 */
1557 			request.acl[i].uuid_lo = 0xffffffff;
1558 			request.acl[i].uuid_hi = 0xffffffff;
1559 		} else {
1560 			/* Two high DWs need to be set to all one */
1561 			if (uuid[2] != 0xffffffff || uuid[3] != 0xffffffff)
1562 				return -EINVAL;
1563 
1564 			request.acl[i].uuid_lo = uuid[0];
1565 			request.acl[i].uuid_hi = uuid[1];
1566 		}
1567 	}
1568 
1569 	memset(&reply, 0, sizeof(reply));
1570 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1571 			  1, ICM_TIMEOUT);
1572 	if (ret)
1573 		return ret;
1574 
1575 	if (reply.hdr.flags & ICM_FLAGS_ERROR)
1576 		return -EIO;
1577 
1578 	return 0;
1579 }
1580 
1581 static int
1582 icm_icl_driver_ready(struct tb *tb, enum tb_security_level *security_level,
1583 		    size_t *nboot_acl, bool *rpm)
1584 {
1585 	struct icm_tr_pkg_driver_ready_response reply;
1586 	struct icm_pkg_driver_ready request = {
1587 		.hdr.code = ICM_DRIVER_READY,
1588 	};
1589 	int ret;
1590 
1591 	memset(&reply, 0, sizeof(reply));
1592 	ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1593 			  1, 20000);
1594 	if (ret)
1595 		return ret;
1596 
1597 	/* Ice Lake always supports RTD3 */
1598 	if (rpm)
1599 		*rpm = true;
1600 
1601 	return 0;
1602 }
1603 
1604 static void icm_icl_set_uuid(struct tb *tb)
1605 {
1606 	struct tb_nhi *nhi = tb->nhi;
1607 	u32 uuid[4];
1608 
1609 	pci_read_config_dword(nhi->pdev, VS_CAP_10, &uuid[0]);
1610 	pci_read_config_dword(nhi->pdev, VS_CAP_11, &uuid[1]);
1611 	uuid[2] = 0xffffffff;
1612 	uuid[3] = 0xffffffff;
1613 
1614 	tb->root_switch->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1615 }
1616 
1617 static void
1618 icm_icl_device_connected(struct tb *tb, const struct icm_pkg_header *hdr)
1619 {
1620 	__icm_tr_device_connected(tb, hdr, true);
1621 }
1622 
1623 static void icm_icl_rtd3_veto(struct tb *tb, const struct icm_pkg_header *hdr)
1624 {
1625 	const struct icm_icl_event_rtd3_veto *pkg =
1626 		(const struct icm_icl_event_rtd3_veto *)hdr;
1627 
1628 	tb_dbg(tb, "ICM rtd3 veto=0x%08x\n", pkg->veto_reason);
1629 
1630 	if (pkg->veto_reason)
1631 		icm_veto_begin(tb);
1632 	else
1633 		icm_veto_end(tb);
1634 }
1635 
1636 static bool icm_tgl_is_supported(struct tb *tb)
1637 {
1638 	/*
1639 	 * If the firmware is not running use software CM. This platform
1640 	 * should fully support both.
1641 	 */
1642 	return icm_firmware_running(tb->nhi);
1643 }
1644 
1645 static void icm_handle_notification(struct work_struct *work)
1646 {
1647 	struct icm_notification *n = container_of(work, typeof(*n), work);
1648 	struct tb *tb = n->tb;
1649 	struct icm *icm = tb_priv(tb);
1650 
1651 	mutex_lock(&tb->lock);
1652 
1653 	/*
1654 	 * When the domain is stopped we flush its workqueue but before
1655 	 * that the root switch is removed. In that case we should treat
1656 	 * the queued events as being canceled.
