1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Internal Thunderbolt Connection Manager. This is a firmware running on 4 * the Thunderbolt host controller performing most of the low-level 5 * handling. 6 * 7 * Copyright (C) 2017, Intel Corporation 8 * Authors: Michael Jamet <michael.jamet@intel.com> 9 * Mika Westerberg <mika.westerberg@linux.intel.com> 10 */ 11 12 #include <linux/delay.h> 13 #include <linux/mutex.h> 14 #include <linux/pci.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/platform_data/x86/apple.h> 17 #include <linux/sizes.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "ctl.h" 22 #include "nhi_regs.h" 23 #include "tb.h" 24 25 #define PCIE2CIO_CMD 0x30 26 #define PCIE2CIO_CMD_TIMEOUT BIT(31) 27 #define PCIE2CIO_CMD_START BIT(30) 28 #define PCIE2CIO_CMD_WRITE BIT(21) 29 #define PCIE2CIO_CMD_CS_MASK GENMASK(20, 19) 30 #define PCIE2CIO_CMD_CS_SHIFT 19 31 #define PCIE2CIO_CMD_PORT_MASK GENMASK(18, 13) 32 #define PCIE2CIO_CMD_PORT_SHIFT 13 33 34 #define PCIE2CIO_WRDATA 0x34 35 #define PCIE2CIO_RDDATA 0x38 36 37 #define PHY_PORT_CS1 0x37 38 #define PHY_PORT_CS1_LINK_DISABLE BIT(14) 39 #define PHY_PORT_CS1_LINK_STATE_MASK GENMASK(29, 26) 40 #define PHY_PORT_CS1_LINK_STATE_SHIFT 26 41 42 #define ICM_TIMEOUT 5000 /* ms */ 43 #define ICM_APPROVE_TIMEOUT 10000 /* ms */ 44 #define ICM_MAX_LINK 4 45 46 /** 47 * struct icm - Internal connection manager private data 48 * @request_lock: Makes sure only one message is send to ICM at time 49 * @rescan_work: Work used to rescan the surviving switches after resume 50 * @upstream_port: Pointer to the PCIe upstream port this host 51 * controller is connected. This is only set for systems 52 * where ICM needs to be started manually 53 * @vnd_cap: Vendor defined capability where PCIe2CIO mailbox resides 54 * (only set when @upstream_port is not %NULL) 55 * @safe_mode: ICM is in safe mode 56 * @max_boot_acl: Maximum number of preboot ACL entries (%0 if not supported) 57 * @rpm: Does the controller support runtime PM (RTD3) 58 * @is_supported: Checks if we can support ICM on this controller 59 * @cio_reset: Trigger CIO reset 60 * @get_mode: Read and return the ICM firmware mode (optional) 61 * @get_route: Find a route string for given switch 62 * @save_devices: Ask ICM to save devices to ACL when suspending (optional) 63 * @driver_ready: Send driver ready message to ICM 64 * @device_connected: Handle device connected ICM message 65 * @device_disconnected: Handle device disconnected ICM message 66 * @xdomain_connected - Handle XDomain connected ICM message 67 * @xdomain_disconnected - Handle XDomain disconnected ICM message 68 */ 69 struct icm { 70 struct mutex request_lock; 71 struct delayed_work rescan_work; 72 struct pci_dev *upstream_port; 73 size_t max_boot_acl; 74 int vnd_cap; 75 bool safe_mode; 76 bool rpm; 77 bool (*is_supported)(struct tb *tb); 78 int (*cio_reset)(struct tb *tb); 79 int (*get_mode)(struct tb *tb); 80 int (*get_route)(struct tb *tb, u8 link, u8 depth, u64 *route); 81 void (*save_devices)(struct tb *tb); 82 int (*driver_ready)(struct tb *tb, 83 enum tb_security_level *security_level, 84 size_t *nboot_acl, bool *rpm); 85 void (*device_connected)(struct tb *tb, 86 const struct icm_pkg_header *hdr); 87 void (*device_disconnected)(struct tb *tb, 88 const struct icm_pkg_header *hdr); 89 void (*xdomain_connected)(struct tb *tb, 90 const struct icm_pkg_header *hdr); 91 void (*xdomain_disconnected)(struct tb *tb, 92 const struct icm_pkg_header *hdr); 93 }; 94 95 struct icm_notification { 96 struct work_struct work; 97 struct icm_pkg_header *pkg; 98 struct tb *tb; 99 }; 100 101 struct ep_name_entry { 102 u8 len; 103 u8 type; 104 u8 data[0]; 105 }; 106 107 #define EP_NAME_INTEL_VSS 0x10 108 109 /* Intel Vendor specific structure */ 110 struct intel_vss { 111 u16 vendor; 112 u16 model; 113 u8 mc; 114 u8 flags; 115 u16 pci_devid; 116 u32 nvm_version; 117 }; 118 119 #define INTEL_VSS_FLAGS_RTD3 BIT(0) 120 121 static const struct intel_vss *parse_intel_vss(const void *ep_name, size_t size) 122 { 123 const void *end = ep_name + size; 124 125 while (ep_name < end) { 126 const struct ep_name_entry *ep = ep_name; 127 128 if (!ep->len) 129 break; 130 if (ep_name + ep->len > end) 131 break; 132 133 if (ep->type == EP_NAME_INTEL_VSS) 134 return (const struct intel_vss *)ep->data; 135 136 ep_name += ep->len; 137 } 138 139 return NULL; 140 } 141 142 static inline struct tb *icm_to_tb(struct icm *icm) 143 { 144 return ((void *)icm - sizeof(struct tb)); 145 } 146 147 static inline u8 phy_port_from_route(u64 route, u8 depth) 148 { 149 u8 link; 150 151 link = depth ? route >> ((depth - 1) * 8) : route; 152 return tb_phy_port_from_link(link); 153 } 154 155 static inline u8 dual_link_from_link(u8 link) 156 { 157 return link ? ((link - 1) ^ 0x01) + 1 : 0; 158 } 159 160 static inline u64 get_route(u32 route_hi, u32 route_lo) 161 { 162 return (u64)route_hi << 32 | route_lo; 163 } 164 165 static inline u64 get_parent_route(u64 route) 166 { 167 int depth = tb_route_length(route); 168 return depth ? route & ~(0xffULL << (depth - 1) * TB_ROUTE_SHIFT) : 0; 169 } 170 171 static int pci2cio_wait_completion(struct icm *icm, unsigned long timeout_msec) 172 { 173 unsigned long end = jiffies + msecs_to_jiffies(timeout_msec); 174 u32 cmd; 175 176 do { 177 pci_read_config_dword(icm->upstream_port, 178 icm->vnd_cap + PCIE2CIO_CMD, &cmd); 179 if (!(cmd & PCIE2CIO_CMD_START)) { 180 if (cmd & PCIE2CIO_CMD_TIMEOUT) 181 break; 182 return 0; 183 } 184 185 msleep(50); 186 } while (time_before(jiffies, end)); 187 188 return -ETIMEDOUT; 189 } 190 191 static int pcie2cio_read(struct icm *icm, enum tb_cfg_space cs, 192 unsigned int port, unsigned int index, u32 *data) 193 { 194 struct pci_dev *pdev = icm->upstream_port; 195 int ret, vnd_cap = icm->vnd_cap; 196 u32 cmd; 197 198 cmd = index; 199 cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK; 200 cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK; 201 cmd |= PCIE2CIO_CMD_START; 202 pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd); 203 204 ret = pci2cio_wait_completion(icm, 5000); 205 if (ret) 206 return ret; 207 208 pci_read_config_dword(pdev, vnd_cap + PCIE2CIO_RDDATA, data); 209 return 0; 210 } 211 212 static int pcie2cio_write(struct icm *icm, enum tb_cfg_space cs, 213 unsigned int port, unsigned int index, u32 data) 214 { 215 struct pci_dev *pdev = icm->upstream_port; 216 int vnd_cap = icm->vnd_cap; 217 u32 cmd; 218 219 pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_WRDATA, data); 220 221 cmd = index; 222 cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK; 223 cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK; 224 cmd |= PCIE2CIO_CMD_WRITE | PCIE2CIO_CMD_START; 225 pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd); 226 227 return pci2cio_wait_completion(icm, 5000); 228 } 229 230 static bool icm_match(const struct tb_cfg_request *req, 231 const struct ctl_pkg *pkg) 232 { 233 const struct icm_pkg_header *res_hdr = pkg->buffer; 234 const struct icm_pkg_header *req_hdr = req->request; 235 236 if (pkg->frame.eof != req->response_type) 237 return false; 238 if (res_hdr->code != req_hdr->code) 239 return false; 240 241 return true; 242 } 243 244 static bool icm_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg) 245 { 246 const struct icm_pkg_header *hdr = pkg->buffer; 247 248 if (hdr->packet_id < req->npackets) { 249 size_t offset = hdr->packet_id * req->response_size; 250 251 memcpy(req->response + offset, pkg->buffer, req->response_size); 252 } 253 254 return hdr->packet_id == hdr->total_packets - 1; 255 } 256 257 static int icm_request(struct tb *tb, const void *request, size_t request_size, 258 void *response, size_t response_size, size_t npackets, 259 unsigned int timeout_msec) 260 { 261 struct icm *icm = tb_priv(tb); 262 int retries = 3; 263 264 do { 265 struct tb_cfg_request *req; 266 struct tb_cfg_result res; 267 268 req = tb_cfg_request_alloc(); 269 if (!req) 270 return -ENOMEM; 271 272 req->match = icm_match; 273 req->copy = icm_copy; 274 req->request = request; 275 req->request_size = request_size; 276 req->request_type = TB_CFG_PKG_ICM_CMD; 277 req->response = response; 278 req->npackets = npackets; 279 req->response_size = response_size; 280 req->response_type = TB_CFG_PKG_ICM_RESP; 281 282 mutex_lock(&icm->request_lock); 283 res = tb_cfg_request_sync(tb->ctl, req, timeout_msec); 284 mutex_unlock(&icm->request_lock); 285 286 tb_cfg_request_put(req); 287 288 if (res.err != -ETIMEDOUT) 289 return res.err == 1 ? -EIO : res.err; 290 291 usleep_range(20, 50); 292 } while (retries--); 293 294 return -ETIMEDOUT; 295 } 296 297 static bool icm_fr_is_supported(struct tb *tb) 298 { 299 return !x86_apple_machine; 300 } 301 302 static inline int icm_fr_get_switch_index(u32 port) 303 { 304 int index; 305 306 if ((port & ICM_PORT_TYPE_MASK) != TB_TYPE_PORT) 307 return 0; 308 309 index = port >> ICM_PORT_INDEX_SHIFT; 310 return index != 0xff ? index : 0; 311 } 312 313 static int icm_fr_get_route(struct tb *tb, u8 link, u8 depth, u64 *route) 314 { 315 struct icm_fr_pkg_get_topology_response *switches, *sw; 316 struct icm_fr_pkg_get_topology request = { 317 .hdr = { .code = ICM_GET_TOPOLOGY }, 318 }; 319 size_t npackets = ICM_GET_TOPOLOGY_PACKETS; 320 int ret, index; 321 u8 i; 322 323 switches = kcalloc(npackets, sizeof(*switches), GFP_KERNEL); 324 if (!switches) 325 return -ENOMEM; 326 327 ret = icm_request(tb, &request, sizeof(request), switches, 328 sizeof(*switches), npackets, ICM_TIMEOUT); 329 if (ret) 330 goto err_free; 331 332 sw = &switches[0]; 333 index = icm_fr_get_switch_index(sw->ports[link]); 334 if (!index) { 335 ret = -ENODEV; 336 goto err_free; 337 } 338 339 sw = &switches[index]; 340 for (i = 1; i < depth; i++) { 341 unsigned int j; 342 343 if (!(sw->first_data & ICM_SWITCH_USED)) { 344 ret = -ENODEV; 345 goto err_free; 346 } 347 348 for (j = 0; j < ARRAY_SIZE(sw->ports); j++) { 349 index = icm_fr_get_switch_index(sw->ports[j]); 350 if (index > sw->switch_index) { 351 sw = &switches[index]; 352 break; 353 } 354 } 355 } 356 357 *route = get_route(sw->route_hi, sw->route_lo); 358 359 err_free: 360 kfree(switches); 361 return ret; 362 } 363 364 static void icm_fr_save_devices(struct tb *tb) 365 { 366 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_SAVE_DEVS, 0); 367 } 368 369 static int 370 icm_fr_driver_ready(struct tb *tb, enum tb_security_level *security_level, 371 size_t *nboot_acl, bool *rpm) 372 { 373 struct icm_fr_pkg_driver_ready_response reply; 374 struct icm_pkg_driver_ready request = { 375 .hdr.code = ICM_DRIVER_READY, 376 }; 377 int ret; 378 379 memset(&reply, 0, sizeof(reply)); 380 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 381 1, ICM_TIMEOUT); 382 if (ret) 383 return ret; 384 385 if (security_level) 386 *security_level = reply.security_level & ICM_FR_SLEVEL_MASK; 387 388 return 0; 389 } 390 391 static int icm_fr_approve_switch(struct tb *tb, struct tb_switch *sw) 392 { 393 struct icm_fr_pkg_approve_device request; 394 struct icm_fr_pkg_approve_device reply; 395 int ret; 396 397 memset(&request, 0, sizeof(request)); 398 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 399 request.hdr.code = ICM_APPROVE_DEVICE; 400 request.connection_id = sw->connection_id; 401 request.connection_key = sw->connection_key; 402 403 memset(&reply, 0, sizeof(reply)); 404 /* Use larger timeout as establishing tunnels can take some time */ 405 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 406 1, ICM_APPROVE_TIMEOUT); 407 if (ret) 408 return ret; 409 410 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 411 tb_warn(tb, "PCIe tunnel creation failed\n"); 412 return -EIO; 413 } 414 415 return 0; 416 } 417 418 static int icm_fr_add_switch_key(struct tb *tb, struct tb_switch *sw) 419 { 420 struct icm_fr_pkg_add_device_key request; 421 struct icm_fr_pkg_add_device_key_response reply; 422 int ret; 423 424 memset(&request, 0, sizeof(request)); 425 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 426 request.hdr.code = ICM_ADD_DEVICE_KEY; 427 request.connection_id = sw->connection_id; 428 request.connection_key = sw->connection_key; 429 memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE); 430 431 memset(&reply, 0, sizeof(reply)); 432 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 433 1, ICM_TIMEOUT); 434 if (ret) 435 return ret; 436 437 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 438 tb_warn(tb, "Adding key to switch failed\n"); 439 return -EIO; 440 } 441 442 return 0; 443 } 444 445 static int icm_fr_challenge_switch_key(struct tb *tb, struct tb_switch *sw, 446 const u8 *challenge, u8 *response) 447 { 448 struct icm_fr_pkg_challenge_device request; 449 struct icm_fr_pkg_challenge_device_response reply; 450 int ret; 451 452 memset(&request, 0, sizeof(request)); 453 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 454 request.hdr.code = ICM_CHALLENGE_DEVICE; 455 request.connection_id = sw->connection_id; 456 request.connection_key = sw->connection_key; 457 memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE); 458 459 memset(&reply, 0, sizeof(reply)); 460 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 461 1, ICM_TIMEOUT); 462 if (ret) 463 return ret; 464 465 if (reply.hdr.flags & ICM_FLAGS_ERROR) 466 return -EKEYREJECTED; 467 if (reply.hdr.flags & ICM_FLAGS_NO_KEY) 468 return -ENOKEY; 469 470 memcpy(response, reply.response, TB_SWITCH_KEY_SIZE); 471 472 return 0; 473 } 474 475 static int icm_fr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 476 { 477 struct icm_fr_pkg_approve_xdomain_response reply; 478 struct icm_fr_pkg_approve_xdomain request; 479 int ret; 480 481 memset(&request, 0, sizeof(request)); 482 request.hdr.code = ICM_APPROVE_XDOMAIN; 483 request.link_info = xd->depth << ICM_LINK_INFO_DEPTH_SHIFT | xd->link; 484 memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid)); 485 486 request.transmit_path = xd->transmit_path; 487 request.transmit_ring = xd->transmit_ring; 488 request.receive_path = xd->receive_path; 489 request.receive_ring = xd->receive_ring; 490 491 memset(&reply, 0, sizeof(reply)); 492 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 493 1, ICM_TIMEOUT); 494 if (ret) 495 return ret; 496 497 if (reply.hdr.flags & ICM_FLAGS_ERROR) 498 return -EIO; 499 500 return 0; 501 } 502 503 static int icm_fr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 504 { 505 u8 phy_port; 506 u8 cmd; 507 508 phy_port = tb_phy_port_from_link(xd->link); 509 if (phy_port == 0) 510 cmd = NHI_MAILBOX_DISCONNECT_PA; 511 else 512 cmd = NHI_MAILBOX_DISCONNECT_PB; 513 514 nhi_mailbox_cmd(tb->nhi, cmd, 1); 515 usleep_range(10, 50); 516 nhi_mailbox_cmd(tb->nhi, cmd, 2); 517 return 0; 518 } 519 520 static void add_switch(struct tb_switch *parent_sw, u64 route, 521 const uuid_t *uuid, const u8 *ep_name, 522 size_t ep_name_size, u8 connection_id, u8 connection_key, 523 u8 link, u8 depth, enum tb_security_level security_level, 524 bool authorized, bool boot) 525 { 526 const struct intel_vss *vss; 527 struct tb_switch *sw; 528 529 pm_runtime_get_sync(&parent_sw->dev); 530 531 sw = tb_switch_alloc(parent_sw->tb, &parent_sw->dev, route); 532 if (IS_ERR(sw)) 533 goto out; 534 535 sw->uuid = kmemdup(uuid, sizeof(*uuid), GFP_KERNEL); 536 if (!sw->uuid) { 537 tb_sw_warn(sw, "cannot allocate memory for switch\n"); 538 tb_switch_put(sw); 539 goto out; 540 } 541 sw->connection_id = connection_id; 542 sw->connection_key = connection_key; 543 sw->link = link; 544 sw->depth = depth; 545 sw->authorized = authorized; 546 sw->security_level = security_level; 547 sw->boot = boot; 548 init_completion(&sw->rpm_complete); 549 550 vss = parse_intel_vss(ep_name, ep_name_size); 551 if (vss) 552 sw->rpm = !!