1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Internal Thunderbolt Connection Manager. This is a firmware running on 4 * the Thunderbolt host controller performing most of the low-level 5 * handling. 6 * 7 * Copyright (C) 2017, Intel Corporation 8 * Authors: Michael Jamet <michael.jamet@intel.com> 9 * Mika Westerberg <mika.westerberg@linux.intel.com> 10 */ 11 12 #include <linux/delay.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/pci.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/platform_data/x86/apple.h> 18 #include <linux/sizes.h> 19 #include <linux/slab.h> 20 #include <linux/workqueue.h> 21 22 #include "ctl.h" 23 #include "nhi_regs.h" 24 #include "tb.h" 25 26 #define PCIE2CIO_CMD 0x30 27 #define PCIE2CIO_CMD_TIMEOUT BIT(31) 28 #define PCIE2CIO_CMD_START BIT(30) 29 #define PCIE2CIO_CMD_WRITE BIT(21) 30 #define PCIE2CIO_CMD_CS_MASK GENMASK(20, 19) 31 #define PCIE2CIO_CMD_CS_SHIFT 19 32 #define PCIE2CIO_CMD_PORT_MASK GENMASK(18, 13) 33 #define PCIE2CIO_CMD_PORT_SHIFT 13 34 35 #define PCIE2CIO_WRDATA 0x34 36 #define PCIE2CIO_RDDATA 0x38 37 38 #define PHY_PORT_CS1 0x37 39 #define PHY_PORT_CS1_LINK_DISABLE BIT(14) 40 #define PHY_PORT_CS1_LINK_STATE_MASK GENMASK(29, 26) 41 #define PHY_PORT_CS1_LINK_STATE_SHIFT 26 42 43 #define ICM_TIMEOUT 5000 /* ms */ 44 #define ICM_APPROVE_TIMEOUT 10000 /* ms */ 45 #define ICM_MAX_LINK 4 46 47 static bool start_icm; 48 module_param(start_icm, bool, 0444); 49 MODULE_PARM_DESC(start_icm, "start ICM firmware if it is not running (default: false)"); 50 51 /** 52 * struct usb4_switch_nvm_auth - Holds USB4 NVM_AUTH status 53 * @reply: Reply from ICM firmware is placed here 54 * @request: Request that is sent to ICM firmware 55 * @icm: Pointer to ICM private data 56 */ 57 struct usb4_switch_nvm_auth { 58 struct icm_usb4_switch_op_response reply; 59 struct icm_usb4_switch_op request; 60 struct icm *icm; 61 }; 62 63 /** 64 * struct icm - Internal connection manager private data 65 * @request_lock: Makes sure only one message is send to ICM at time 66 * @rescan_work: Work used to rescan the surviving switches after resume 67 * @upstream_port: Pointer to the PCIe upstream port this host 68 * controller is connected. This is only set for systems 69 * where ICM needs to be started manually 70 * @vnd_cap: Vendor defined capability where PCIe2CIO mailbox resides 71 * (only set when @upstream_port is not %NULL) 72 * @safe_mode: ICM is in safe mode 73 * @max_boot_acl: Maximum number of preboot ACL entries (%0 if not supported) 74 * @rpm: Does the controller support runtime PM (RTD3) 75 * @can_upgrade_nvm: Can the NVM firmware be upgrade on this controller 76 * @proto_version: Firmware protocol version 77 * @last_nvm_auth: Last USB4 router NVM_AUTH result (or %NULL if not set) 78 * @veto: Is RTD3 veto in effect 79 * @is_supported: Checks if we can support ICM on this controller 80 * @cio_reset: Trigger CIO reset 81 * @get_mode: Read and return the ICM firmware mode (optional) 82 * @get_route: Find a route string for given switch 83 * @save_devices: Ask ICM to save devices to ACL when suspending (optional) 84 * @driver_ready: Send driver ready message to ICM 85 * @set_uuid: Set UUID for the root switch (optional) 86 * @device_connected: Handle device connected ICM message 87 * @device_disconnected: Handle device disconnected ICM message 88 * @xdomain_connected: Handle XDomain connected ICM message 89 * @xdomain_disconnected: Handle XDomain disconnected ICM message 90 * @rtd3_veto: Handle RTD3 veto notification ICM message 91 */ 92 struct icm { 93 struct mutex request_lock; 94 struct delayed_work rescan_work; 95 struct pci_dev *upstream_port; 96 int vnd_cap; 97 bool safe_mode; 98 size_t max_boot_acl; 99 bool rpm; 100 bool can_upgrade_nvm; 101 u8 proto_version; 102 struct usb4_switch_nvm_auth *last_nvm_auth; 103 bool veto; 104 bool (*is_supported)(struct tb *tb); 105 int (*cio_reset)(struct tb *tb); 106 int (*get_mode)(struct tb *tb); 107 int (*get_route)(struct tb *tb, u8 link, u8 depth, u64 *route); 108 void (*save_devices)(struct tb *tb); 109 int (*driver_ready)(struct tb *tb, 110 enum tb_security_level *security_level, 111 u8 *proto_version, size_t *nboot_acl, bool *rpm); 112 void (*set_uuid)(struct tb *tb); 113 void (*device_connected)(struct tb *tb, 114 const struct icm_pkg_header *hdr); 115 void (*device_disconnected)(struct tb *tb, 116 const struct icm_pkg_header *hdr); 117 void (*xdomain_connected)(struct tb *tb, 118 const struct icm_pkg_header *hdr); 119 void (*xdomain_disconnected)(struct tb *tb, 120 const struct icm_pkg_header *hdr); 121 void (*rtd3_veto)(struct tb *tb, const struct icm_pkg_header *hdr); 122 }; 123 124 struct icm_notification { 125 struct work_struct work; 126 struct icm_pkg_header *pkg; 127 struct tb *tb; 128 }; 129 130 struct ep_name_entry { 131 u8 len; 132 u8 type; 133 u8 data[]; 134 }; 135 136 #define EP_NAME_INTEL_VSS 0x10 137 138 /* Intel Vendor specific structure */ 139 struct intel_vss { 140 u16 vendor; 141 u16 model; 142 u8 mc; 143 u8 flags; 144 u16 pci_devid; 145 u32 nvm_version; 146 }; 147 148 #define INTEL_VSS_FLAGS_RTD3 BIT(0) 149 150 static const struct intel_vss *parse_intel_vss(const void *ep_name, size_t size) 151 { 152 const void *end = ep_name + size; 153 154 while (ep_name < end) { 155 const struct ep_name_entry *ep = ep_name; 156 157 if (!ep->len) 158 break; 159 if (ep_name + ep->len > end) 160 break; 161 162 if (ep->type == EP_NAME_INTEL_VSS) 163 return (const struct intel_vss *)ep->data; 164 165 ep_name += ep->len; 166 } 167 168 return NULL; 169 } 170 171 static bool intel_vss_is_rtd3(const void *ep_name, size_t size) 172 { 173 const struct intel_vss *vss; 174 175 vss = parse_intel_vss(ep_name, size); 176 if (vss) 177 return !!(vss->flags & INTEL_VSS_FLAGS_RTD3); 178 179 return false; 180 } 181 182 static inline struct tb *icm_to_tb(struct icm *icm) 183 { 184 return ((void *)icm - sizeof(struct tb)); 185 } 186 187 static inline u8 phy_port_from_route(u64 route, u8 depth) 188 { 189 u8 link; 190 191 link = depth ? route >> ((depth - 1) * 8) : route; 192 return tb_phy_port_from_link(link); 193 } 194 195 static inline u8 dual_link_from_link(u8 link) 196 { 197 return link ? ((link - 1) ^ 0x01) + 1 : 0; 198 } 199 200 static inline u64 get_route(u32 route_hi, u32 route_lo) 201 { 202 return (u64)route_hi << 32 | route_lo; 203 } 204 205 static inline u64 get_parent_route(u64 route) 206 { 207 int depth = tb_route_length(route); 208 return depth ? route & ~(0xffULL << (depth - 1) * TB_ROUTE_SHIFT) : 0; 209 } 210 211 static int pci2cio_wait_completion(struct icm *icm, unsigned long timeout_msec) 212 { 213 unsigned long end = jiffies + msecs_to_jiffies(timeout_msec); 214 u32 cmd; 215 216 do { 217 pci_read_config_dword(icm->upstream_port, 218 icm->vnd_cap + PCIE2CIO_CMD, &cmd); 219 if (!(cmd & PCIE2CIO_CMD_START)) { 220 if (cmd & PCIE2CIO_CMD_TIMEOUT) 221 break; 222 return 0; 223 } 224 225 msleep(50); 226 } while (time_before(jiffies, end)); 227 228 return -ETIMEDOUT; 229 } 230 231 static int pcie2cio_read(struct icm *icm, enum tb_cfg_space cs, 232 unsigned int port, unsigned int index, u32 *data) 233 { 234 struct pci_dev *pdev = icm->upstream_port; 235 int ret, vnd_cap = icm->vnd_cap; 236 u32 cmd; 237 238 cmd = index; 239 cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK; 240 cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK; 241 cmd |= PCIE2CIO_CMD_START; 242 pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd); 243 244 ret = pci2cio_wait_completion(icm, 5000); 245 if (ret) 246 return ret; 247 248 pci_read_config_dword(pdev, vnd_cap + PCIE2CIO_RDDATA, data); 249 return 0; 250 } 251 252 static int pcie2cio_write(struct icm *icm, enum tb_cfg_space cs, 253 unsigned int port, unsigned int index, u32 data) 254 { 255 struct pci_dev *pdev = icm->upstream_port; 256 int vnd_cap = icm->vnd_cap; 257 u32 cmd; 258 259 pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_WRDATA, data); 260 261 cmd = index; 262 cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK; 263 cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK; 264 cmd |= PCIE2CIO_CMD_WRITE | PCIE2CIO_CMD_START; 265 pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd); 266 267 return pci2cio_wait_completion(icm, 5000); 268 } 269 270 static bool icm_match(const struct tb_cfg_request *req, 271 const struct ctl_pkg *pkg) 272 { 273 const struct icm_pkg_header *res_hdr = pkg->buffer; 274 const struct icm_pkg_header *req_hdr = req->request; 275 276 if (pkg->frame.eof != req->response_type) 277 return false; 278 if (res_hdr->code != req_hdr->code) 279 return false; 280 281 return true; 282 } 283 284 static bool icm_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg) 285 { 286 const struct icm_pkg_header *hdr = pkg->buffer; 287 288 if (hdr->packet_id < req->npackets) { 289 size_t offset = hdr->packet_id * req->response_size; 290 291 memcpy(req->response + offset, pkg->buffer, req->response_size); 292 } 293 294 return hdr->packet_id == hdr->total_packets - 1; 295 } 296 297 static int icm_request(struct tb *tb, const void *request, size_t request_size, 298 void *response, size_t response_size, size_t npackets, 299 unsigned int timeout_msec) 300 { 301 struct icm *icm = tb_priv(tb); 302 int retries = 3; 303 304 do { 305 struct tb_cfg_request *req; 306 struct tb_cfg_result res; 307 308 req = tb_cfg_request_alloc(); 309 if (!req) 310 return -ENOMEM; 311 312 req->match = icm_match; 313 req->copy = icm_copy; 314 req->request = request; 315 req->request_size = request_size; 316 req->request_type = TB_CFG_PKG_ICM_CMD; 317 req->response = response; 318 req->npackets = npackets; 319 req->response_size = response_size; 320 req->response_type = TB_CFG_PKG_ICM_RESP; 321 322 mutex_lock(&icm->request_lock); 323 res = tb_cfg_request_sync(tb->ctl, req, timeout_msec); 324 mutex_unlock(&icm->request_lock); 325 326 tb_cfg_request_put(req); 327 328 if (res.err != -ETIMEDOUT) 329 return res.err == 1 ? -EIO : res.err; 330 331 usleep_range(20, 50); 332 } while (retries--); 333 334 return -ETIMEDOUT; 335 } 336 337 /* 338 * If rescan is queued to run (we are resuming), postpone it to give the 339 * firmware some more time to send device connected notifications for next 340 * devices in the chain. 341 */ 342 static void icm_postpone_rescan(struct tb *tb) 343 { 344 struct icm *icm = tb_priv(tb); 345 346 if (delayed_work_pending(&icm->rescan_work)) 347 mod_delayed_work(tb->wq, &icm->rescan_work, 348 msecs_to_jiffies(500)); 349 } 350 351 static void icm_veto_begin(struct tb *tb) 352 { 353 struct icm *icm = tb_priv(tb); 354 355 if (!icm->veto) { 356 icm->veto = true; 357 /* Keep the domain powered while veto is in effect */ 358 pm_runtime_get(&tb->dev); 359 } 360 } 361 362 static void icm_veto_end(struct tb *tb) 363 { 364 struct icm *icm = tb_priv(tb); 365 366 if (icm->veto) { 367 icm->veto = false; 368 /* Allow the domain suspend now */ 369 pm_runtime_mark_last_busy(&tb->dev); 370 pm_runtime_put_autosuspend(&tb->dev); 371 } 372 } 373 374 static bool icm_firmware_running(const struct tb_nhi *nhi) 375 { 376 u32 val; 377 378 val = ioread32(nhi->iobase + REG_FW_STS); 379 return !!(val & REG_FW_STS_ICM_EN); 380 } 381 382 static bool icm_fr_is_supported(struct tb *tb) 383 { 384 return !x86_apple_machine; 385 } 386 387 static inline int icm_fr_get_switch_index(u32 port) 388 { 389 int index; 390 391 if ((port & ICM_PORT_TYPE_MASK) != TB_TYPE_PORT) 392 return 0; 393 394 index = port >> ICM_PORT_INDEX_SHIFT; 395 return index != 0xff ? index : 0; 396 } 397 398 static int icm_fr_get_route(struct tb *tb, u8 link, u8 depth, u64 *route) 399 { 400 struct icm_fr_pkg_get_topology_response *switches, *sw; 401 struct icm_fr_pkg_get_topology request = { 402 .hdr = { .code = ICM_GET_TOPOLOGY }, 403 }; 404 size_t npackets = ICM_GET_TOPOLOGY_PACKETS; 405 int ret, index; 406 u8 i; 407 408 switches = kcalloc(npackets, sizeof(*switches), GFP_KERNEL); 409 if (!switches) 410 return -ENOMEM; 411 412 ret = icm_request(tb, &request, sizeof(request), switches, 413 sizeof(*switches), npackets, ICM_TIMEOUT); 414 if (ret) 415 goto err_free; 416 417 sw = &switches[0]; 418 index = icm_fr_get_switch_index(sw->ports[link]); 419 if (!index) { 420 ret = -ENODEV; 421 goto err_free; 422 } 423 424 sw = &switches[index]; 425 for (i = 1; i < depth; i++) { 426 unsigned int j; 427 428 if (!(sw->first_data & ICM_SWITCH_USED)) { 429 ret = -ENODEV; 430 goto err_free; 431 } 432 433 for (j = 0; j < ARRAY_SIZE(sw->ports); j++) { 434 index = icm_fr_get_switch_index(sw->ports[j]); 435 if (index > sw->switch_index) { 436 sw = &switches[index]; 437 break; 438 } 439 } 440 } 441 442 *route = get_route(sw->route_hi, sw->route_lo); 443 444 err_free: 445 kfree(switches); 446 return ret; 447 } 448 449 static void icm_fr_save_devices(struct tb *tb) 450 { 451 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_SAVE_DEVS, 0); 452 } 453 454 static int 455 icm_fr_driver_ready(struct tb *tb, enum tb_security_level *security_level, 456 u8 *proto_version, size_t *nboot_acl, bool *rpm) 457 { 458 struct icm_fr_pkg_driver_ready_response reply; 459 struct icm_pkg_driver_ready request = { 460 .hdr.code = ICM_DRIVER_READY, 461 }; 462 int ret; 463 464 memset(&reply, 0, sizeof(reply)); 465 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 466 1, ICM_TIMEOUT); 467 if (ret) 468 return ret; 469 470 if (security_level) 471 *security_level = reply.security_level & ICM_FR_SLEVEL_MASK; 472 473 return 0; 474 } 475 476 static int icm_fr_approve_switch(struct tb *tb, struct tb_switch *sw) 477 { 478 struct icm_fr_pkg_approve_device request; 479 struct icm_fr_pkg_approve_device reply; 480 int ret; 481 482 memset(&request, 0, sizeof(request)); 483 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 484 request.hdr.code = ICM_APPROVE_DEVICE; 485 request.connection_id = sw->connection_id; 486 request.connection_key = sw->connection_key; 487 488 memset(&reply, 0, sizeof(reply)); 489 /* Use larger timeout as establishing tunnels can take some time */ 490 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 491 1, ICM_APPROVE_TIMEOUT); 492 if (ret) 493 return ret; 494 495 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 496 tb_warn(tb, "PCIe tunnel creation failed\n"); 497 return -EIO; 498 } 499 500 return 0; 501 } 502 503 static int icm_fr_add_switch_key(struct tb *tb, struct tb_switch *sw) 504 { 505 struct icm_fr_pkg_add_device_key request; 506 struct icm_fr_pkg_add_device_key_response reply; 507 int ret; 508 509 memset(&request, 0, sizeof(request)); 510 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 511 request.hdr.code = ICM_ADD_DEVICE_KEY; 512 request.connection_id = sw->connection_id; 513 request.connection_key = sw->connection_key; 514 memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE); 515 516 memset(&reply, 0, sizeof(reply)); 517 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 518 1, ICM_TIMEOUT); 519 if (ret) 520 return ret; 521 522 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 523 tb_warn(tb, "Adding key to switch failed\n"); 524 return -EIO; 525 } 526 527 return 0; 528 } 529 530 static int icm_fr_challenge_switch_key(struct tb *tb, struct tb_switch *sw, 531 const u8 *challenge, u8 *response) 532 { 533 struct icm_fr_pkg_challenge_device request; 534 struct icm_fr_pkg_challenge_device_response reply; 535 int ret; 536 537 memset(&request, 0, sizeof(request)); 538 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 539 request.hdr.code = ICM_CHALLENGE_DEVICE; 540 request.connection_id = sw->connection_id; 541 request.connection_key = sw->connection_key; 542 memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE); 543 544 memset(&reply, 0, sizeof(reply)); 545 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 546 1, ICM_TIMEOUT); 547 if (ret) 548 return ret; 549 550 if (reply.hdr.flags & ICM_FLAGS_ERROR) 551 return -EKEYREJECTED; 552 if (reply.hdr.flags & ICM_FLAGS_NO_KEY) 553 return -ENOKEY; 554 555 memcpy(response, reply.response, TB_SWITCH_KEY_SIZE); 556 557 return 0; 558 } 559 560 static int icm_fr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 561 { 562 struct icm_fr_pkg_approve_xdomain_response reply; 563 struct icm_fr_pkg_approve_xdomain request; 564 int ret; 565 566 memset(&request, 0, sizeof(request)); 567 request.hdr.code = ICM_APPROVE_XDOMAIN; 568 request.link_info = xd->depth << ICM_LINK_INFO_DEPTH_SHIFT | xd->link; 569 memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid)); 570 571 request.transmit_path = xd->transmit_path; 572 request.transmit_ring = xd->transmit_ring; 573 request.receive_path = xd->receive_path; 574 request.receive_ring = xd->receive_ring; 575 576 memset(&reply, 0, sizeof(reply)); 577 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 578 1, ICM_TIMEOUT); 579 if (ret) 580 return ret; 581 582 if (reply.hdr.flags & ICM_FLAGS_ERROR) 583 return -EIO; 584 585 return 0; 586 } 587 588 static int icm_fr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 589 { 590 u8 phy_port; 591 u8 cmd; 592 593 phy_port = tb_phy_port_from_link(xd->link); 594 if (phy_port == 0) 595 cmd = NHI_MAILBOX_DISCONNECT_PA; 596 else 597 cmd = NHI_MAILBOX_DISCONNECT_PB; 598 599 nhi_mailbox_cmd(tb->nhi, cmd, 1); 600 usleep_range(10, 50); 601 nhi_mailbox_cmd(tb->nhi, cmd, 2); 602 return 0; 603 } 604 605 static struct tb_switch *alloc_switch(struct tb_switch *parent_sw, u64 route, 606 const uuid_t *uuid) 607 { 608 struct tb *tb = parent_sw->tb; 609 struct tb_switch *sw; 610 611 sw = tb_switch_alloc(tb, &parent_sw->dev, route); 612 if (IS_ERR(sw)) { 613 tb_warn(tb, "failed to allocate switch at %llx\n", route); 614 return sw; 615 } 616 617 sw->uuid = kmemdup(uuid, sizeof(*uuid), GFP_KERNEL); 618 if (!sw->uuid) { 619 tb_switch_put(sw); 620 return ERR_PTR(-ENOMEM); 621 } 622 623 init_completion(&sw->rpm_complete); 624 return sw; 625 } 626 627 static int add_switch(struct tb_switch *parent_sw, struct tb_switch *sw) 628 { 629 u64 route = tb_route(sw); 630 int ret; 631 632 /* Link the two switches now */ 633 tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw); 634 tb_upstream_port(sw)->remote = tb_port_at(route, parent_sw); 635 636 ret = tb_switch_add(sw); 637 if (ret) 638 tb_port_at(tb_route(sw), parent_sw)->remote = NULL; 639 640 return ret; 641 } 642 643 static void update_switch(struct tb_switch *parent_sw, struct tb_switch *sw, 644 u64 route, u8 connection_id, u8 connection_key, 645 u8 link, u8 depth, bool boot) 646 { 647 /* Disconnect from parent */ 648 tb_port_at(tb_route(sw), parent_sw)->remote = NULL; 649 /* Re-connect via updated port*/ 650 tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw); 651 652 /* Update with the new addressing information */ 653 sw->config.route_hi = upper_32_bits(route); 654 sw->config.route_lo = lower_32_bits(route); 655 sw->connection_id = connection_id; 656 sw->connection_key = connection_key; 657 sw->link = link; 658 sw->depth = depth; 659 sw->boot = boot; 660 661 /* This switch still exists */ 662 sw->is_unplugged = false; 663 664 /* Runtime resume is now complete */ 665 complete(&sw->rpm_complete); 666 } 667 668 static void remove_switch(struct tb_switch *sw) 669 { 670 struct tb_switch *parent_sw; 671 672 parent_sw = tb_to_switch(sw->dev.parent); 673 tb_port_at(tb_route(sw), parent_sw)->remote = NULL; 674 tb_switch_remove(sw); 675 } 676 677 static void add_xdomain(struct tb_switch *sw, u64 route, 678 const uuid_t *local_uuid, const uuid_t *remote_uuid, 679 u8 link, u8 depth) 680 { 681 struct tb_xdomain *xd; 682 683 pm_runtime_get_sync(&sw->dev); 684 685 xd = tb_xdomain_alloc(sw->tb, &sw->dev, route, local_uuid, remote_uuid); 686 if (!xd) 687 goto out; 688 689 xd->link = link; 690 xd->depth = depth; 691 692 tb_port_at(route, sw)->xdomain = xd; 693 694 tb_xdomain_add(xd); 695 696 out: 697 pm_runtime_mark_last_busy(&sw->dev); 698 pm_runtime_put_autosuspend(&sw->dev); 699 } 700 701 static void update_xdomain(struct tb_xdomain *xd, u64 route, u8 link) 702 { 703 xd->link = link; 704 xd->route = route; 705 xd->is_unplugged = false; 706 } 707 708 static void remove_xdomain(struct tb_xdomain *xd) 709 { 710 struct tb_switch *sw; 711 712 sw = tb_to_switch(xd->dev.parent); 713 tb_port_at(xd->route, sw)->xdomain = NULL; 714 tb_xdomain_remove(xd); 715 } 716 717 static void 718 icm_fr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr) 719 { 720 const struct icm_fr_event_device_connected *pkg = 721 (const struct icm_fr_event_device_connected *)hdr; 722 enum tb_security_level security_level; 723 struct tb_switch *sw, *parent_sw; 724 bool boot, dual_lane, speed_gen3; 725 struct icm *icm = tb_priv(tb); 726 bool authorized = false; 727 struct tb_xdomain *xd; 728 u8 link, depth; 729 u64 route; 730 int ret; 731 732 icm_postpone_rescan(tb); 733 734 link = pkg->link_info & ICM_LINK_INFO_LINK_MASK; 735 depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >> 736 ICM_LINK_INFO_DEPTH_SHIFT; 737 authorized = pkg->link_info & ICM_LINK_INFO_APPROVED; 738 security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >> 739 ICM_FLAGS_SLEVEL_SHIFT; 740 boot = pkg->link_info & ICM_LINK_INFO_BOOT; 741 dual_lane = pkg->hdr.flags & ICM_FLAGS_DUAL_LANE; 742 speed_gen3 = pkg->hdr.flags & ICM_FLAGS_SPEED_GEN3; 743 744 if (pkg->link_info & ICM_LINK_INFO_REJECTED) { 745 tb_info(tb, "switch at %u.%u was rejected by ICM firmware because topology limit exceeded\n", 746 link, depth); 747 return; 748 } 749 750 sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid); 751 if (sw) { 752 u8 phy_port, sw_phy_port; 753 754 parent_sw = tb_to_switch(sw->dev.parent); 755 sw_phy_port = tb_phy_port_from_link(sw->link); 756 phy_port = tb_phy_port_from_link(link); 757 758 /* 759 * On resume ICM will send us connected events for the 760 * devices that still are present. However, that 761 * information might have changed for example by the 762 * fact that a switch on a dual-link connection might 763 * have been enumerated using the other link now. Make 764 * sure our book keeping matches that. 765 */ 766 if (sw->depth == depth && sw_phy_port == phy_port && 767 !!sw->authorized == authorized) { 768 /* 769 * It was enumerated through another link so update 770 * route string accordingly. 771 */ 772 if (sw->link != link) { 773 ret = icm->get_route(tb, link, depth, &route); 774 if (ret) { 775 tb_err(tb, "failed to update route string for switch at %u.%u\n", 776 link, depth); 777 tb_switch_put(sw); 778 return; 779 } 780 } else { 781 route = tb_route(sw); 782 } 783 784 update_switch(parent_sw, sw, route, pkg->connection_id, 785 pkg->connection_key, link, depth, boot); 786 tb_switch_put(sw); 787 return; 788 } 789 790 /* 791 * User connected the same switch to another physical 792 * port or to another part of the topology. Remove the 793 * existing switch now before adding the new one. 794 */ 795 remove_switch(sw); 796 tb_switch_put(sw); 797 } 798 799 /* 800 * If the switch was not found by UUID, look for a switch on 801 * same physical port (taking possible link aggregation into 802 * account) and depth. If we found one it is definitely a stale 803 * one so remove it first. 804 */ 805 sw = tb_switch_find_by_link_depth(tb, link, depth); 806 if (!sw) { 807 u8 dual_link; 808 809 dual_link = dual_link_from_link(link); 810 if (dual_link) 811 sw = tb_switch_find_by_link_depth(tb, dual_link, depth); 812 } 813 if (sw) { 814 remove_switch(sw); 815 tb_switch_put(sw); 816 } 817 818 /* Remove existing XDomain connection if found */ 819 xd = tb_xdomain_find_by_link_depth(tb, link, depth); 820 if (xd) { 821 remove_xdomain(xd); 822 tb_xdomain_put(xd); 823 } 824 825 parent_sw = tb_switch_find_by_link_depth(tb, link, depth - 1); 826 if (!parent_sw) { 827 tb_err(tb, "failed to find parent switch for %u.%u\n", 828 link, depth); 829 return; 830 } 831 832 ret = icm->get_route(tb, link, depth, &route); 833 if (ret) { 834 tb_err(tb, "failed to find route string for switch at %u.%u\n", 835 link, depth); 836 tb_switch_put(parent_sw); 837 return; 838 } 839 840 pm_runtime_get_sync(&parent_sw->dev); 841 842 sw = alloc_switch(parent_sw, route, &pkg->ep_uuid); 843 if (!IS_ERR(sw)) { 844 sw->connection_id = pkg->connection_id; 845 sw->connection_key = pkg->connection_key; 846 sw->link = link; 847 sw->depth = depth; 848 sw->authorized = authorized; 849 sw->security_level = security_level; 850 sw->boot = boot; 851 sw->link_speed = speed_gen3 ? 20 : 10; 852 sw->link_width = dual_lane ? 