1657 	 */
1658 	if (tb->root_switch) {
1659 		switch (n->pkg->code) {
1660 		case ICM_EVENT_DEVICE_CONNECTED:
1661 			icm->device_connected(tb, n->pkg);
1662 			break;
1663 		case ICM_EVENT_DEVICE_DISCONNECTED:
1664 			icm->device_disconnected(tb, n->pkg);
1665 			break;
1666 		case ICM_EVENT_XDOMAIN_CONNECTED:
1667 			icm->xdomain_connected(tb, n->pkg);
1668 			break;
1669 		case ICM_EVENT_XDOMAIN_DISCONNECTED:
1670 			icm->xdomain_disconnected(tb, n->pkg);
1671 			break;
1672 		case ICM_EVENT_RTD3_VETO:
1673 			icm->rtd3_veto(tb, n->pkg);
1674 			break;
1675 		}
1676 	}
1677 
1678 	mutex_unlock(&tb->lock);
1679 
1680 	kfree(n->pkg);
1681 	kfree(n);
1682 }
1683 
1684 static void icm_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
1685 			     const void *buf, size_t size)
1686 {
1687 	struct icm_notification *n;
1688 
1689 	n = kmalloc(sizeof(*n), GFP_KERNEL);
1690 	if (!n)
1691 		return;
1692 
1693 	INIT_WORK(&n->work, icm_handle_notification);
1694 	n->pkg = kmemdup(buf, size, GFP_KERNEL);
1695 	n->tb = tb;
1696 
1697 	queue_work(tb->wq, &n->work);
1698 }
1699 
1700 static int
1701 __icm_driver_ready(struct tb *tb, enum tb_security_level *security_level,
1702 		   size_t *nboot_acl, bool *rpm)
1703 {
1704 	struct icm *icm = tb_priv(tb);
1705 	unsigned int retries = 50;
1706 	int ret;
1707 
1708 	ret = icm->driver_ready(tb, security_level, nboot_acl, rpm);
1709 	if (ret) {
1710 		tb_err(tb, "failed to send driver ready to ICM\n");
1711 		return ret;
1712 	}
1713 
1714 	/*
1715 	 * Hold on here until the switch config space is accessible so
1716 	 * that we can read root switch config successfully.
1717 	 */
1718 	do {
1719 		struct tb_cfg_result res;
1720 		u32 tmp;
1721 
1722 		res = tb_cfg_read_raw(tb->ctl, &tmp, 0, 0, TB_CFG_SWITCH,
1723 				      0, 1, 100);
1724 		if (!res.err)
1725 			return 0;
1726 
1727 		msleep(50);
1728 	} while (--retries);
1729 
1730 	tb_err(tb, "failed to read root switch config space, giving up\n");
1731 	return -ETIMEDOUT;
1732 }
1733 
1734 static int icm_firmware_reset(struct tb *tb, struct tb_nhi *nhi)
1735 {
1736 	struct icm *icm = tb_priv(tb);
1737 	u32 val;
1738 
1739 	if (!icm->upstream_port)
1740 		return -ENODEV;
1741 
1742 	/* Put ARC to wait for CIO reset event to happen */
1743 	val = ioread32(nhi->iobase + REG_FW_STS);
1744 	val |= REG_FW_STS_CIO_RESET_REQ;
1745 	iowrite32(val, nhi->iobase + REG_FW_STS);
1746 
1747 	/* Re-start ARC */
1748 	val = ioread32(nhi->iobase + REG_FW_STS);
1749 	val |= REG_FW_STS_ICM_EN_INVERT;
1750 	val |= REG_FW_STS_ICM_EN_CPU;
1751 	iowrite32(val, nhi->iobase + REG_FW_STS);
1752 
1753 	/* Trigger CIO reset now */
1754 	return icm->cio_reset(tb);
1755 }
1756 
1757 static int icm_firmware_start(struct tb *tb, struct tb_nhi *nhi)
1758 {
1759 	unsigned int retries = 10;
1760 	int ret;
1761 	u32 val;
1762 
1763 	/* Check if the ICM firmware is already running */
1764 	if (icm_firmware_running(nhi))
1765 		return 0;
1766 
1767 	dev_dbg(&nhi->pdev->dev, "starting ICM firmware\n");
1768 
1769 	ret = icm_firmware_reset(tb, nhi);
1770 	if (ret)
1771 		return ret;
1772 
1773 	/* Wait until the ICM firmware tells us it is up and running */
1774 	do {
1775 		/* Check that the ICM firmware is running */
1776 		val = ioread32(nhi->iobase + REG_FW_STS);
1777 		if (val & REG_FW_STS_NVM_AUTH_DONE)
1778 			return 0;
1779 
1780 		msleep(300);
1781 	} while (--retries);
1782 
1783 	return -ETIMEDOUT;
1784 }
1785 
1786 static int icm_reset_phy_port(struct tb *tb, int phy_port)
1787 {
1788 	struct icm *icm = tb_priv(tb);
1789 	u32 state0, state1;
1790 	int port0, port1;
1791 	u32 val0, val1;
1792 	int ret;
1793 
1794 	if (!icm->upstream_port)
1795 		return 0;
1796 
1797 	if (phy_port) {
1798 		port0 = 3;
1799 		port1 = 4;
1800 	} else {
1801 		port0 = 1;
1802 		port1 = 2;
1803 	}
1804 
1805 	/*
1806 	 * Read link status of both null ports belonging to a single
1807 	 * physical port.