(vss->flags & INTEL_VSS_FLAGS_RTD3); 553 554 /* Link the two switches now */ 555 tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw); 556 tb_upstream_port(sw)->remote = tb_port_at(route, parent_sw); 557 558 if (tb_switch_add(sw)) { 559 tb_port_at(tb_route(sw), parent_sw)->remote = NULL; 560 tb_switch_put(sw); 561 } 562 563 out: 564 pm_runtime_mark_last_busy(&parent_sw->dev); 565 pm_runtime_put_autosuspend(&parent_sw->dev); 566 } 567 568 static void update_switch(struct tb_switch *parent_sw, struct tb_switch *sw, 569 u64 route, u8 connection_id, u8 connection_key, 570 u8 link, u8 depth, bool boot) 571 { 572 /* Disconnect from parent */ 573 tb_port_at(tb_route(sw), parent_sw)->remote = NULL; 574 /* Re-connect via updated port*/ 575 tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw); 576 577 /* Update with the new addressing information */ 578 sw->config.route_hi = upper_32_bits(route); 579 sw->config.route_lo = lower_32_bits(route); 580 sw->connection_id = connection_id; 581 sw->connection_key = connection_key; 582 sw->link = link; 583 sw->depth = depth; 584 sw->boot = boot; 585 586 /* This switch still exists */ 587 sw->is_unplugged = false; 588 589 /* Runtime resume is now complete */ 590 complete(&sw->rpm_complete); 591 } 592 593 static void remove_switch(struct tb_switch *sw) 594 { 595 struct tb_switch *parent_sw; 596 597 parent_sw = tb_to_switch(sw->dev.parent); 598 tb_port_at(tb_route(sw), parent_sw)->remote = NULL; 599 tb_switch_remove(sw); 600 } 601 602 static void add_xdomain(struct tb_switch *sw, u64 route, 603 const uuid_t *local_uuid, const uuid_t *remote_uuid, 604 u8 link, u8 depth) 605 { 606 struct tb_xdomain *xd; 607 608 pm_runtime_get_sync(&sw->dev); 609 610 xd = tb_xdomain_alloc(sw->tb, &sw->dev, route, local_uuid, remote_uuid); 611 if (!xd) 612 goto out; 613 614 xd->link = link; 615 xd->depth = depth; 616 617 tb_port_at(route, sw)->xdomain = xd; 618 619 tb_xdomain_add(xd); 620 621 out: 622 pm_runtime_mark_last_busy(&sw->dev); 623 pm_runtime_put_autosuspend(&sw->dev); 624 } 625 626 static void update_xdomain(struct tb_xdomain *xd, u64 route, u8 link) 627 { 628 xd->link = link; 629 xd->route = route; 630 xd->is_unplugged = false; 631 } 632 633 static void remove_xdomain(struct tb_xdomain *xd) 634 { 635 struct tb_switch *sw; 636 637 sw = tb_to_switch(xd->dev.parent); 638 tb_port_at(xd->route, sw)->xdomain = NULL; 639 tb_xdomain_remove(xd); 640 } 641 642 static void 643 icm_fr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr) 644 { 645 const struct icm_fr_event_device_connected *pkg = 646 (const struct icm_fr_event_device_connected *)hdr; 647 enum tb_security_level security_level; 648 struct tb_switch *sw, *parent_sw; 649 struct icm *icm = tb_priv(tb); 650 bool authorized = false; 651 struct tb_xdomain *xd; 652 u8 link, depth; 653 bool boot; 654 u64 route; 655 int ret; 656 657 link = pkg->link_info & ICM_LINK_INFO_LINK_MASK; 658 depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >> 659 ICM_LINK_INFO_DEPTH_SHIFT; 660 authorized = pkg->link_info & ICM_LINK_INFO_APPROVED; 661 security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >> 662 ICM_FLAGS_SLEVEL_SHIFT; 663 boot = pkg->link_info & ICM_LINK_INFO_BOOT; 664 665 if (pkg->link_info & ICM_LINK_INFO_REJECTED) { 666 tb_info(tb, "switch at %u.%u was rejected by ICM firmware because topology limit exceeded\n", 667 link, depth); 668 return; 669 } 670 671 sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid); 672 if (sw) { 673 u8 phy_port, sw_phy_port; 674 675 parent_sw = tb_to_switch(sw->dev.parent); 676 sw_phy_port = tb_phy_port_from_link(sw->link); 677 phy_port = tb_phy_port_from_link(link); 678 679 /* 680 * On resume ICM will send us connected events for the 681 * devices that still are present. However, that 682 * information might have changed for example by the 683 * fact that a switch on a dual-link connection might 684 * have been enumerated using the other link now. Make 685 * sure our book keeping matches that. 686 */ 687 if (sw->depth == depth && sw_phy_port == phy_port && 688 !!sw->authorized == authorized) { 689 /* 690 * It was enumerated through another link so update 691 * route string accordingly. 692 */ 693 if (sw->link != link) { 694 ret = icm->get_route(tb, link, depth, &route); 695 if (ret) { 696 tb_err(tb, "failed to update route string for switch at %u.%u\n", 697 link, depth); 698 tb_switch_put(sw); 699 return; 700 } 701 } else { 702 route = tb_route(sw); 703 } 704 705 update_switch(parent_sw, sw, route, pkg->connection_id, 706 pkg->connection_key, link, depth, boot); 707 tb_switch_put(sw); 708 return; 709 } 710 711 /* 712 * User connected the same switch to another physical 713 * port or to another part of the topology. Remove the 714 * existing switch now before adding the new one. 715 */ 716 remove_switch(sw); 717 tb_switch_put(sw); 718 } 719 720 /* 721 * If the switch was not found by UUID, look for a switch on 722 * same physical port (taking possible link aggregation into 723 * account) and depth. If we found one it is definitely a stale 724 * one so remove it first. 725 */ 726 sw = tb_switch_find_by_link_depth(tb, link, depth); 727 if (!sw) { 728 u8 dual_link; 729 730 dual_link = dual_link_from_link(link); 731 if (dual_link) 732 sw = tb_switch_find_by_link_depth(tb, dual_link, depth); 733 } 734 if (sw) { 735 remove_switch(sw); 736 tb_switch_put(sw); 737 } 738 739 /* Remove existing XDomain connection if found */ 740 xd = tb_xdomain_find_by_link_depth(tb, link, depth); 741 if (xd) { 742 remove_xdomain(xd); 743 tb_xdomain_put(xd); 744 } 745 746 parent_sw = tb_switch_find_by_link_depth(tb, link, depth - 1); 747 if (!parent_sw) { 748 tb_err(tb, "failed to find parent switch for %u.%u\n", 749 link, depth); 750 return; 751 } 752 753 ret = icm->get_route(tb, link, depth, &route); 754 if (ret) { 755 tb_err(tb, "failed to find route string for switch at %u.