2 : 1; 853 sw->rpm = intel_vss_is_rtd3(pkg->ep_name, sizeof(pkg->ep_name)); 854 855 if (add_switch(parent_sw, sw)) 856 tb_switch_put(sw); 857 } 858 859 pm_runtime_mark_last_busy(&parent_sw->dev); 860 pm_runtime_put_autosuspend(&parent_sw->dev); 861 862 tb_switch_put(parent_sw); 863 } 864 865 static void 866 icm_fr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 867 { 868 const struct icm_fr_event_device_disconnected *pkg = 869 (const struct icm_fr_event_device_disconnected *)hdr; 870 struct tb_switch *sw; 871 u8 link, depth; 872 873 link = pkg->link_info & ICM_LINK_INFO_LINK_MASK; 874 depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >> 875 ICM_LINK_INFO_DEPTH_SHIFT; 876 877 if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) { 878 tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth); 879 return; 880 } 881 882 sw = tb_switch_find_by_link_depth(tb, link, depth); 883 if (!sw) { 884 tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link, 885 depth); 886 return; 887 } 888 889 pm_runtime_get_sync(sw->dev.parent); 890 891 remove_switch(sw); 892 893 pm_runtime_mark_last_busy(sw->dev.parent); 894 pm_runtime_put_autosuspend(sw->dev.parent); 895 896 tb_switch_put(sw); 897 } 898 899 static void 900 icm_fr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr) 901 { 902 const struct icm_fr_event_xdomain_connected *pkg = 903 (const struct icm_fr_event_xdomain_connected *)hdr; 904 struct tb_xdomain *xd; 905 struct tb_switch *sw; 906 u8 link, depth; 907 u64 route; 908 909 link = pkg->link_info & ICM_LINK_INFO_LINK_MASK; 910 depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >> 911 ICM_LINK_INFO_DEPTH_SHIFT; 912 913 if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) { 914 tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth); 915 return; 916 } 917 918 route = get_route(pkg->local_route_hi, pkg->local_route_lo); 919 920 xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid); 921 if (xd) { 922 u8 xd_phy_port, phy_port; 923 924 xd_phy_port = phy_port_from_route(xd->route, xd->depth); 925 phy_port = phy_port_from_route(route, depth); 926 927 if (xd->depth == depth && xd_phy_port == phy_port) { 928 update_xdomain(xd, route, link); 929 tb_xdomain_put(xd); 930 return; 931 } 932 933 /* 934 * If we find an existing XDomain connection remove it 935 * now. We need to go through login handshake and 936 * everything anyway to be able to re-establish the 937 * connection. 938 */ 939 remove_xdomain(xd); 940 tb_xdomain_put(xd); 941 } 942 943 /* 944 * Look if there already exists an XDomain in the same place 945 * than the new one and in that case remove it because it is 946 * most likely another host that got disconnected. 947 */ 948 xd = tb_xdomain_find_by_link_depth(tb, link, depth); 949 if (!xd) { 950 u8 dual_link; 951 952 dual_link = dual_link_from_link(link); 953 if (dual_link) 954 xd = tb_xdomain_find_by_link_depth(tb, dual_link, 955 depth); 956 } 957 if (xd) { 958 remove_xdomain(xd); 959 tb_xdomain_put(xd); 960 } 961 962 /* 963 * If the user disconnected a switch during suspend and 964 * connected another host to the same port, remove the switch 965 * first. 966 */ 967 sw = tb_switch_find_by_route(tb, route); 968 if (sw) { 969 remove_switch(sw); 970 tb_switch_put(sw); 971 } 972 973 sw = tb_switch_find_by_link_depth(tb, link, depth); 974 if (!sw) { 975 tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link, 976 depth); 977 return; 978 } 979 980 add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, link, 981 depth); 982 tb_switch_put(sw); 983 } 984 985 static void 986 icm_fr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 987 { 988 const struct icm_fr_event_xdomain_disconnected *pkg = 989 (const struct icm_fr_event_xdomain_disconnected *)hdr; 990 struct tb_xdomain *xd; 991 992 /* 993 * If the connection is through one or multiple devices, the 994 * XDomain device is removed along with them so it is fine if we 995 * cannot find it here. 996 */ 997 xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid); 998 if (xd) { 999 remove_xdomain(xd); 1000 tb_xdomain_put(xd); 1001 } 1002 } 1003 1004 static int icm_tr_cio_reset(struct tb *tb) 1005 { 1006 return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x777, BIT(1)); 1007 } 1008 1009 static int 1010 icm_tr_driver_ready(struct tb *tb, enum tb_security_level *security_level, 1011 u8 *proto_version, size_t *nboot_acl, bool *rpm) 1012 { 1013 struct icm_tr_pkg_driver_ready_response reply; 1014 struct icm_pkg_driver_ready request = { 1015 .hdr.code = ICM_DRIVER_READY, 1016 }; 1017 int ret; 1018 1019 memset(&reply, 0, sizeof(reply)); 1020 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1021 1, 20000); 1022 if (ret) 1023 return ret; 1024 1025 if (security_level) 1026 *security_level = reply.info & ICM_TR_INFO_SLEVEL_MASK; 1027 if (proto_version) 1028 *proto_version = (reply.info & ICM_TR_INFO_PROTO_VERSION_MASK) >> 1029 ICM_TR_INFO_PROTO_VERSION_SHIFT; 1030 if (nboot_acl) 1031 *nboot_acl = (reply.info & ICM_TR_INFO_BOOT_ACL_MASK) >> 1032 ICM_TR_INFO_BOOT_ACL_SHIFT; 1033 if (rpm) 1034 *rpm = !!(reply.hdr.flags & ICM_TR_FLAGS_RTD3); 1035 1036 return 0; 1037 } 1038 1039 static int icm_tr_approve_switch(struct tb *tb, struct tb_switch *sw) 1040 { 1041 struct icm_tr_pkg_approve_device request; 1042 struct icm_tr_pkg_approve_device reply; 1043 int ret; 1044 1045 memset(&request, 0, sizeof(request)); 1046 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 1047 request.hdr.code = ICM_APPROVE_DEVICE; 1048 request.route_lo = sw->config.route_lo; 1049 request.route_hi = sw->config.route_hi; 1050 request.connection_id = sw->connection_id; 1051 1052 memset(&reply, 0, sizeof(reply)); 1053 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1054 1, ICM_APPROVE_TIMEOUT); 1055 if (ret) 1056 return ret; 1057 1058 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 1059 tb_warn(tb, "PCIe tunnel creation failed\n"); 1060 return -EIO; 1061 } 1062 1063 return 0; 1064 } 1065 1066 static int icm_tr_add_switch_key(struct tb *tb, struct tb_switch *sw) 1067 { 1068 struct icm_tr_pkg_add_device_key_response reply; 1069 struct icm_tr_pkg_add_device_key request; 1070 int ret; 1071 1072 memset(&request, 0, sizeof(request)); 1073 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 1074 request.hdr.code = ICM_ADD_DEVICE_KEY; 1075 request.route_lo = sw->config.route_lo; 1076 request.route_hi = sw->config.route_hi; 1077 request.connection_id = sw->connection_id; 1078 memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE); 1079 1080 memset(&reply, 0, sizeof(reply)); 1081 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1082 1, ICM_TIMEOUT); 1083 if (ret) 1084 return ret; 1085 1086 if (reply.hdr.flags & ICM_FLAGS_ERROR) { 1087 tb_warn(tb, "Adding key to switch failed\n"); 1088 return -EIO; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int icm_tr_challenge_switch_key(struct tb *tb, struct tb_switch *sw, 1095 const u8 *challenge, u8 *response) 1096 { 1097 struct icm_tr_pkg_challenge_device_response reply; 1098 struct icm_tr_pkg_challenge_device request; 1099 int ret; 1100 1101 memset(&request, 0, sizeof(request)); 1102 memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid)); 1103 request.hdr.code = ICM_CHALLENGE_DEVICE; 1104 request.route_lo = sw->config.route_lo; 1105 request.route_hi = sw->config.route_hi; 1106 request.connection_id = sw->connection_id; 1107 memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE); 1108 1109 memset(&reply, 0, sizeof(reply)); 1110 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1111 1, ICM_TIMEOUT); 1112 if (ret) 1113 return ret; 1114 1115 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1116 return -EKEYREJECTED; 1117 if (reply.hdr.flags & ICM_FLAGS_NO_KEY) 1118 return -ENOKEY; 1119 1120 memcpy(response, reply.response, TB_SWITCH_KEY_SIZE); 1121 1122 return 0; 1123 } 1124 1125 static int icm_tr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 1126 { 1127 struct icm_tr_pkg_approve_xdomain_response reply; 1128 struct icm_tr_pkg_approve_xdomain request; 1129 int ret; 1130 1131 memset(&request, 0, sizeof(request)); 1132 request.hdr.code = ICM_APPROVE_XDOMAIN; 1133 request.route_hi = upper_32_bits(xd->route); 1134 request.route_lo = lower_32_bits(xd->route); 1135 request.transmit_path = xd->transmit_path; 1136 request.transmit_ring = xd->transmit_ring; 1137 request.receive_path = xd->receive_path; 1138 request.receive_ring = xd->receive_ring; 1139 memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid)); 1140 1141 memset(&reply, 0, sizeof(reply)); 1142 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1143 1, ICM_TIMEOUT); 1144 if (ret) 1145 return ret; 1146 1147 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1148 return -EIO; 1149 1150 return 0; 1151 } 1152 1153 static int icm_tr_xdomain_tear_down(struct tb *tb, struct tb_xdomain *xd, 