1808 	 */
1809 	ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0);
1810 	if (ret)
1811 		return ret;
1812 	ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1);
1813 	if (ret)
1814 		return ret;
1815 
1816 	state0 = val0 & PHY_PORT_CS1_LINK_STATE_MASK;
1817 	state0 >>= PHY_PORT_CS1_LINK_STATE_SHIFT;
1818 	state1 = val1 & PHY_PORT_CS1_LINK_STATE_MASK;
1819 	state1 >>= PHY_PORT_CS1_LINK_STATE_SHIFT;
1820 
1821 	/* If they are both up we need to reset them now */
1822 	if (state0 != TB_PORT_UP || state1 != TB_PORT_UP)
1823 		return 0;
1824 
1825 	val0 |= PHY_PORT_CS1_LINK_DISABLE;
1826 	ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0);
1827 	if (ret)
1828 		return ret;
1829 
1830 	val1 |= PHY_PORT_CS1_LINK_DISABLE;
1831 	ret = pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1);
1832 	if (ret)
1833 		return ret;
1834 
1835 	/* Wait a bit and then re-enable both ports */
1836 	usleep_range(10, 100);
1837 
1838 	ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0);
1839 	if (ret)
1840 		return ret;
1841 	ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1);
1842 	if (ret)
1843 		return ret;
1844 
1845 	val0 &= ~PHY_PORT_CS1_LINK_DISABLE;
1846 	ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0);
1847 	if (ret)
1848 		return ret;
1849 
1850 	val1 &= ~PHY_PORT_CS1_LINK_DISABLE;
1851 	return pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1);
1852 }
1853 
1854 static int icm_firmware_init(struct tb *tb)
1855 {
1856 	struct icm *icm = tb_priv(tb);
1857 	struct tb_nhi *nhi = tb->nhi;
1858 	int ret;
1859 
1860 	ret = icm_firmware_start(tb, nhi);
1861 	if (ret) {
1862 		dev_err(&nhi->pdev->dev, "could not start ICM firmware\n");
1863 		return ret;
1864 	}
1865 
1866 	if (icm->get_mode) {
1867 		ret = icm->get_mode(tb);
1868 
1869 		switch (ret) {
1870 		case NHI_FW_SAFE_MODE:
1871 			icm->safe_mode = true;
1872 			break;
1873 
1874 		case NHI_FW_CM_MODE:
1875 			/* Ask ICM to accept all Thunderbolt devices */
1876 			nhi_mailbox_cmd(nhi, NHI_MAILBOX_ALLOW_ALL_DEVS, 0);
1877 			break;
1878 
1879 		default:
1880 			if (ret < 0)
1881 				return ret;
1882 
1883 			tb_err(tb, "ICM firmware is in wrong mode: %u\n", ret);
1884 			return -ENODEV;
1885 		}
1886 	}
1887 
1888 	/*
1889 	 * Reset both physical ports if there is anything connected to
1890 	 * them already.