%u\n", 756 link, depth); 757 tb_switch_put(parent_sw); 758 return; 759 } 760 761 add_switch(parent_sw, route, &pkg->ep_uuid, (const u8 *)pkg->ep_name, 762 sizeof(pkg->ep_name), pkg->connection_id, 763 pkg->connection_key, link, depth, security_level, 764 authorized, boot); 765 766 tb_switch_put(parent_sw); 767 } 768 769 static void 770 icm_fr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 771 { 772 const struct icm_fr_event_device_disconnected *pkg = 773 (const struct icm_fr_event_device_disconnected *)hdr; 774 struct tb_switch *sw; 775 u8 link, depth; 776 777 link = pkg->link_info & ICM_LINK_INFO_LINK_MASK; 778 depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >> 779 ICM_LINK_INFO_DEPTH_SHIFT; 780 781 if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) { 782 tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth); 783 return; 784 } 785 786 sw = tb_switch_find_by_link_depth(tb, link, depth); 787 if (!sw) { 788 tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link, 789 depth); 790 return; 791 } 792 793 remove_switch(sw); 794 tb_switch_put(sw); 795 } 796 797 static void 798 icm_fr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr) 799 { 800 const struct icm_fr_event_xdomain_connected *pkg = 801 (const struct icm_fr_event_xdomain_connected *)hdr; 802 struct tb_xdomain *xd; 803 struct tb_switch *sw; 804 u8 link, depth; 805 u64 route; 806 807 link = pkg->link_info & ICM_LINK_INFO_LINK_MASK; 808 depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >> 809 ICM_LINK_INFO_DEPTH_SHIFT; 810 811 if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) { 812 tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth); 813 return; 814 } 815 816 route = get_route(pkg->local_route_hi, pkg->local_route_lo); 817 818 xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid); 819 if (xd) { 820 u8 xd_phy_port, phy_port; 821 822 xd_phy_port = phy_port_from_route(xd->route, xd->depth); 823 phy_port = phy_port_from_route(route, depth); 824 825 if (xd->depth == depth && xd_phy_port == phy_port) { 826 update_xdomain(xd, route, link); 827 tb_xdomain_put(xd); 828 return; 829 } 830 831 /* 832 * If we find an existing XDomain connection remove it 833 * now. We need to go through login handshake and 834 * everything anyway to be able to re-establish the 835 * connection. 836 */ 837 remove_xdomain(xd); 838 tb_xdomain_put(xd); 839 } 840 841 /* 842 * Look if there already exists an XDomain in the same place 843 * than the new one and in that case remove it because it is 844 * most likely another host that got disconnected. 845 */ 846 xd = tb_xdomain_find_by_link_depth(tb, link, depth); 847 if (!xd) { 848 u8 dual_link; 849 850 dual_link = dual_link_from_link(link); 851 if (dual_link) 852 xd = tb_xdomain_find_by_link_depth(tb, dual_link, 853 depth); 854 } 855 if (xd) { 856 remove_xdomain(xd); 857 tb_xdomain_put(xd); 858 } 859 860 /* 861 * If the user disconnected a switch during suspend and 862 * connected another host to the same port, remove the switch 863 * first. 864 */ 865 sw = tb_switch_find_by_route(tb, route); 866 if (sw) { 867 remove_switch(sw); 868 tb_switch_put(sw); 869 } 870 871 sw = tb_switch_find_by_link_depth(tb, link, depth); 872 if (!sw) { 873 tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link, 874 depth); 875 return; 876 } 877 878 add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, link, 879 depth); 880 tb_switch_put(sw); 881 } 882 883 static void 884 icm_fr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 885 { 886 const struct icm_fr_event_xdomain_disconnected *pkg = 887 (const struct icm_fr_event_xdomain_disconnected *)hdr; 888 struct tb_xdomain *xd; 889 890 /* 891 * If the connection is through one or multiple devices, the 892 * XDomain device is removed along with them so it is fine if we 893 * cannot find it here. 894 */ 895 xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid); 896 if (xd) { 897 remove_xdomain(xd); 898 tb_xdomain_put(xd); 899 } 900 } 901 902 static int icm_tr_cio_reset(struct tb *tb) 903 { 904 return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x777, BIT(1)); 905 } 906 907 static int 908 icm_tr_driver_ready(struct tb *tb, enum tb_security_level *security_level, 909 size_t *nboot_acl, bool *rpm) 910 { 911 struct icm_tr_pkg_driver_ready_response reply; 912 struct icm_pkg_driver_ready request = { 913 .hdr.code = ICM_DRIVER_READY, 914 }; 915 int ret; 916 917 memset(&reply, 0, sizeof(reply)); 918 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 919 1, 20000); 920 if (ret) 921 return ret; 922 923 if (security_level) 924 *security_level = reply.info & ICM_TR_INFO_SLEVEL_MASK; 925 if (nboot_acl) 926 *nboot_acl = (reply.info & ICM_TR_INFO_BOOT_ACL_MASK) >> 927 ICM_TR_INFO_BOOT_ACL_SHIFT; 928 if (rpm) 929 *rpm = !!(reply.hdr.flags & ICM_TR_FLAGS_RTD3); 930 931 return 0; 932 } 933 934 static int icm_tr_approve_switch(struct tb *tb, struct tb_switch *sw) 935 { 936 struct icm_tr_pkg_approve_device request; 937 struct icm_tr_pkg_approve_device reply; 938 int ret; 939 940 memset(&request, 0, sizeof(request)); 941 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 942 request.hdr.code = ICM_APPROVE_DEVICE; 943 request.route_lo = sw->config.route_lo; 944 request.route_hi = sw->config.route_hi; 945 request.connection_id = sw->connection_id; 946 947 memset(&reply, 0, sizeof(reply)); 948 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 949 1, ICM_APPROVE_TIMEOUT); 950 if (ret) 951 return ret; 952 953 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 954 tb_warn(tb, "PCIe tunnel creation failed\n"); 955 return -EIO; 956 } 957 958 return 0; 959 } 960 961 static int icm_tr_add_switch_key(struct tb *tb, struct tb_switch *sw) 962 { 963 struct icm_tr_pkg_add_device_key_response reply; 964 struct icm_tr_pkg_add_device_key request; 965 int ret; 966 967 memset(&request, 0, sizeof(request)); 968 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 969 request.hdr.code = ICM_ADD_DEVICE_KEY; 970 request.route_lo = sw->config.route_lo; 971 request.route_hi = sw->config.route_hi; 972 request.connection_id = sw->connection_id; 973 memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE); 974 975 memset(&reply, 0, sizeof(reply)); 976 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 977 1, ICM_TIMEOUT); 978 if (ret) 979 return ret; 980 981 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 982 tb_warn(tb, "Adding key to switch failed\n"); 983 return -EIO; 984 } 985 986 return 0; 987 } 988 989 static int icm_tr_challenge_switch_key(struct tb *tb, struct tb_switch *sw, 990 const u8 *challenge, u8 *response) 991 { 992 struct icm_tr_pkg_challenge_device_response reply; 993 struct icm_tr_pkg_challenge_device request; 994 int ret; 995 996 memset(&request, 0, sizeof(request)); 997 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 998 request.hdr.code = ICM_CHALLENGE_DEVICE; 999 request.route_lo = sw->config.route_lo; 1000 request.route_hi = sw->config.route_hi; 1001 request.connection_id = sw->connection_id; 1002 memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE); 1003 1004 memset(&reply, 0, sizeof(reply)); 1005 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1006 1, ICM_TIMEOUT); 1007 if (ret) 1008 return ret; 1009 1010 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1011 return -EKEYREJECTED; 1012 if (reply.hdr.flags & ICM_FLAGS_NO_KEY) 1013 return -ENOKEY; 1014 1015 memcpy(response, reply.response, TB_SWITCH_KEY_SIZE); 1016 1017 return 0; 1018 } 1019 1020 static int icm_tr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 1021 { 1022 struct icm_tr_pkg_approve_xdomain_response reply; 1023 struct icm_tr_pkg_approve_xdomain request; 1024 int ret; 1025 1026 memset(&request, 0, sizeof(request)); 1027 request.hdr.code = ICM_APPROVE_XDOMAIN; 1028 request.route_hi = upper_32_bits(xd->route); 1029 request.route_lo = lower_32_bits(xd->route); 1030 request.transmit_path = xd->transmit_path; 1031 request.transmit_ring = xd->transmit_ring; 1032 request.receive_path = xd->receive_path; 1033 request.receive_ring = xd->receive_ring; 1034 memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid)); 1035 1036 memset(&reply, 0, sizeof(reply)); 1037 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1038 1, ICM_TIMEOUT); 1039 if (ret) 1040 return ret; 1041 1042 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1043 return -EIO; 1044 1045 return 0; 1046 } 1047 1048 static int icm_tr_xdomain_tear_down(struct tb *tb, struct tb_xdomain *xd, 1049 int stage) 1050 { 1051 struct icm_tr_pkg_disconnect_xdomain_response reply; 1052 struct icm_tr_pkg_disconnect_xdomain request; 1053 int ret; 1054 1055 memset(&request, 0, sizeof(request)); 1056 request.hdr.code = ICM_DISCONNECT_XDOMAIN; 1057 request.stage = stage; 1058 request.route_hi = upper_32_bits(xd->route); 1059 request.route_lo = lower_32_bits(xd->route); 1060 memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid)); 1061 1062 memset(&reply, 0, sizeof(reply)); 1063 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1064 1, ICM_TIMEOUT); 1065 if (ret) 1066 return ret; 1067 1068 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1069 return -EIO; 1070 1071 return 0; 1072 } 1073 1074 static int icm_tr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 1075 { 1076 int ret; 1077 1078 ret = icm_tr_xdomain_tear_down(tb, xd, 1); 1079 if (ret) 1080 return ret; 1081 1082 usleep_range(10, 50); 1083 return icm_tr_xdomain_tear_down(tb, xd, 2); 1084 } 1085 1086 static void 1087 icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr) 1088 { 1089 const struct icm_tr_event_device_connected *pkg = 1090 (const struct icm_tr_event_device_connected *)hdr; 1091 enum tb_security_level security_level; 1092 struct tb_switch *sw, *parent_sw; 1093 struct tb_xdomain *xd; 1094 bool authorized, boot; 1095 u64 route; 1096 1097 /* 1098 * Currently we don't use the QoS information coming with the 1099 * device connected message so simply just ignore that extra 1100 * packet for now. 1101 */ 1102 if (pkg->hdr.packet_id) 1103 return; 1104 1105 route = get_route(pkg->route_hi, pkg->route_lo); 1106 authorized = pkg->link_info & ICM_LINK_INFO_APPROVED; 1107 security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >> 1108 ICM_FLAGS_SLEVEL_SHIFT; 1109 boot = pkg->link_info & ICM_LINK_INFO_BOOT; 1110 1111 if (pkg->link_info & ICM_LINK_INFO_REJECTED) { 1112 tb_info(tb, "switch at %llx was rejected by ICM firmware because topology limit exceeded\n", 1113 route); 1114 return; 1115 } 1116 1117 sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid); 1118 if (sw) { 1119 /* Update the switch if it is still in the same place */ 1120 if (tb_route(sw) == route && !!sw->authorized == authorized) { 1121 parent_sw = tb_to_switch(sw->dev.parent); 1122 update_switch(parent_sw, sw, route, pkg->connection_id, 1123 0, 0, 0, boot); 1124 tb_switch_put(sw); 1125 return; 1126 } 1127 1128 remove_switch(sw); 1129 tb_switch_put(sw); 1130 } 1131 1132 /* Another switch with the same address */ 1133 sw = tb_switch_find_by_route(tb, route); 1134 if (sw) { 1135 remove_switch(sw); 1136 tb_switch_put(sw); 1137 } 1138 1139 /* XDomain connection with the same address */ 1140 xd = tb_xdomain_find_by_route(tb, route); 1141 if (xd) { 1142 remove_xdomain(xd); 1143 tb_xdomain_put(xd); 1144 } 1145 1146 parent_sw = tb_switch_find_by_route(tb, get_parent_route(route)); 1147 if (!parent_sw) { 1148 tb_err(tb, "failed to find parent switch for %llx\n", route); 1149 return; 1150 } 1151 1152 add_switch(parent_sw, route, &pkg->ep_uuid, (const u8 *)pkg->ep_name, 1153 sizeof(pkg->ep_name), pkg->connection_id, 1154 0, 0, 0, security_level, authorized, boot); 1155 1156 tb_switch_put(parent_sw); 1157 } 1158 1159 static void 1160 icm_tr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 1161 { 1162 const struct icm_tr_event_device_disconnected *pkg = 1163 (const struct icm_tr_event_device_disconnected *)hdr; 1164 struct tb_switch *sw; 1165 u64 route; 1166 1167 route = get_route(pkg->route_hi, pkg->route_lo); 1168 1169 sw = tb_switch_find_by_route(tb, route); 1170 if (!sw) { 1171 tb_warn(tb, "no switch exists at %llx, ignoring\n", route); 1172 return; 1173 } 1174 1175 remove_switch(sw); 1176 tb_switch_put(sw); 1177 } 1178 1179 static void 1180 icm_tr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr) 1181 { 1182 const struct icm_tr_event_xdomain_connected *pkg = 1183 (const struct icm_tr_event_xdomain_connected *)hdr; 1184 struct tb_xdomain *xd; 1185 struct tb_switch *sw; 1186 u64 route; 1187 1188 if (!tb->root_switch) 1189 return; 1190 1191 route = get_route(pkg->local_route_hi, pkg->local_route_lo); 1192 1193 xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid); 1194 if (xd) { 1195 if (xd->route == route) { 1196 update_xdomain(xd, route, 0); 1197 tb_xdomain_put(xd); 1198 return; 1199 } 1200 1201 remove_xdomain(xd); 1202 tb_xdomain_put(xd); 1203 } 1204 1205 /* An existing xdomain with the same address */ 1206 xd = tb_xdomain_find_by_route(tb, route); 1207 if (xd) { 1208 remove_xdomain(xd); 1209 tb_xdomain_put(xd); 1210 } 1211 1212 /* 1213 * If the user disconnected a switch during suspend and 1214 * connected another host to the same port, remove the switch 1215 * first. 1216 */ 1217 sw = tb_switch_find_by_route(tb, route); 1218 if (sw) { 1219 remove_switch(sw); 1220 tb_switch_put(sw); 1221 } 1222 1223 sw = tb_switch_find_by_route(tb, get_parent_route(route)); 1224 if (!sw) { 1225 tb_warn(tb, "no switch exists at %llx, ignoring\n", route); 1226 return; 1227 } 1228 1229 add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, 0, 0); 1230 tb_switch_put(sw); 1231 } 1232 1233 static void 1234 icm_tr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 1235 { 1236 const struct icm_tr_event_xdomain_disconnected *pkg = 1237 (const struct icm_tr_event_xdomain_disconnected *)hdr; 1238 struct tb_xdomain *xd; 1239 u64 route; 1240 1241 route = get_route(pkg->route_hi, pkg->route_lo); 1242 1243 xd = tb_xdomain_find_by_route(tb, route); 1244 if (xd) { 1245 remove_xdomain(xd); 1246 tb_xdomain_put(xd); 1247 } 1248 } 1249 1250 static struct pci_dev *get_upstream_port(struct pci_dev *pdev) 1251 { 1252 struct pci_dev *parent; 1253 1254 parent = pci_upstream_bridge(pdev); 1255 while (parent) { 1256 if (!pci_is_pcie(parent)) 1257 return NULL; 1258 if (pci_pcie_type(parent) == PCI_EXP_TYPE_UPSTREAM) 1259 break; 1260 parent = pci_upstream_bridge(parent); 1261 } 1262 1263 if (!parent) 1264 return NULL; 1265 1266 switch (parent->device) { 1267 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1268 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1269 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1270 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1271 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1272 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1273 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1274 return parent; 1275 } 1276 1277 return NULL; 1278 } 1279 1280 static bool icm_ar_is_supported(struct tb *tb) 1281 { 1282 struct pci_dev *upstream_port; 1283 struct icm *icm = tb_priv(tb); 1284 1285 /* 1286 * Starting from Alpine Ridge we can use ICM on Apple machines 1287 * as well. We just need to reset and re-enable it first. 1288 */ 1289 if (!x86_apple_machine) 1290 return true; 1291 1292 /* 1293 * Find the upstream PCIe port in case we need to do reset 1294 * through its vendor specific registers. 