1154 int stage) 1155 { 1156 struct icm_tr_pkg_disconnect_xdomain_response reply; 1157 struct icm_tr_pkg_disconnect_xdomain request; 1158 int ret; 1159 1160 memset(&request, 0, sizeof(request)); 1161 request.hdr.code = ICM_DISCONNECT_XDOMAIN; 1162 request.stage = stage; 1163 request.route_hi = upper_32_bits(xd->route); 1164 request.route_lo = lower_32_bits(xd->route); 1165 memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid)); 1166 1167 memset(&reply, 0, sizeof(reply)); 1168 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1169 1, ICM_TIMEOUT); 1170 if (ret) 1171 return ret; 1172 1173 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1174 return -EIO; 1175 1176 return 0; 1177 } 1178 1179 static int icm_tr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd) 1180 { 1181 int ret; 1182 1183 ret = icm_tr_xdomain_tear_down(tb, xd, 1); 1184 if (ret) 1185 return ret; 1186 1187 usleep_range(10, 50); 1188 return icm_tr_xdomain_tear_down(tb, xd, 2); 1189 } 1190 1191 static void 1192 __icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr, 1193 bool force_rtd3) 1194 { 1195 const struct icm_tr_event_device_connected *pkg = 1196 (const struct icm_tr_event_device_connected *)hdr; 1197 bool authorized, boot, dual_lane, speed_gen3; 1198 enum tb_security_level security_level; 1199 struct tb_switch *sw, *parent_sw; 1200 struct tb_xdomain *xd; 1201 u64 route; 1202 1203 icm_postpone_rescan(tb); 1204 1205 /* 1206 * Currently we don't use the QoS information coming with the 1207 * device connected message so simply just ignore that extra 1208 * packet for now. 1209 */ 1210 if (pkg->hdr.packet_id) 1211 return; 1212 1213 route = get_route(pkg->route_hi, pkg->route_lo); 1214 authorized = pkg->link_info & ICM_LINK_INFO_APPROVED; 1215 security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >> 1216 ICM_FLAGS_SLEVEL_SHIFT; 1217 boot = pkg->link_info & ICM_LINK_INFO_BOOT; 1218 dual_lane = pkg->hdr.flags & ICM_FLAGS_DUAL_LANE; 1219 speed_gen3 = pkg->hdr.flags & ICM_FLAGS_SPEED_GEN3; 1220 1221 if (pkg->link_info & ICM_LINK_INFO_REJECTED) { 1222 tb_info(tb, "switch at %llx was rejected by ICM firmware because topology limit exceeded\n", 1223 route); 1224 return; 1225 } 1226 1227 sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid); 1228 if (sw) { 1229 /* Update the switch if it is still in the same place */ 1230 if (tb_route(sw) == route && !!sw->authorized == authorized) { 1231 parent_sw = tb_to_switch(sw->dev.parent); 1232 update_switch(parent_sw, sw, route, pkg->connection_id, 1233 0, 0, 0, boot); 1234 tb_switch_put(sw); 1235 return; 1236 } 1237 1238 remove_switch(sw); 1239 tb_switch_put(sw); 1240 } 1241 1242 /* Another switch with the same address */ 1243 sw = tb_switch_find_by_route(tb, route); 1244 if (sw) { 1245 remove_switch(sw); 1246 tb_switch_put(sw); 1247 } 1248 1249 /* XDomain connection with the same address */ 1250 xd = tb_xdomain_find_by_route(tb, route); 1251 if (xd) { 1252 remove_xdomain(xd); 1253 tb_xdomain_put(xd); 1254 } 1255 1256 parent_sw = tb_switch_find_by_route(tb, get_parent_route(route)); 1257 if (!parent_sw) { 1258 tb_err(tb, "failed to find parent switch for %llx\n", route); 1259 return; 1260 } 1261 1262 pm_runtime_get_sync(&parent_sw->dev); 1263 1264 sw = alloc_switch(parent_sw, route, &pkg->ep_uuid); 1265 if (!IS_ERR(sw)) { 1266 sw->connection_id = pkg->connection_id; 1267 sw->authorized = authorized; 1268 sw->security_level = security_level; 1269 sw->boot = boot; 1270 sw->link_speed = speed_gen3 ? 20 : 10; 1271 sw->link_width = dual_lane ? 2 : 1; 1272 sw->rpm = force_rtd3; 1273 if (!sw->rpm) 1274 sw->rpm = intel_vss_is_rtd3(pkg->ep_name, 1275 sizeof(pkg->ep_name)); 1276 1277 if (add_switch(parent_sw, sw)) 1278 tb_switch_put(sw); 1279 } 1280 1281 pm_runtime_mark_last_busy(&parent_sw->dev); 1282 pm_runtime_put_autosuspend(&parent_sw->dev); 1283 1284 tb_switch_put(parent_sw); 1285 } 1286 1287 static void 1288 icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr) 1289 { 1290 __icm_tr_device_connected(tb, hdr, false); 1291 } 1292 1293 static void 1294 icm_tr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 1295 { 1296 const struct icm_tr_event_device_disconnected *pkg = 1297 (const struct icm_tr_event_device_disconnected *)hdr; 1298 struct tb_switch *sw; 1299 u64 route; 1300 1301 route = get_route(pkg->route_hi, pkg->route_lo); 1302 1303 sw = tb_switch_find_by_route(tb, route); 1304 if (!sw) { 1305 tb_warn(tb, "no switch exists at %llx, ignoring\n", route); 1306 return; 1307 } 1308 pm_runtime_get_sync(sw->dev.parent); 1309 1310 remove_switch(sw); 1311 1312 pm_runtime_mark_last_busy(sw->dev.parent); 1313 pm_runtime_put_autosuspend(sw->dev.parent); 1314 1315 tb_switch_put(sw); 1316 } 1317 1318 static void 1319 icm_tr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr) 1320 { 1321 const struct icm_tr_event_xdomain_connected *pkg = 1322 (const struct icm_tr_event_xdomain_connected *)hdr; 1323 struct tb_xdomain *xd; 1324 struct tb_switch *sw; 1325 u64 route; 1326 1327 if (!tb->root_switch) 1328 return; 1329 1330 route = get_route(pkg->local_route_hi, pkg->local_route_lo); 1331 1332 xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid); 1333 if (xd) { 1334 if (xd->route == route) { 1335 update_xdomain(xd, route, 0); 1336 tb_xdomain_put(xd); 1337 return; 1338 } 1339 1340 remove_xdomain(xd); 1341 tb_xdomain_put(xd); 1342 } 1343 1344 /* An existing xdomain with the same address */ 1345 xd = tb_xdomain_find_by_route(tb, route); 1346 if (xd) { 1347 remove_xdomain(xd); 1348 tb_xdomain_put(xd); 1349 } 1350 1351 /* 1352 * If the user disconnected a switch during suspend and 1353 * connected another host to the same port, remove the switch 1354 * first. 1355 */ 1356 sw = tb_switch_find_by_route(tb, route); 1357 if (sw) { 1358 remove_switch(sw); 1359 tb_switch_put(sw); 1360 } 1361 1362 sw = tb_switch_find_by_route(tb, get_parent_route(route)); 1363 if (!sw) { 1364 tb_warn(tb, "no switch exists at %llx, ignoring\n", route); 1365 return; 1366 } 1367 1368 add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, 0, 0); 1369 tb_switch_put(sw); 1370 } 1371 1372 static void 1373 icm_tr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr) 1374 { 1375 const struct icm_tr_event_xdomain_disconnected *pkg = 1376 (const struct icm_tr_event_xdomain_disconnected *)hdr; 1377 struct tb_xdomain *xd; 1378 u64 route; 1379 1380 route = get_route(pkg->route_hi, pkg->route_lo); 1381 1382 xd = tb_xdomain_find_by_route(tb, route); 1383 if (xd) { 1384 remove_xdomain(xd); 1385 tb_xdomain_put(xd); 1386 } 1387 } 1388 1389 static struct pci_dev *get_upstream_port(struct pci_dev *pdev) 1390 { 1391 struct pci_dev *parent; 1392 1393 parent = pci_upstream_bridge(pdev); 1394 while (parent) { 1395 if (!pci_is_pcie(parent)) 1396 return NULL; 1397 if (pci_pcie_type(parent) == PCI_EXP_TYPE_UPSTREAM) 1398 break; 1399 parent = pci_upstream_bridge(parent); 1400 } 1401 1402 if (!parent) 1403 return NULL; 1404 1405 switch (parent->device) { 1406 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1407 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1408 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1409 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1410 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1411 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1412 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1413 return parent; 1414 } 1415 1416 return NULL; 1417 } 1418 1419 static bool icm_ar_is_supported(struct tb *tb) 1420 { 1421 struct pci_dev *upstream_port; 1422 struct icm *icm = tb_priv(tb); 1423 1424 /* 1425 * Starting from Alpine Ridge we can use ICM on Apple machines 1426 * as well. We just need to reset and re-enable it first. 1427 * However, only start it if explicitly asked by the user. 1428 */ 1429 if (icm_firmware_running(tb->nhi)) 1430 return true; 1431 if (!start_icm) 1432 return false; 1433 1434 /* 1435 * Find the upstream PCIe port in case we need to do reset 1436 * through its vendor specific registers. 