1891 	 */
1892 	ret = icm_reset_phy_port(tb, 0);
1893 	if (ret)
1894 		dev_warn(&nhi->pdev->dev, "failed to reset links on port0\n");
1895 	ret = icm_reset_phy_port(tb, 1);
1896 	if (ret)
1897 		dev_warn(&nhi->pdev->dev, "failed to reset links on port1\n");
1898 
1899 	return 0;
1900 }
1901 
1902 static int icm_driver_ready(struct tb *tb)
1903 {
1904 	struct icm *icm = tb_priv(tb);
1905 	int ret;
1906 
1907 	ret = icm_firmware_init(tb);
1908 	if (ret)
1909 		return ret;
1910 
1911 	if (icm->safe_mode) {
1912 		tb_info(tb, "Thunderbolt host controller is in safe mode.\n");
1913 		tb_info(tb, "You need to update NVM firmware of the controller before it can be used.\n");
1914 		tb_info(tb, "For latest updates check https://thunderbolttechnology.net/updates.\n");
1915 		return 0;
1916 	}
1917 
1918 	ret = __icm_driver_ready(tb, &tb->security_level, &tb->nboot_acl,
1919 				 &icm->rpm);
1920 	if (ret)
1921 		return ret;
1922 
1923 	/*
1924 	 * Make sure the number of supported preboot ACL matches what we
1925 	 * expect or disable the whole feature.
1926 	 */
1927 	if (tb->nboot_acl > icm->max_boot_acl)
1928 		tb->nboot_acl = 0;
1929 
1930 	return 0;
1931 }
1932 
1933 static int icm_suspend(struct tb *tb)
1934 {
1935 	struct icm *icm = tb_priv(tb);
1936 
1937 	if (icm->save_devices)
1938 		icm->save_devices(tb);
1939 
1940 	nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0);
1941 	return 0;
1942 }
1943 
1944 /*
1945  * Mark all switches (except root switch) below this one unplugged. ICM
1946  * firmware will send us an updated list of switches after we have send
1947  * it driver ready command. If a switch is not in that list it will be
1948  * removed when we perform rescan.
1949  */
1950 static void icm_unplug_children(struct tb_switch *sw)
1951 {
1952 	struct tb_port *port;
1953 
1954 	if (tb_route(sw))
1955 		sw->is_unplugged = true;
1956 
1957 	tb_switch_for_each_port(sw, port) {
1958 		if (port->xdomain)
1959 			port->xdomain->is_unplugged = true;
1960 		else if (tb_port_has_remote(port))
1961 			icm_unplug_children(port->remote->sw);
1962 	}
1963 }
1964 
1965 static int complete_rpm(struct device *dev, void *data)
1966 {
1967 	struct tb_switch *sw = tb_to_switch(dev);
1968 
1969 	if (sw)
1970 		complete(&sw->rpm_complete);
1971 	return 0;
1972 }
1973 
1974 static void remove_unplugged_switch(struct tb_switch *sw)
1975 {
1976 	pm_runtime_get_sync(sw->dev.parent);
1977 
1978 	/*
1979 	 * Signal this and switches below for rpm_complete because
1980 	 * tb_switch_remove() calls pm_runtime_get_sync() that then waits
1981 	 * for it.
1982 	 */
1983 	complete_rpm(&sw->dev, NULL);
1984 	bus_for_each_dev(&tb_bus_type, &sw->dev, NULL, complete_rpm);
1985 	tb_switch_remove(sw);
1986 
1987 	pm_runtime_mark_last_busy(sw->dev.parent);
1988 	pm_runtime_put_autosuspend(sw->dev.parent);
1989 }
1990 
1991 static void icm_free_unplugged_children(struct tb_switch *sw)
1992 {
1993 	struct tb_port *port;
1994 
1995 	tb_switch_for_each_port(sw, port) {
1996 		if (port->xdomain && port->xdomain->is_unplugged) {
1997 			tb_xdomain_remove(port->xdomain);
1998 			port->xdomain = NULL;
1999 		} else if (tb_port_has_remote(port)) {
2000 			if (port->remote->sw->is_unplugged) {
2001 				remove_unplugged_switch(port->remote->sw);
2002 				port->remote = NULL;
2003 			} else {
2004 				icm_free_unplugged_children(port->remote->sw);
2005 			}
2006 		}
2007 	}
2008 }
2009 
2010 static void icm_rescan_work(struct work_struct *work)
2011 {
2012 	struct icm *icm = container_of(work, struct icm, rescan_work.work);
2013 	struct tb *tb = icm_to_tb(icm);
2014 
2015 	mutex_lock(&tb->lock);
2016 	if (tb->root_switch)
2017 		icm_free_unplugged_children(tb->root_switch);
2018 	mutex_unlock(&tb->lock);
2019 }
2020 
2021 static void icm_complete(struct tb *tb)
2022 {
2023 	struct icm *icm = tb_priv(tb);
2024 
2025 	if (tb->nhi->going_away)
2026 		return;
2027 
2028 	/*
2029 	 * If RTD3 was vetoed before we entered system suspend allow it
2030 	 * again now before driver ready is sent. Firmware sends a new RTD3
2031 	 * veto if it is still the case after we have sent it driver ready
2032 	 * command.