1295 */ 1296 upstream_port = get_upstream_port(tb->nhi->pdev); 1297 if (upstream_port) { 1298 int cap; 1299 1300 cap = pci_find_ext_capability(upstream_port, 1301 PCI_EXT_CAP_ID_VNDR); 1302 if (cap > 0) { 1303 icm->upstream_port = upstream_port; 1304 icm->vnd_cap = cap; 1305 1306 return true; 1307 } 1308 } 1309 1310 return false; 1311 } 1312 1313 static int icm_ar_cio_reset(struct tb *tb) 1314 { 1315 return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x50, BIT(9)); 1316 } 1317 1318 static int icm_ar_get_mode(struct tb *tb) 1319 { 1320 struct tb_nhi *nhi = tb->nhi; 1321 int retries = 60; 1322 u32 val; 1323 1324 do { 1325 val = ioread32(nhi->iobase + REG_FW_STS); 1326 if (val & REG_FW_STS_NVM_AUTH_DONE) 1327 break; 1328 msleep(50); 1329 } while (--retries); 1330 1331 if (!retries) { 1332 dev_err(&nhi->pdev->dev, "ICM firmware not authenticated\n"); 1333 return -ENODEV; 1334 } 1335 1336 return nhi_mailbox_mode(nhi); 1337 } 1338 1339 static int 1340 icm_ar_driver_ready(struct tb *tb, enum tb_security_level *security_level, 1341 size_t *nboot_acl, bool *rpm) 1342 { 1343 struct icm_ar_pkg_driver_ready_response reply; 1344 struct icm_pkg_driver_ready request = { 1345 .hdr.code = ICM_DRIVER_READY, 1346 }; 1347 int ret; 1348 1349 memset(&reply, 0, sizeof(reply)); 1350 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1351 1, ICM_TIMEOUT); 1352 if (ret) 1353 return ret; 1354 1355 if (security_level) 1356 *security_level = reply.info & ICM_AR_INFO_SLEVEL_MASK; 1357 if (nboot_acl && (reply.info & ICM_AR_INFO_BOOT_ACL_SUPPORTED)) 1358 *nboot_acl = (reply.info & ICM_AR_INFO_BOOT_ACL_MASK) >> 1359 ICM_AR_INFO_BOOT_ACL_SHIFT; 1360 if (rpm) 1361 *rpm = !!(reply.hdr.flags & ICM_AR_FLAGS_RTD3); 1362 1363 return 0; 1364 } 1365 1366 static int icm_ar_get_route(struct tb *tb, u8 link, u8 depth, u64 *route) 1367 { 1368 struct icm_ar_pkg_get_route_response reply; 1369 struct icm_ar_pkg_get_route request = { 1370 .hdr = { .code = ICM_GET_ROUTE }, 1371 .link_info = depth << ICM_LINK_INFO_DEPTH_SHIFT | link, 1372 }; 1373 int ret; 1374 1375 memset(&reply, 0, sizeof(reply)); 1376 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1377 1, ICM_TIMEOUT); 1378 if (ret) 1379 return ret; 1380 1381 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1382 return -EIO; 1383 1384 *route = get_route(reply.route_hi, reply.route_lo); 1385 return 0; 1386 } 1387 1388 static int icm_ar_get_boot_acl(struct tb *tb, uuid_t *uuids, size_t nuuids) 1389 { 1390 struct icm_ar_pkg_preboot_acl_response reply; 1391 struct icm_ar_pkg_preboot_acl request = { 1392 .hdr = { .code = ICM_PREBOOT_ACL }, 1393 }; 1394 int ret, i; 1395 1396 memset(&reply, 0, sizeof(reply)); 1397 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1398 1, ICM_TIMEOUT); 1399 if (ret) 1400 return ret; 1401 1402 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1403 return -EIO; 1404 1405 for (i = 0; i < nuuids; i++) { 1406 u32 *uuid = (u32 *)&uuids[i]; 1407 1408 uuid[0] = reply.acl[i].uuid_lo; 1409 uuid[1] = reply.acl[i].uuid_hi; 1410 1411 if (uuid[0] == 0xffffffff && uuid[1] == 0xffffffff) { 1412 /* Map empty entries to null UUID */ 1413 uuid[0] = 0; 1414 uuid[1] = 0; 1415 } else if (uuid[0] != 0 || uuid[1] != 0) { 1416 /* Upper two DWs are always one's */ 1417 uuid[2] = 0xffffffff; 1418 uuid[3] = 0xffffffff; 1419 } 1420 } 1421 1422 return ret; 1423 } 1424 1425 static int icm_ar_set_boot_acl(struct tb *tb, const uuid_t *uuids, 1426 size_t nuuids) 1427 { 1428 struct icm_ar_pkg_preboot_acl_response reply; 1429 struct icm_ar_pkg_preboot_acl request = { 1430 .hdr = { 1431 .code = ICM_PREBOOT_ACL, 1432 .flags = ICM_FLAGS_WRITE, 1433 }, 1434 }; 1435 int ret, i; 1436 1437 for (i = 0; i < nuuids; i++) { 1438 const u32 *uuid = (const u32 *)&uuids[i]; 1439 1440 if (uuid_is_null(&uuids[i])) { 1441 /* 1442 * Map null UUID to the empty (all one) entries 1443 * for ICM. 1444 */ 1445 request.acl[i].uuid_lo = 0xffffffff; 1446 request.acl[i].uuid_hi = 0xffffffff; 1447 } else { 1448 /* Two high DWs need to be set to all one */ 1449 if (uuid[2] != 0xffffffff || uuid[3] != 0xffffffff) 1450 return -EINVAL; 1451 1452 request.acl[i].uuid_lo = uuid[0]; 1453 request.acl[i].uuid_hi = uuid[1]; 1454 } 1455 } 1456 1457 memset(&reply, 0, sizeof(reply)); 1458 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1459 1, ICM_TIMEOUT); 1460 if (ret) 1461 return ret; 1462 1463 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1464 return -EIO; 1465 1466 return 0; 1467 } 1468 1469 static void icm_handle_notification(struct work_struct *work) 1470 { 1471 struct icm_notification *n = container_of(work, typeof(*n), work); 1472 struct tb *tb = n->tb; 1473 struct icm *icm = tb_priv(tb); 1474 1475 mutex_lock(&tb->lock); 1476 1477 /* 1478 * When the domain is stopped we flush its workqueue but before 1479 * that the root switch is removed. In that case we should treat 1480 * the queued events as being canceled. 1481 */ 1482 if (tb->root_switch) { 1483 switch (n->pkg->code) { 1484 case ICM_EVENT_DEVICE_CONNECTED: 1485 icm->device_connected(tb, n->pkg); 1486 break; 1487 case ICM_EVENT_DEVICE_DISCONNECTED: 1488 icm->device_disconnected(tb, n->pkg); 1489 break; 1490 case ICM_EVENT_XDOMAIN_CONNECTED: 1491 icm->xdomain_connected(tb, n->pkg); 1492 break; 1493 case ICM_EVENT_XDOMAIN_DISCONNECTED: 1494 icm->xdomain_disconnected(tb, n->pkg); 1495 break; 1496 } 1497 } 1498 1499 mutex_unlock(&tb->lock); 1500 1501 kfree(n->pkg); 1502 kfree(n); 1503 } 1504 1505 static void icm_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, 1506 const void *buf, size_t size) 1507 { 1508 struct icm_notification *n; 1509 1510 n = kmalloc(sizeof(*n), GFP_KERNEL); 1511 if (!n) 1512 return; 1513 1514 INIT_WORK(&n->work, icm_handle_notification); 1515 n->pkg = kmemdup(buf, size, GFP_KERNEL); 1516 n->tb = tb; 1517 1518 queue_work(tb->wq, &n->work); 1519 } 1520 1521 static int 1522 __icm_driver_ready(struct tb *tb, enum tb_security_level *security_level, 1523 size_t *nboot_acl, bool *rpm) 1524 { 1525 struct icm *icm = tb_priv(tb); 1526 unsigned int retries = 50; 1527 int ret; 1528 1529 ret = icm->driver_ready(tb, security_level, nboot_acl, rpm); 1530 if (ret) { 1531 tb_err(tb, "failed to send driver ready to ICM\n"); 1532 return ret; 1533 } 1534 1535 /* 1536 * Hold on here until the switch config space is accessible so 1537 * that we can read root switch config successfully. 