1437 */ 1438 upstream_port = get_upstream_port(tb->nhi->pdev); 1439 if (upstream_port) { 1440 int cap; 1441 1442 cap = pci_find_ext_capability(upstream_port, 1443 PCI_EXT_CAP_ID_VNDR); 1444 if (cap > 0) { 1445 icm->upstream_port = upstream_port; 1446 icm->vnd_cap = cap; 1447 1448 return true; 1449 } 1450 } 1451 1452 return false; 1453 } 1454 1455 static int icm_ar_cio_reset(struct tb *tb) 1456 { 1457 return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x50, BIT(9)); 1458 } 1459 1460 static int icm_ar_get_mode(struct tb *tb) 1461 { 1462 struct tb_nhi *nhi = tb->nhi; 1463 int retries = 60; 1464 u32 val; 1465 1466 do { 1467 val = ioread32(nhi->iobase + REG_FW_STS); 1468 if (val & REG_FW_STS_NVM_AUTH_DONE) 1469 break; 1470 msleep(50); 1471 } while (--retries); 1472 1473 if (!retries) { 1474 dev_err(&nhi->pdev->dev, "ICM firmware not authenticated\n"); 1475 return -ENODEV; 1476 } 1477 1478 return nhi_mailbox_mode(nhi); 1479 } 1480 1481 static int 1482 icm_ar_driver_ready(struct tb *tb, enum tb_security_level *security_level, 1483 u8 *proto_version, size_t *nboot_acl, bool *rpm) 1484 { 1485 struct icm_ar_pkg_driver_ready_response reply; 1486 struct icm_pkg_driver_ready request = { 1487 .hdr.code = ICM_DRIVER_READY, 1488 }; 1489 int ret; 1490 1491 memset(&reply, 0, sizeof(reply)); 1492 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1493 1, ICM_TIMEOUT); 1494 if (ret) 1495 return ret; 1496 1497 if (security_level) 1498 *security_level = reply.info & ICM_AR_INFO_SLEVEL_MASK; 1499 if (nboot_acl && (reply.info & ICM_AR_INFO_BOOT_ACL_SUPPORTED)) 1500 *nboot_acl = (reply.info & ICM_AR_INFO_BOOT_ACL_MASK) >> 1501 ICM_AR_INFO_BOOT_ACL_SHIFT; 1502 if (rpm) 1503 *rpm = !!(reply.hdr.flags & ICM_AR_FLAGS_RTD3); 1504 1505 return 0; 1506 } 1507 1508 static int icm_ar_get_route(struct tb *tb, u8 link, u8 depth, u64 *route) 1509 { 1510 struct icm_ar_pkg_get_route_response reply; 1511 struct icm_ar_pkg_get_route request = { 1512 .hdr = { .code = ICM_GET_ROUTE }, 1513 .link_info = depth << ICM_LINK_INFO_DEPTH_SHIFT | link, 1514 }; 1515 int ret; 1516 1517 memset(&reply, 0, sizeof(reply)); 1518 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1519 1, ICM_TIMEOUT); 1520 if (ret) 1521 return ret; 1522 1523 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1524 return -EIO; 1525 1526 *route = get_route(reply.route_hi, reply.route_lo); 1527 return 0; 1528 } 1529 1530 static int icm_ar_get_boot_acl(struct tb *tb, uuid_t *uuids, size_t nuuids) 1531 { 1532 struct icm_ar_pkg_preboot_acl_response reply; 1533 struct icm_ar_pkg_preboot_acl request = { 1534 .hdr = { .code = ICM_PREBOOT_ACL }, 1535 }; 1536 int ret, i; 1537 1538 memset(&reply, 0, sizeof(reply)); 1539 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1540 1, ICM_TIMEOUT); 1541 if (ret) 1542 return ret; 1543 1544 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1545 return -EIO; 1546 1547 for (i = 0; i < nuuids; i++) { 1548 u32 *uuid = (u32 *)&uuids[i]; 1549 1550 uuid[0] = reply.acl[i].uuid_lo; 1551 uuid[1] = reply.acl[i].uuid_hi; 1552 1553 if (uuid[0] == 0xffffffff && uuid[1] == 0xffffffff) { 1554 /* Map empty entries to null UUID */ 1555 uuid[0] = 0; 1556 uuid[1] = 0; 1557 } else if (uuid[0] != 0 || uuid[1] != 0) { 1558 /* Upper two DWs are always one's */ 1559 uuid[2] = 0xffffffff; 1560 uuid[3] = 0xffffffff; 1561 } 1562 } 1563 1564 return ret; 1565 } 1566 1567 static int icm_ar_set_boot_acl(struct tb *tb, const uuid_t *uuids, 1568 size_t nuuids) 1569 { 1570 struct icm_ar_pkg_preboot_acl_response reply; 1571 struct icm_ar_pkg_preboot_acl request = { 1572 .hdr = { 1573 .code = ICM_PREBOOT_ACL, 1574 .flags = ICM_FLAGS_WRITE, 1575 }, 1576 }; 1577 int ret, i; 1578 1579 for (i = 0; i < nuuids; i++) { 1580 const u32 *uuid = (const u32 *)&uuids[i]; 1581 1582 if (uuid_is_null(&uuids[i])) { 1583 /* 1584 * Map null UUID to the empty (all one) entries 1585 * for ICM. 1586 */ 1587 request.acl[i].uuid_lo = 0xffffffff; 1588 request.acl[i].uuid_hi = 0xffffffff; 1589 } else { 1590 /* Two high DWs need to be set to all one */ 1591 if (uuid[2] != 0xffffffff || uuid[3] != 0xffffffff) 1592 return -EINVAL; 1593 1594 request.acl[i].uuid_lo = uuid[0]; 1595 request.acl[i].uuid_hi = uuid[1]; 1596 } 1597 } 1598 1599 memset(&reply, 0, sizeof(reply)); 1600 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1601 1, ICM_TIMEOUT); 1602 if (ret) 1603 return ret; 1604 1605 if (reply.hdr.flags & ICM_FLAGS_ERROR) 1606 return -EIO; 1607 1608 return 0; 1609 } 1610 1611 static int 1612 icm_icl_driver_ready(struct tb *tb, enum tb_security_level *security_level, 1613 u8 *proto_version, size_t *nboot_acl, bool *rpm) 1614 { 1615 struct icm_tr_pkg_driver_ready_response reply; 1616 struct icm_pkg_driver_ready request = { 1617 .hdr.code = ICM_DRIVER_READY, 1618 }; 1619 int ret; 1620 1621 memset(&reply, 0, sizeof(reply)); 1622 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 1623 1, 20000); 1624 if (ret) 1625 return ret; 1626 1627 if (proto_version) 1628 *proto_version = (reply.info & ICM_TR_INFO_PROTO_VERSION_MASK) >> 1629 ICM_TR_INFO_PROTO_VERSION_SHIFT; 1630 1631 /* Ice Lake always supports RTD3 */ 1632 if (rpm) 1633 *rpm = true; 1634 1635 return 0; 1636 } 1637 1638 static void icm_icl_set_uuid(struct tb *tb) 1639 { 1640 struct tb_nhi *nhi = tb->nhi; 1641 u32 uuid[4]; 1642 1643 pci_read_config_dword(nhi->pdev, VS_CAP_10, &uuid[0]); 1644 pci_read_config_dword(nhi->pdev, VS_CAP_11, &uuid[1]); 1645 uuid[2] = 0xffffffff; 1646 uuid[3] = 0xffffffff; 1647 1648 tb->root_switch->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1649 } 1650 1651 static void 1652 icm_icl_device_connected(struct tb *tb, const struct icm_pkg_header *hdr) 1653 { 1654 __icm_tr_device_connected(tb, hdr, true); 1655 } 1656 1657 static void icm_icl_rtd3_veto(struct tb *tb, const struct icm_pkg_header *hdr) 1658 { 1659 const struct icm_icl_event_rtd3_veto *pkg = 1660 (const struct icm_icl_event_rtd3_veto *)hdr; 1661 1662 tb_dbg(tb, "ICM rtd3 veto=0x%08x\n", pkg->veto_reason); 1663 1664 if (pkg->veto_reason) 1665 icm_veto_begin(tb); 1666 else 1667 icm_veto_end(tb); 1668 } 1669 1670 static bool icm_tgl_is_supported(struct tb *tb) 1671 { 1672 u32 val; 1673 1674 /* 1675 * If the firmware is not running use software CM. This platform 1676 * should fully support both. 1677 */ 1678 val = ioread32(tb->nhi->iobase + REG_FW_STS); 1679 return !!(val & REG_FW_STS_NVM_AUTH_DONE); 1680 } 1681 1682 static void icm_handle_notification(struct work_struct *work) 1683 { 1684 struct icm_notification *n = container_of(work, typeof(*n), work); 1685 struct tb *tb = n->tb; 1686 struct icm *icm = tb_priv(tb); 1687 1688 mutex_lock(&tb->lock); 1689 1690 /* 1691 * When the domain is stopped we flush its workqueue but before 1692 * that the root switch is removed. In that case we should treat 1693 * the queued events as being canceled. 1694 */ 1695 if (tb->root_switch) { 1696 switch (n->pkg->code) { 1697 case ICM_EVENT_DEVICE_CONNECTED: 1698 icm->device_connected(tb, n->pkg); 1699 break; 1700 case ICM_EVENT_DEVICE_DISCONNECTED: 1701 icm->device_disconnected(tb, n->pkg); 1702 break; 1703 case ICM_EVENT_XDOMAIN_CONNECTED: 1704 if (tb_is_xdomain_enabled()) 1705 icm->xdomain_connected(tb, n->pkg); 1706 break; 1707 case ICM_EVENT_XDOMAIN_DISCONNECTED: 1708 if (tb_is_xdomain_enabled()) 1709 icm->xdomain_disconnected(tb, n->pkg); 1710 break; 1711 case ICM_EVENT_RTD3_VETO: 1712 icm->rtd3_veto(tb, n->pkg); 1713 break; 1714 } 1715 } 1716 1717 mutex_unlock(&tb->lock); 1718 1719 kfree(n->pkg); 1720 kfree(n); 1721 } 1722 1723 static void icm_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, 1724 const void *buf, size_t size) 1725 { 1726 struct icm_notification *n; 1727 1728 n = kmalloc(sizeof(*n), GFP_KERNEL); 1729 if (!n) 1730 return; 1731 1732 INIT_WORK(&n->work, icm_handle_notification); 1733 n->pkg = kmemdup(buf, size, GFP_KERNEL); 1734 n->tb = tb; 1735 1736 queue_work(tb->wq, &n->work); 1737 } 1738 1739 static int 1740 __icm_driver_ready(struct tb *tb, enum tb_security_level *security_level, 1741 u8 *proto_version, size_t *nboot_acl, bool *rpm) 1742 { 1743 struct icm *icm = tb_priv(tb); 1744 unsigned int retries = 50; 1745 int ret; 1746 1747 ret = icm->driver_ready(tb, security_level, proto_version, nboot_acl, 1748 rpm); 1749 if (ret) { 1750 tb_err(tb, "failed to send driver ready to ICM\n"); 1751 return ret; 1752 } 1753 1754 /* 1755 * Hold on here until the switch config space is accessible so 1756 * that we can read root switch config successfully. 