2033 	 */
2034 	icm_veto_end(tb);
2035 	icm_unplug_children(tb->root_switch);
2036 
2037 	/*
2038 	 * Now all existing children should be resumed, start events
2039 	 * from ICM to get updated status.
2040 	 */
2041 	__icm_driver_ready(tb, NULL, NULL, NULL);
2042 
2043 	/*
2044 	 * We do not get notifications of devices that have been
2045 	 * unplugged during suspend so schedule rescan to clean them up
2046 	 * if any.
2047 	 */
2048 	queue_delayed_work(tb->wq, &icm->rescan_work, msecs_to_jiffies(500));
2049 }
2050 
2051 static int icm_runtime_suspend(struct tb *tb)
2052 {
2053 	nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0);
2054 	return 0;
2055 }
2056 
2057 static int icm_runtime_suspend_switch(struct tb_switch *sw)
2058 {
2059 	if (tb_route(sw))
2060 		reinit_completion(&sw->rpm_complete);
2061 	return 0;
2062 }
2063 
2064 static int icm_runtime_resume_switch(struct tb_switch *sw)
2065 {
2066 	if (tb_route(sw)) {
2067 		if (!wait_for_completion_timeout(&sw->rpm_complete,
2068 						 msecs_to_jiffies(500))) {
2069 			dev_dbg(&sw->dev, "runtime resuming timed out\n");
2070 		}
2071 	}
2072 	return 0;
2073 }
2074 
2075 static int icm_runtime_resume(struct tb *tb)
2076 {
2077 	/*
2078 	 * We can reuse the same resume functionality than with system
2079 	 * suspend.
2080 	 */
2081 	icm_complete(tb);
2082 	return 0;
2083 }
2084 
2085 static int icm_start(struct tb *tb)
2086 {
2087 	struct icm *icm = tb_priv(tb);
2088 	int ret;
2089 
2090 	if (icm->safe_mode)
2091 		tb->root_switch = tb_switch_alloc_safe_mode(tb, &tb->dev, 0);
2092 	else
2093 		tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2094 	if (IS_ERR(tb->root_switch))
2095 		return PTR_ERR(tb->root_switch);
2096 
2097 	tb->root_switch->no_nvm_upgrade = !icm->can_upgrade_nvm;
2098 	tb->root_switch->rpm = icm->rpm;
2099 
2100 	if (icm->set_uuid)
2101 		icm->set_uuid(tb);
2102 
2103 	ret = tb_switch_add(tb->root_switch);
2104 	if (ret) {
2105 		tb_switch_put(tb->root_switch);
2106 		tb->root_switch = NULL;
2107 	}
2108 
2109 	return ret;
2110 }
2111 
2112 static void icm_stop(struct tb *tb)
2113 {
2114 	struct icm *icm = tb_priv(tb);
2115 
2116 	cancel_delayed_work(&icm->rescan_work);
2117 	tb_switch_remove(tb->root_switch);
2118 	tb->root_switch = NULL;
2119 	nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0);
2120 }
2121 
2122 static int icm_disconnect_pcie_paths(struct tb *tb)
2123 {
2124 	return nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DISCONNECT_PCIE_PATHS, 0);
2125 }
2126 
2127 /* Falcon Ridge */
2128 static const struct tb_cm_ops icm_fr_ops = {
2129 	.driver_ready = icm_driver_ready,
2130 	.start = icm_start,
2131 	.stop = icm_stop,
2132 	.suspend = icm_suspend,
2133 	.complete = icm_complete,
2134 	.handle_event = icm_handle_event,
2135 	.approve_switch = icm_fr_approve_switch,
2136 	.add_switch_key = icm_fr_add_switch_key,
2137 	.challenge_switch_key = icm_fr_challenge_switch_key,
2138 	.disconnect_pcie_paths = icm_disconnect_pcie_paths,
2139 	.approve_xdomain_paths = icm_fr_approve_xdomain_paths,
2140 	.disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths,
2141 };
2142 
2143 /* Alpine Ridge */
2144 static const struct tb_cm_ops icm_ar_ops = {
2145 	.driver_ready = icm_driver_ready,
2146 	.start = icm_start,
2147 	.stop = icm_stop,
2148 	.suspend = icm_suspend,
2149 	.complete = icm_complete,
2150 	.runtime_suspend = icm_runtime_suspend,
2151 	.runtime_resume = icm_runtime_resume,
2152 	.runtime_suspend_switch = icm_runtime_suspend_switch,