1538 */ 1539 do { 1540 struct tb_cfg_result res; 1541 u32 tmp; 1542 1543 res = tb_cfg_read_raw(tb->ctl, &tmp, 0, 0, TB_CFG_SWITCH, 1544 0, 1, 100); 1545 if (!res.err) 1546 return 0; 1547 1548 msleep(50); 1549 } while (--retries); 1550 1551 tb_err(tb, "failed to read root switch config space, giving up\n"); 1552 return -ETIMEDOUT; 1553 } 1554 1555 static int icm_firmware_reset(struct tb *tb, struct tb_nhi *nhi) 1556 { 1557 struct icm *icm = tb_priv(tb); 1558 u32 val; 1559 1560 if (!icm->upstream_port) 1561 return -ENODEV; 1562 1563 /* Put ARC to wait for CIO reset event to happen */ 1564 val = ioread32(nhi->iobase + REG_FW_STS); 1565 val |= REG_FW_STS_CIO_RESET_REQ; 1566 iowrite32(val, nhi->iobase + REG_FW_STS); 1567 1568 /* Re-start ARC */ 1569 val = ioread32(nhi->iobase + REG_FW_STS); 1570 val |= REG_FW_STS_ICM_EN_INVERT; 1571 val |= REG_FW_STS_ICM_EN_CPU; 1572 iowrite32(val, nhi->iobase + REG_FW_STS); 1573 1574 /* Trigger CIO reset now */ 1575 return icm->cio_reset(tb); 1576 } 1577 1578 static int icm_firmware_start(struct tb *tb, struct tb_nhi *nhi) 1579 { 1580 unsigned int retries = 10; 1581 int ret; 1582 u32 val; 1583 1584 /* Check if the ICM firmware is already running */ 1585 val = ioread32(nhi->iobase + REG_FW_STS); 1586 if (val & REG_FW_STS_ICM_EN) 1587 return 0; 1588 1589 dev_dbg(&nhi->pdev->dev, "starting ICM firmware\n"); 1590 1591 ret = icm_firmware_reset(tb, nhi); 1592 if (ret) 1593 return ret; 1594 1595 /* Wait until the ICM firmware tells us it is up and running */ 1596 do { 1597 /* Check that the ICM firmware is running */ 1598 val = ioread32(nhi->iobase + REG_FW_STS); 1599 if (val & REG_FW_STS_NVM_AUTH_DONE) 1600 return 0; 1601 1602 msleep(300); 1603 } while (--retries); 1604 1605 return -ETIMEDOUT; 1606 } 1607 1608 static int icm_reset_phy_port(struct tb *tb, int phy_port) 1609 { 1610 struct icm *icm = tb_priv(tb); 1611 u32 state0, state1; 1612 int port0, port1; 1613 u32 val0, val1; 1614 int ret; 1615 1616 if (!icm->upstream_port) 1617 return 0; 1618 1619 if (phy_port) { 1620 port0 = 3; 1621 port1 = 4; 1622 } else { 1623 port0 = 1; 1624 port1 = 2; 1625 } 1626 1627 /* 1628 * Read link status of both null ports belonging to a single 1629 * physical port. 1630 */ 1631 ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0); 1632 if (ret) 1633 return ret; 1634 ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1); 1635 if (ret) 1636 return ret; 1637 1638 state0 = val0 & PHY_PORT_CS1_LINK_STATE_MASK; 1639 state0 >>= PHY_PORT_CS1_LINK_STATE_SHIFT; 1640 state1 = val1 & PHY_PORT_CS1_LINK_STATE_MASK; 1641 state1 >>= PHY_PORT_CS1_LINK_STATE_SHIFT; 1642 1643 /* If they are both up we need to reset them now */ 1644 if (state0 != TB_PORT_UP || state1 != TB_PORT_UP) 1645 return 0; 1646 1647 val0 |= PHY_PORT_CS1_LINK_DISABLE; 1648 ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0); 1649 if (ret) 1650 return ret; 1651 1652 val1 |= PHY_PORT_CS1_LINK_DISABLE; 1653 ret = pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1); 1654 if (ret) 1655 return ret; 1656 1657 /* Wait a bit and then re-enable both ports */ 1658 usleep_range(10, 100); 1659 1660 ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0); 1661 if (ret) 1662 return ret; 1663 ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1); 1664 if (ret) 1665 return ret; 1666 1667 val0 &= ~PHY_PORT_CS1_LINK_DISABLE; 1668 ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0); 1669 if (ret) 1670 return ret; 1671 1672 val1 &= ~PHY_PORT_CS1_LINK_DISABLE; 1673 return pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1); 1674 } 1675 1676 static int icm_firmware_init(struct tb *tb) 1677 { 1678 struct icm *icm = tb_priv(tb); 1679 struct tb_nhi *nhi = tb->nhi; 1680 int ret; 1681 1682 ret = icm_firmware_start(tb, nhi); 1683 if (ret) { 1684 dev_err(&nhi->pdev->dev, "could not start ICM firmware\n"); 1685 return ret; 1686 } 1687 1688 if (icm->get_mode) { 1689 ret = icm->get_mode(tb); 1690 1691 switch (ret) { 1692 case NHI_FW_SAFE_MODE: 1693 icm->safe_mode = true; 1694 break; 1695 1696 case NHI_FW_CM_MODE: 1697 /* Ask ICM to accept all Thunderbolt devices */ 1698 nhi_mailbox_cmd(nhi, NHI_MAILBOX_ALLOW_ALL_DEVS, 0); 1699 break; 1700 1701 default: 1702 if (ret < 0) 1703 return ret; 1704 1705 tb_err(tb, "ICM firmware is in wrong mode: %u\n", ret); 1706 return -ENODEV; 1707 } 1708 } 1709 1710 /* 1711 * Reset both physical ports if there is anything connected to 1712 * them already. 1713 */ 1714 ret = icm_reset_phy_port(tb, 0); 1715 if (ret) 1716 dev_warn(&nhi->pdev->dev, "failed to reset links on port0\n"); 1717 ret = icm_reset_phy_port(tb, 1); 1718 if (ret) 1719 dev_warn(&nhi->pdev->dev, "failed to reset links on port1\n"); 1720 1721 return 0; 1722 } 1723 1724 static int icm_driver_ready(struct tb *tb) 1725 { 1726 struct icm *icm = tb_priv(tb); 1727 int ret; 1728 1729 ret = icm_firmware_init(tb); 1730 if (ret) 1731 return ret; 1732 1733 if (icm->safe_mode) { 1734 tb_info(tb, "Thunderbolt host controller is in safe mode.\n"); 1735 tb_info(tb, "You need to update NVM firmware of the controller before it can be used.\n"); 1736 tb_info(tb, "For latest updates check https://thunderbolttechnology.net/updates.\n"); 1737 return 0; 1738 } 1739 1740 ret = __icm_driver_ready(tb, &tb->security_level, &tb->nboot_acl, 1741 &icm->rpm); 1742 if (ret) 1743 return ret; 1744 1745 /* 1746 * Make sure the number of supported preboot ACL matches what we 1747 * expect or disable the whole feature. 1748 */ 1749 if (tb->nboot_acl > icm->max_boot_acl) 1750 tb->nboot_acl = 0; 1751 1752 return 0; 1753 } 1754 1755 static int icm_suspend(struct tb *tb) 1756 { 1757 struct icm *icm = tb_priv(tb); 1758 1759 if (icm->save_devices) 1760 icm->save_devices(tb); 1761 1762 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0); 1763 return 0; 1764 } 1765 1766 /* 1767 * Mark all switches (except root switch) below this one unplugged. ICM 1768 * firmware will send us an updated list of switches after we have send 1769 * it driver ready command. If a switch is not in that list it will be 1770 * removed when we perform rescan. 1771 */ 1772 static void icm_unplug_children(struct tb_switch *sw) 1773 { 1774 unsigned int i; 1775 1776 if (tb_route(sw)) 1777 sw->is_unplugged = true; 1778 1779 for (i = 1; i <= sw->config.max_port_number; i++) { 1780 struct tb_port *port = &sw->ports[i]; 1781 1782 if (port->xdomain) 1783 port->xdomain->is_unplugged = true; 1784 else if (tb_port_has_remote(port)) 1785 icm_unplug_children(port->remote->sw); 1786 } 1787 } 1788 1789 static int complete_rpm(struct device *dev, void *data) 1790 { 1791 struct tb_switch *sw = tb_to_switch(dev); 1792 1793 if (sw) 1794 complete(&sw->rpm_complete); 1795 return 0; 1796 } 1797 1798 static void remove_unplugged_switch(struct tb_switch *sw) 1799 { 1800 pm_runtime_get_sync(sw->dev.parent); 1801 1802 /* 1803 * Signal this and switches below for rpm_complete because 1804 * tb_switch_remove() calls pm_runtime_get_sync() that then waits 1805 * for it. 1806 */ 1807 complete_rpm(&sw->dev, NULL); 1808 bus_for_each_dev(&tb_bus_type, &sw->dev, NULL, complete_rpm); 1809 tb_switch_remove(sw); 1810 1811 pm_runtime_mark_last_busy(sw->dev.parent); 1812 pm_runtime_put_autosuspend(sw->dev.parent); 1813 } 1814 1815 static void icm_free_unplugged_children(struct tb_switch *sw) 1816 { 1817 unsigned int i; 1818 1819 for (i = 1; i <= sw->config.max_port_number; i++) { 1820 struct tb_port *port = &sw->ports[i]; 1821 1822 if (port->xdomain && port->xdomain->is_unplugged) { 1823 tb_xdomain_remove(port->xdomain); 1824 port->xdomain = NULL; 1825 } else if (tb_port_has_remote(port)) { 1826 if (port->remote->sw->is_unplugged) { 1827 remove_unplugged_switch(port->remote->sw); 1828 port->remote = NULL; 1829 } else { 1830 icm_free_unplugged_children(port->remote->sw); 1831 } 1832 } 1833 } 1834 } 1835 1836 static void icm_rescan_work(struct work_struct *work) 1837 { 1838 struct icm *icm = container_of(work, struct icm, rescan_work.work); 1839 struct tb *tb = icm_to_tb(icm); 1840 1841 mutex_lock(&tb->lock); 1842 if (tb->root_switch) 1843 icm_free_unplugged_children(tb->root_switch); 1844 mutex_unlock(&tb->lock); 1845 } 1846 1847 static void icm_complete(struct tb *tb) 1848 { 1849 struct icm *icm = tb_priv(tb); 1850 1851 if (tb->nhi->going_away) 1852 return; 1853 1854 icm_unplug_children(tb->root_switch); 1855 1856 /* 1857 * Now all existing children should be resumed, start events 1858 * from ICM to get updated status. 