1757 */ 1758 do { 1759 struct tb_cfg_result res; 1760 u32 tmp; 1761 1762 res = tb_cfg_read_raw(tb->ctl, &tmp, 0, 0, TB_CFG_SWITCH, 1763 0, 1, 100); 1764 if (!res.err) 1765 return 0; 1766 1767 msleep(50); 1768 } while (--retries); 1769 1770 tb_err(tb, "failed to read root switch config space, giving up\n"); 1771 return -ETIMEDOUT; 1772 } 1773 1774 static int icm_firmware_reset(struct tb *tb, struct tb_nhi *nhi) 1775 { 1776 struct icm *icm = tb_priv(tb); 1777 u32 val; 1778 1779 if (!icm->upstream_port) 1780 return -ENODEV; 1781 1782 /* Put ARC to wait for CIO reset event to happen */ 1783 val = ioread32(nhi->iobase + REG_FW_STS); 1784 val |= REG_FW_STS_CIO_RESET_REQ; 1785 iowrite32(val, nhi->iobase + REG_FW_STS); 1786 1787 /* Re-start ARC */ 1788 val = ioread32(nhi->iobase + REG_FW_STS); 1789 val |= REG_FW_STS_ICM_EN_INVERT; 1790 val |= REG_FW_STS_ICM_EN_CPU; 1791 iowrite32(val, nhi->iobase + REG_FW_STS); 1792 1793 /* Trigger CIO reset now */ 1794 return icm->cio_reset(tb); 1795 } 1796 1797 static int icm_firmware_start(struct tb *tb, struct tb_nhi *nhi) 1798 { 1799 unsigned int retries = 10; 1800 int ret; 1801 u32 val; 1802 1803 /* Check if the ICM firmware is already running */ 1804 if (icm_firmware_running(nhi)) 1805 return 0; 1806 1807 dev_dbg(&nhi->pdev->dev, "starting ICM firmware\n"); 1808 1809 ret = icm_firmware_reset(tb, nhi); 1810 if (ret) 1811 return ret; 1812 1813 /* Wait until the ICM firmware tells us it is up and running */ 1814 do { 1815 /* Check that the ICM firmware is running */ 1816 val = ioread32(nhi->iobase + REG_FW_STS); 1817 if (val & REG_FW_STS_NVM_AUTH_DONE) 1818 return 0; 1819 1820 msleep(300); 1821 } while (--retries); 1822 1823 return -ETIMEDOUT; 1824 } 1825 1826 static int icm_reset_phy_port(struct tb *tb, int phy_port) 1827 { 1828 struct icm *icm = tb_priv(tb); 1829 u32 state0, state1; 1830 int port0, port1; 1831 u32 val0, val1; 1832 int ret; 1833 1834 if (!icm->upstream_port) 1835 return 0; 1836 1837 if (phy_port) { 1838 port0 = 3; 1839 port1 = 4; 1840 } else { 1841 port0 = 1; 1842 port1 = 2; 1843 } 1844 1845 /* 1846 * Read link status of both null ports belonging to a single 1847 * physical port. 1848 */ 1849 ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0); 1850 if (ret) 1851 return ret; 1852 ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1); 1853 if (ret) 1854 return ret; 1855 1856 state0 = val0 & PHY_PORT_CS1_LINK_STATE_MASK; 1857 state0 >>= PHY_PORT_CS1_LINK_STATE_SHIFT; 1858 state1 = val1 & PHY_PORT_CS1_LINK_STATE_MASK; 1859 state1 >>= PHY_PORT_CS1_LINK_STATE_SHIFT; 1860 1861 /* If they are both up we need to reset them now */ 1862 if (state0 != TB_PORT_UP || state1 != TB_PORT_UP) 1863 return 0; 1864 1865 val0 |= PHY_PORT_CS1_LINK_DISABLE; 1866 ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0); 1867 if (ret) 1868 return ret; 1869 1870 val1 |= PHY_PORT_CS1_LINK_DISABLE; 1871 ret = pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1); 1872 if (ret) 1873 return ret; 1874 1875 /* Wait a bit and then re-enable both ports */ 1876 usleep_range(10, 100); 1877 1878 ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0); 1879 if (ret) 1880 return ret; 1881 ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1); 1882 if (ret) 1883 return ret; 1884 1885 val0 &= ~PHY_PORT_CS1_LINK_DISABLE; 1886 ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0); 1887 if (ret) 1888 return ret; 1889 1890 val1 &= ~PHY_PORT_CS1_LINK_DISABLE; 1891 return pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1); 1892 } 1893 1894 static int icm_firmware_init(struct tb *tb) 1895 { 1896 struct icm *icm = tb_priv(tb); 1897 struct tb_nhi *nhi = tb->nhi; 1898 int ret; 1899 1900 ret = icm_firmware_start(tb, nhi); 1901 if (ret) { 1902 dev_err(&nhi->pdev->dev, "could not start ICM firmware\n"); 1903 return ret; 1904 } 1905 1906 if (icm->get_mode) { 1907 ret = icm->get_mode(tb); 1908 1909 switch (ret) { 1910 case NHI_FW_SAFE_MODE: 1911 icm->safe_mode = true; 1912 break; 1913 1914 case NHI_FW_CM_MODE: 1915 /* Ask ICM to accept all Thunderbolt devices */ 1916 nhi_mailbox_cmd(nhi, NHI_MAILBOX_ALLOW_ALL_DEVS, 0); 1917 break; 1918 1919 default: 1920 if (ret < 0) 1921 return ret; 1922 1923 tb_err(tb, "ICM firmware is in wrong mode: %u\n", ret); 1924 return -ENODEV; 1925 } 1926 } 1927 1928 /* 1929 * Reset both physical ports if there is anything connected to 1930 * them already. 1931 */ 1932 ret = icm_reset_phy_port(tb, 0); 1933 if (ret) 1934 dev_warn(&nhi->pdev->dev, "failed to reset links on port0\n"); 1935 ret = icm_reset_phy_port(tb, 1); 1936 if (ret) 1937 dev_warn(&nhi->pdev->dev, "failed to reset links on port1\n"); 1938 1939 return 0; 1940 } 1941 1942 static int icm_driver_ready(struct tb *tb) 1943 { 1944 struct icm *icm = tb_priv(tb); 1945 int ret; 1946 1947 ret = icm_firmware_init(tb); 1948 if (ret) 1949 return ret; 1950 1951 if (icm->safe_mode) { 1952 tb_info(tb, "Thunderbolt host controller is in safe mode.\n"); 1953 tb_info(tb, "You need to update NVM firmware of the controller before it can be used.\n"); 1954 tb_info(tb, "For latest updates check https://thunderbolttechnology.net/updates.\n"); 1955 return 0; 1956 } 1957 1958 ret = __icm_driver_ready(tb, &tb->security_level, &icm->proto_version, 1959 &tb->nboot_acl, &icm->rpm); 1960 if (ret) 1961 return ret; 1962 1963 /* 1964 * Make sure the number of supported preboot ACL matches what we 1965 * expect or disable the whole feature. 1966 */ 1967 if (tb->nboot_acl > icm->max_boot_acl) 1968 tb->nboot_acl = 0; 1969 1970 if (icm->proto_version >= 3) 1971 tb_dbg(tb, "USB4 proxy operations supported\n"); 1972 1973 return 0; 1974 } 1975 1976 static int icm_suspend(struct tb *tb) 1977 { 1978 struct icm *icm = tb_priv(tb); 1979 1980 if (icm->save_devices) 1981 icm->save_devices(tb); 1982 1983 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0); 1984 return 0; 1985 } 1986 1987 /* 1988 * Mark all switches (except root switch) below this one unplugged. ICM 1989 * firmware will send us an updated list of switches after we have send 1990 * it driver ready command. If a switch is not in that list it will be 1991 * removed when we perform rescan. 1992 */ 1993 static void icm_unplug_children(struct tb_switch *sw) 1994 { 1995 struct tb_port *port; 1996 1997 if (tb_route(sw)) 1998 sw->is_unplugged = true; 1999 2000 tb_switch_for_each_port(sw, port) { 2001 if (port->xdomain) 2002 port->xdomain->is_unplugged = true; 2003 else if (tb_port_has_remote(port)) 2004 icm_unplug_children(port->remote->sw); 2005 } 2006 } 2007 2008 static int complete_rpm(struct device *dev, void *data) 2009 { 2010 struct tb_switch *sw = tb_to_switch(dev); 2011 2012 if (sw) 2013 complete(&sw->rpm_complete); 2014 return 0; 2015 } 2016 2017 static void remove_unplugged_switch(struct tb_switch *sw) 2018 { 2019 struct device *parent = get_device(sw->dev.parent); 2020 2021 pm_runtime_get_sync(parent); 2022 2023 /* 2024 * Signal this and switches below for rpm_complete because 2025 * tb_switch_remove() calls pm_runtime_get_sync() that then waits 2026 * for it. 2027 */ 2028 complete_rpm(&sw->dev, NULL); 2029 bus_for_each_dev(&tb_bus_type, &sw->dev, NULL, complete_rpm); 2030 tb_switch_remove(sw); 2031 2032 pm_runtime_mark_last_busy(parent); 2033 pm_runtime_put_autosuspend(parent); 2034 2035 put_device(parent); 2036 } 2037 2038 static void icm_free_unplugged_children(struct tb_switch *sw) 2039 { 2040 struct tb_port *port; 2041 2042 tb_switch_for_each_port(sw, port) { 2043 if (port->xdomain && port->xdomain->is_unplugged) { 2044 tb_xdomain_remove(port->xdomain); 2045 port->xdomain = NULL; 2046 } else if (tb_port_has_remote(port)) { 2047 if (port->remote->sw->is_unplugged) { 2048 remove_unplugged_switch(port->remote->sw); 2049 port->remote = NULL; 2050 } else { 2051 icm_free_unplugged_children(port->remote->sw); 2052 } 2053 } 2054 } 2055 } 2056 2057 static void icm_rescan_work(struct work_struct *work) 2058 { 2059 struct icm *icm = container_of(work, struct icm, rescan_work.work); 2060 struct tb *tb = icm_to_tb(icm); 2061 2062 mutex_lock(&tb->lock); 2063 if (tb->root_switch) 2064 icm_free_unplugged_children(tb->root_switch); 2065 mutex_unlock(&tb->lock); 2066 } 2067 2068 static void icm_complete(struct tb *tb) 2069 { 2070 struct icm *icm = tb_priv(tb); 2071 2072 if (tb->nhi->going_away) 2073 return; 2074 2075 /* 2076 * If RTD3 was vetoed before we entered system suspend allow it 2077 * again now before driver ready is sent. Firmware sends a new RTD3 2078 * veto if it is still the case after we have sent it driver ready 2079 * command. 