2153 	.runtime_resume_switch = icm_runtime_resume_switch,
2154 	.handle_event = icm_handle_event,
2155 	.get_boot_acl = icm_ar_get_boot_acl,
2156 	.set_boot_acl = icm_ar_set_boot_acl,
2157 	.approve_switch = icm_fr_approve_switch,
2158 	.add_switch_key = icm_fr_add_switch_key,
2159 	.challenge_switch_key = icm_fr_challenge_switch_key,
2160 	.disconnect_pcie_paths = icm_disconnect_pcie_paths,
2161 	.approve_xdomain_paths = icm_fr_approve_xdomain_paths,
2162 	.disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths,
2163 };
2164 
2165 /* Titan Ridge */
2166 static const struct tb_cm_ops icm_tr_ops = {
2167 	.driver_ready = icm_driver_ready,
2168 	.start = icm_start,
2169 	.stop = icm_stop,
2170 	.suspend = icm_suspend,
2171 	.complete = icm_complete,
2172 	.runtime_suspend = icm_runtime_suspend,
2173 	.runtime_resume = icm_runtime_resume,
2174 	.runtime_suspend_switch = icm_runtime_suspend_switch,
2175 	.runtime_resume_switch = icm_runtime_resume_switch,
2176 	.handle_event = icm_handle_event,
2177 	.get_boot_acl = icm_ar_get_boot_acl,
2178 	.set_boot_acl = icm_ar_set_boot_acl,
2179 	.approve_switch = icm_tr_approve_switch,
2180 	.add_switch_key = icm_tr_add_switch_key,
2181 	.challenge_switch_key = icm_tr_challenge_switch_key,
2182 	.disconnect_pcie_paths = icm_disconnect_pcie_paths,
2183 	.approve_xdomain_paths = icm_tr_approve_xdomain_paths,
2184 	.disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths,
2185 };
2186 
2187 /* Ice Lake */
2188 static const struct tb_cm_ops icm_icl_ops = {
2189 	.driver_ready = icm_driver_ready,
2190 	.start = icm_start,
2191 	.stop = icm_stop,
2192 	.complete = icm_complete,
2193 	.runtime_suspend = icm_runtime_suspend,
2194 	.runtime_resume = icm_runtime_resume,
2195 	.handle_event = icm_handle_event,
2196 	.approve_xdomain_paths = icm_tr_approve_xdomain_paths,
2197 	.disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths,
2198 };
2199 
2200 struct tb *icm_probe(struct tb_nhi *nhi)
2201 {
2202 	struct icm *icm;
2203 	struct tb *tb;
2204 
2205 	tb = tb_domain_alloc(nhi, sizeof(struct icm));
2206 	if (!tb)
2207 		return NULL;
2208 
2209 	icm = tb_priv(tb);
2210 	INIT_DELAYED_WORK(&icm->rescan_work, icm_rescan_work);
2211 	mutex_init(&icm->request_lock);
2212 
2213 	switch (nhi->pdev->device) {
2214 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2215 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2216 		icm->can_upgrade_nvm = true;
2217 		icm->is_supported = icm_fr_is_supported;
2218 		icm->get_route = icm_fr_get_route;
2219 		icm->save_devices = icm_fr_save_devices;
2220 		icm->driver_ready = icm_fr_driver_ready;
2221 		icm->device_connected = icm_fr_device_connected;
2222 		icm->device_disconnected = icm_fr_device_disconnected;
2223 		icm->xdomain_connected = icm_fr_xdomain_connected;
2224 		icm->xdomain_disconnected = icm_fr_xdomain_disconnected;
2225 		tb->cm_ops = &icm_fr_ops;
2226 		break;
2227 
2228 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI:
2229 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI:
2230 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI:
2231 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI:
2232 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI:
2233 		icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES;
2234 		/*
2235 		 * NVM upgrade has not been tested on Apple systems and
2236 		 * they don't provide images publicly either. To be on
2237 		 * the safe side prevent root switch NVM upgrade on Macs
2238 		 * for now.