1859 */ 1860 __icm_driver_ready(tb, NULL, NULL, NULL); 1861 1862 /* 1863 * We do not get notifications of devices that have been 1864 * unplugged during suspend so schedule rescan to clean them up 1865 * if any. 1866 */ 1867 queue_delayed_work(tb->wq, &icm->rescan_work, msecs_to_jiffies(500)); 1868 } 1869 1870 static int icm_runtime_suspend(struct tb *tb) 1871 { 1872 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0); 1873 return 0; 1874 } 1875 1876 static int icm_runtime_suspend_switch(struct tb_switch *sw) 1877 { 1878 if (tb_route(sw)) 1879 reinit_completion(&sw->rpm_complete); 1880 return 0; 1881 } 1882 1883 static int icm_runtime_resume_switch(struct tb_switch *sw) 1884 { 1885 if (tb_route(sw)) { 1886 if (!wait_for_completion_timeout(&sw->rpm_complete, 1887 msecs_to_jiffies(500))) { 1888 dev_dbg(&sw->dev, "runtime resuming timed out\n"); 1889 } 1890 } 1891 return 0; 1892 } 1893 1894 static int icm_runtime_resume(struct tb *tb) 1895 { 1896 /* 1897 * We can reuse the same resume functionality than with system 1898 * suspend. 1899 */ 1900 icm_complete(tb); 1901 return 0; 1902 } 1903 1904 static int icm_start(struct tb *tb) 1905 { 1906 struct icm *icm = tb_priv(tb); 1907 int ret; 1908 1909 if (icm->safe_mode) 1910 tb->root_switch = tb_switch_alloc_safe_mode(tb, &tb->dev, 0); 1911 else 1912 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); 1913 if (IS_ERR(tb->root_switch)) 1914 return PTR_ERR(tb->root_switch); 1915 1916 /* 1917 * NVM upgrade has not been tested on Apple systems and they 1918 * don't provide images publicly either. To be on the safe side 1919 * prevent root switch NVM upgrade on Macs for now. 1920 */ 1921 tb->root_switch->no_nvm_upgrade = x86_apple_machine; 1922 tb->root_switch->rpm = icm->rpm; 1923 1924 ret = tb_switch_add(tb->root_switch); 1925 if (ret) { 1926 tb_switch_put(tb->root_switch); 1927 tb->root_switch = NULL; 1928 } 1929 1930 return ret; 1931 } 1932 1933 static void icm_stop(struct tb *tb) 1934 { 1935 struct icm *icm = tb_priv(tb); 1936 1937 cancel_delayed_work(&icm->rescan_work); 1938 tb_switch_remove(tb->root_switch); 1939 tb->root_switch = NULL; 1940 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0); 1941 } 1942 1943 static int icm_disconnect_pcie_paths(struct tb *tb) 1944 { 1945 return nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DISCONNECT_PCIE_PATHS, 0); 1946 } 1947 1948 /* Falcon Ridge */ 1949 static const struct tb_cm_ops icm_fr_ops = { 1950 .driver_ready = icm_driver_ready, 1951 .start = icm_start, 1952 .stop = icm_stop, 1953 .suspend = icm_suspend, 1954 .complete = icm_complete, 1955 .handle_event = icm_handle_event, 1956 .approve_switch = icm_fr_approve_switch, 1957 .add_switch_key = icm_fr_add_switch_key, 1958 .challenge_switch_key = icm_fr_challenge_switch_key, 1959 .disconnect_pcie_paths = icm_disconnect_pcie_paths, 1960 .approve_xdomain_paths = icm_fr_approve_xdomain_paths, 1961 .disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths, 1962 }; 1963 1964 /* Alpine Ridge */ 1965 static const struct tb_cm_ops icm_ar_ops = { 1966 .driver_ready = icm_driver_ready, 1967 .start = icm_start, 1968 .stop = icm_stop, 1969 .suspend = icm_suspend, 1970 .complete = icm_complete, 1971 .runtime_suspend = icm_runtime_suspend, 1972 .runtime_resume = icm_runtime_resume, 1973 .runtime_suspend_switch = icm_runtime_suspend_switch, 1974 .runtime_resume_switch = icm_runtime_resume_switch, 1975 .handle_event = icm_handle_event, 1976 .get_boot_acl = icm_ar_get_boot_acl, 1977 .set_boot_acl = icm_ar_set_boot_acl, 1978 .approve_switch = icm_fr_approve_switch, 1979 .add_switch_key = icm_fr_add_switch_key, 1980 .challenge_switch_key = icm_fr_challenge_switch_key, 1981 .disconnect_pcie_paths = icm_disconnect_pcie_paths, 1982 .approve_xdomain_paths = icm_fr_approve_xdomain_paths, 1983 .disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths, 1984 }; 1985 1986 /* Titan Ridge */ 1987 static const struct tb_cm_ops icm_tr_ops = { 1988 .driver_ready = icm_driver_ready, 1989 .start = icm_start, 1990 .stop = icm_stop, 1991 .suspend = icm_suspend, 1992 .complete = icm_complete, 1993 .runtime_suspend = icm_runtime_suspend, 1994 .runtime_resume = icm_runtime_resume, 1995 .runtime_suspend_switch = icm_runtime_suspend_switch, 1996 .runtime_resume_switch = icm_runtime_resume_switch, 1997 .handle_event = icm_handle_event, 1998 .get_boot_acl = icm_ar_get_boot_acl, 1999 .set_boot_acl = icm_ar_set_boot_acl, 2000 .approve_switch = icm_tr_approve_switch, 2001 .add_switch_key = icm_tr_add_switch_key, 2002 .challenge_switch_key = icm_tr_challenge_switch_key, 2003 .disconnect_pcie_paths = icm_disconnect_pcie_paths, 2004 .approve_xdomain_paths = icm_tr_approve_xdomain_paths, 2005 .disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths, 2006 }; 2007 2008 struct tb *icm_probe(struct tb_nhi *nhi) 2009 { 2010 struct icm *icm; 2011 struct tb *tb; 2012 2013 tb = tb_domain_alloc(nhi, sizeof(struct icm)); 2014 if (!tb) 2015 return NULL; 2016 2017 icm = tb_priv(tb); 2018 INIT_DELAYED_WORK(&icm->rescan_work, icm_rescan_work); 2019 mutex_init(&icm->request_lock); 2020 2021 switch (nhi->pdev->device) { 2022 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 2023 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 2024 icm->is_supported = icm_fr_is_supported; 2025 icm->get_route = icm_fr_get_route; 2026 icm->save_devices = icm_fr_save_devices; 2027 icm->driver_ready = icm_fr_driver_ready; 2028 icm->device_connected = icm_fr_device_connected; 2029 icm->device_disconnected = icm_fr_device_disconnected; 2030 icm->xdomain_connected = icm_fr_xdomain_connected; 2031 icm->xdomain_disconnected = icm_fr_xdomain_disconnected; 2032 tb->cm_ops = &icm_fr_ops; 2033 break; 2034 2035 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI: 2036 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI: 2037 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI: 2038 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI: 2039 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI: 2040 icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES; 2041 icm->is_supported = icm_ar_is_supported; 2042 icm->cio_reset = icm_ar_cio_reset; 2043 icm->get_mode = icm_ar_get_mode; 2044 icm->get_route = icm_ar_get_route; 2045 icm->save_devices = icm_fr_save_devices; 2046 icm->driver_ready = icm_ar_driver_ready; 2047 icm->device_connected = icm_fr_device_connected; 2048 icm->device_disconnected = icm_fr_device_disconnected; 2049 icm->xdomain_connected = icm_fr_xdomain_connected; 2050 icm->xdomain_disconnected = icm_fr_xdomain_disconnected; 2051 tb->cm_ops = &icm_ar_ops; 2052 break; 2053 2054 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI: 2055 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI: 2056 icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES; 2057 icm->is_supported = icm_ar_is_supported; 2058 icm->cio_reset = icm_tr_cio_reset; 2059 icm->get_mode = icm_ar_get_mode; 2060 icm->driver_ready = icm_tr_driver_ready; 2061 icm->device_connected = icm_tr_device_connected; 2062 icm->device_disconnected = icm_tr_device_disconnected; 2063 icm->xdomain_connected = icm_tr_xdomain_connected; 2064 icm->xdomain_disconnected = icm_tr_xdomain_disconnected; 2065 tb->cm_ops = &icm_tr_ops; 2066 break; 2067 } 2068 2069 if (!icm->is_supported || !icm->is_supported(tb)) { 2070 dev_dbg(&nhi->pdev->dev, "ICM not supported on this controller\n"); 2071 tb_domain_put(tb); 2072 return NULL; 2073 } 2074 2075 return tb; 2076 } 2077