2239 		 */
2240 		icm->can_upgrade_nvm = !x86_apple_machine;
2241 		icm->is_supported = icm_ar_is_supported;
2242 		icm->cio_reset = icm_ar_cio_reset;
2243 		icm->get_mode = icm_ar_get_mode;
2244 		icm->get_route = icm_ar_get_route;
2245 		icm->save_devices = icm_fr_save_devices;
2246 		icm->driver_ready = icm_ar_driver_ready;
2247 		icm->device_connected = icm_fr_device_connected;
2248 		icm->device_disconnected = icm_fr_device_disconnected;
2249 		icm->xdomain_connected = icm_fr_xdomain_connected;
2250 		icm->xdomain_disconnected = icm_fr_xdomain_disconnected;
2251 		tb->cm_ops = &icm_ar_ops;
2252 		break;
2253 
2254 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI:
2255 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI:
2256 		icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES;
2257 		icm->can_upgrade_nvm = !x86_apple_machine;
2258 		icm->is_supported = icm_ar_is_supported;
2259 		icm->cio_reset = icm_tr_cio_reset;
2260 		icm->get_mode = icm_ar_get_mode;
2261 		icm->driver_ready = icm_tr_driver_ready;
2262 		icm->device_connected = icm_tr_device_connected;
2263 		icm->device_disconnected = icm_tr_device_disconnected;
2264 		icm->xdomain_connected = icm_tr_xdomain_connected;
2265 		icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
2266 		tb->cm_ops = &icm_tr_ops;
2267 		break;
2268 
2269 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2270 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2271 		icm->is_supported = icm_fr_is_supported;
2272 		icm->driver_ready = icm_icl_driver_ready;
2273 		icm->set_uuid = icm_icl_set_uuid;
2274 		icm->device_connected = icm_icl_device_connected;
2275 		icm->device_disconnected = icm_tr_device_disconnected;
2276 		icm->xdomain_connected = icm_tr_xdomain_connected;
2277 		icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
2278 		icm->rtd3_veto = icm_icl_rtd3_veto;
2279 		tb->cm_ops = &icm_icl_ops;
2280 		break;
2281 
2282 	case PCI_DEVICE_ID_INTEL_TGL_NHI0:
2283 	case PCI_DEVICE_ID_INTEL_TGL_NHI1:
2284 		icm->is_supported = icm_tgl_is_supported;
2285 		icm->driver_ready = icm_icl_driver_ready;
2286 		icm->set_uuid = icm_icl_set_uuid;
2287 		icm->device_connected = icm_icl_device_connected;
2288 		icm->device_disconnected = icm_tr_device_disconnected;
2289 		icm->xdomain_connected = icm_tr_xdomain_connected;
2290 		icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
2291 		icm->rtd3_veto = icm_icl_rtd3_veto;
2292 		tb->cm_ops = &icm_icl_ops;
2293 		break;
2294 	}
2295 
2296 	if (!icm->is_supported || !icm->is_supported(tb)) {
2297 		dev_dbg(&nhi->pdev->dev, "ICM not supported on this controller\n");
2298 		tb_domain_put(tb);
2299 		return NULL;
2300 	}
2301 
2302 	return tb;
2303 }
2304