2080 */ 2081 icm_veto_end(tb); 2082 icm_unplug_children(tb->root_switch); 2083 2084 /* 2085 * Now all existing children should be resumed, start events 2086 * from ICM to get updated status. 2087 */ 2088 __icm_driver_ready(tb, NULL, NULL, NULL, NULL); 2089 2090 /* 2091 * We do not get notifications of devices that have been 2092 * unplugged during suspend so schedule rescan to clean them up 2093 * if any. 2094 */ 2095 queue_delayed_work(tb->wq, &icm->rescan_work, msecs_to_jiffies(500)); 2096 } 2097 2098 static int icm_runtime_suspend(struct tb *tb) 2099 { 2100 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0); 2101 return 0; 2102 } 2103 2104 static int icm_runtime_suspend_switch(struct tb_switch *sw) 2105 { 2106 if (tb_route(sw)) 2107 reinit_completion(&sw->rpm_complete); 2108 return 0; 2109 } 2110 2111 static int icm_runtime_resume_switch(struct tb_switch *sw) 2112 { 2113 if (tb_route(sw)) { 2114 if (!wait_for_completion_timeout(&sw->rpm_complete, 2115 msecs_to_jiffies(500))) { 2116 dev_dbg(&sw->dev, "runtime resuming timed out\n"); 2117 } 2118 } 2119 return 0; 2120 } 2121 2122 static int icm_runtime_resume(struct tb *tb) 2123 { 2124 /* 2125 * We can reuse the same resume functionality than with system 2126 * suspend. 2127 */ 2128 icm_complete(tb); 2129 return 0; 2130 } 2131 2132 static int icm_start(struct tb *tb) 2133 { 2134 struct icm *icm = tb_priv(tb); 2135 int ret; 2136 2137 if (icm->safe_mode) 2138 tb->root_switch = tb_switch_alloc_safe_mode(tb, &tb->dev, 0); 2139 else 2140 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); 2141 if (IS_ERR(tb->root_switch)) 2142 return PTR_ERR(tb->root_switch); 2143 2144 tb->root_switch->no_nvm_upgrade = !icm->can_upgrade_nvm; 2145 tb->root_switch->rpm = icm->rpm; 2146 2147 if (icm->set_uuid) 2148 icm->set_uuid(tb); 2149 2150 ret = tb_switch_add(tb->root_switch); 2151 if (ret) { 2152 tb_switch_put(tb->root_switch); 2153 tb->root_switch = NULL; 2154 } 2155 2156 return ret; 2157 } 2158 2159 static void icm_stop(struct tb *tb) 2160 { 2161 struct icm *icm = tb_priv(tb); 2162 2163 cancel_delayed_work(&icm->rescan_work); 2164 tb_switch_remove(tb->root_switch); 2165 tb->root_switch = NULL; 2166 nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0); 2167 kfree(icm->last_nvm_auth); 2168 icm->last_nvm_auth = NULL; 2169 } 2170 2171 static int icm_disconnect_pcie_paths(struct tb *tb) 2172 { 2173 return nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DISCONNECT_PCIE_PATHS, 0); 2174 } 2175 2176 static void icm_usb4_switch_nvm_auth_complete(void *data) 2177 { 2178 struct usb4_switch_nvm_auth *auth = data; 2179 struct icm *icm = auth->icm; 2180 struct tb *tb = icm_to_tb(icm); 2181 2182 tb_dbg(tb, "NVM_AUTH response for %llx flags %#x status %#x\n", 2183 get_route(auth->reply.route_hi, auth->reply.route_lo), 2184 auth->reply.hdr.flags, auth->reply.status); 2185 2186 mutex_lock(&tb->lock); 2187 if (WARN_ON(icm->last_nvm_auth)) 2188 kfree(icm->last_nvm_auth); 2189 icm->last_nvm_auth = auth; 2190 mutex_unlock(&tb->lock); 2191 } 2192 2193 static int icm_usb4_switch_nvm_authenticate(struct tb *tb, u64 route) 2194 { 2195 struct usb4_switch_nvm_auth *auth; 2196 struct icm *icm = tb_priv(tb); 2197 struct tb_cfg_request *req; 2198 int ret; 2199 2200 auth = kzalloc(sizeof(*auth), GFP_KERNEL); 2201 if (!auth) 2202 return -ENOMEM; 2203 2204 auth->icm = icm; 2205 auth->request.hdr.code = ICM_USB4_SWITCH_OP; 2206 auth->request.route_hi = upper_32_bits(route); 2207 auth->request.route_lo = lower_32_bits(route); 2208 auth->request.opcode = USB4_SWITCH_OP_NVM_AUTH; 2209 2210 req = tb_cfg_request_alloc(); 2211 if (!req) { 2212 ret = -ENOMEM; 2213 goto err_free_auth; 2214 } 2215 2216 req->match = icm_match; 2217 req->copy = icm_copy; 2218 req->request = &auth->request; 2219 req->request_size = sizeof(auth->request); 2220 req->request_type = TB_CFG_PKG_ICM_CMD; 2221 req->response = &auth->reply; 2222 req->npackets = 1; 2223 req->response_size = sizeof(auth->reply); 2224 req->response_type = TB_CFG_PKG_ICM_RESP; 2225 2226 tb_dbg(tb, "NVM_AUTH request for %llx\n", route); 2227 2228 mutex_lock(&icm->request_lock); 2229 ret = tb_cfg_request(tb->ctl, req, icm_usb4_switch_nvm_auth_complete, 2230 auth); 2231 mutex_unlock(&icm->request_lock); 2232 2233 tb_cfg_request_put(req); 2234 if (ret) 2235 goto err_free_auth; 2236 return 0; 2237 2238 err_free_auth: 2239 kfree(auth); 2240 return ret; 2241 } 2242 2243 static int icm_usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata, 2244 u8 *status, const void *tx_data, size_t tx_data_len, 2245 void *rx_data, size_t rx_data_len) 2246 { 2247 struct icm_usb4_switch_op_response reply; 2248 struct icm_usb4_switch_op request; 2249 struct tb *tb = sw->tb; 2250 struct icm *icm = tb_priv(tb); 2251 u64 route = tb_route(sw); 2252 int ret; 2253 2254 /* 2255 * USB4 router operation proxy is supported in firmware if the 2256 * protocol version is 3 or higher. 2257 */ 2258 if (icm->proto_version < 3) 2259 return -EOPNOTSUPP; 2260 2261 /* 2262 * NVM_AUTH is a special USB4 proxy operation that does not 2263 * return immediately so handle it separately. 2264 */ 2265 if (opcode == USB4_SWITCH_OP_NVM_AUTH) 2266 return icm_usb4_switch_nvm_authenticate(tb, route); 2267 2268 memset(&request, 0, sizeof(request)); 2269 request.hdr.code = ICM_USB4_SWITCH_OP; 2270 request.route_hi = upper_32_bits(route); 2271 request.route_lo = lower_32_bits(route); 2272 request.opcode = opcode; 2273 if (metadata) 2274 request.metadata = *metadata; 2275 2276 if (tx_data_len) { 2277 request.data_len_valid |= ICM_USB4_SWITCH_DATA_VALID; 2278 if (tx_data_len < ARRAY_SIZE(request.data)) 2279 request.data_len_valid = 2280 tx_data_len & ICM_USB4_SWITCH_DATA_LEN_MASK; 2281 memcpy(request.data, tx_data, tx_data_len * sizeof(u32)); 2282 } 2283 2284 memset(&reply, 0, sizeof(reply)); 2285 ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply), 2286 1, ICM_TIMEOUT); 2287 if (ret) 2288 return ret; 2289 2290 if (reply.hdr.flags & ICM_FLAGS_ERROR) 2291 return -EIO; 2292 2293 if (status) 2294 *status = reply.status; 2295 2296 if (metadata) 2297 *metadata = reply.metadata; 2298 2299 if (rx_data_len) 2300 memcpy(rx_data, reply.data, rx_data_len * sizeof(u32)); 2301 2302 return 0; 2303 } 2304 2305 static int icm_usb4_switch_nvm_authenticate_status(struct tb_switch *sw, 2306 u32 *status) 2307 { 2308 struct usb4_switch_nvm_auth *auth; 2309 struct tb *tb = sw->tb; 2310 struct icm *icm = tb_priv(tb); 2311 int ret = 0; 2312 2313 if (icm->proto_version < 3) 2314 return -EOPNOTSUPP; 2315 2316 auth = icm->last_nvm_auth; 2317 icm->last_nvm_auth = NULL; 2318 2319 if (auth && auth->reply.route_hi == sw->config.route_hi && 2320 auth->reply.route_lo == sw->config.route_lo) { 2321 tb_dbg(tb, "NVM_AUTH found for %llx flags %#x status %#x\n", 2322 tb_route(sw), auth->reply.hdr.flags, auth->reply.status); 2323 if (auth->reply.hdr.flags & ICM_FLAGS_ERROR) 2324 ret = -EIO; 2325 else 2326 *status = auth->reply.status; 2327 } else { 2328 *status = 0; 2329 } 2330 2331 kfree(auth); 2332 return ret; 2333 } 2334 2335 /* Falcon Ridge */ 2336 static const struct tb_cm_ops icm_fr_ops = { 2337 .driver_ready = icm_driver_ready, 2338 .start = icm_start, 2339 .stop = icm_stop, 2340 .suspend = icm_suspend, 2341 .complete = icm_complete, 2342 .handle_event = icm_handle_event, 2343 .approve_switch = icm_fr_approve_switch, 2344 .add_switch_key = icm_fr_add_switch_key, 2345 .challenge_switch_key = icm_fr_challenge_switch_key, 2346 .disconnect_pcie_paths = icm_disconnect_pcie_paths, 2347 .approve_xdomain_paths = icm_fr_approve_xdomain_paths, 2348 .disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths, 2349 }; 2350 2351 /* Alpine Ridge */ 2352 static const struct tb_cm_ops icm_ar_ops = { 2353 .driver_ready = icm_driver_ready, 2354 .start = icm_start, 2355 .stop = icm_stop, 2356 .suspend = icm_suspend, 2357 .complete = icm_complete, 2358 .runtime_suspend = icm_runtime_suspend, 2359 .runtime_resume = icm_runtime_resume, 2360 .runtime_suspend_switch = icm_runtime_suspend_switch, 2361 .runtime_resume_switch = icm_runtime_resume_switch, 2362 .handle_event = icm_handle_event, 2363 .get_boot_acl = icm_ar_get_boot_acl, 2364 .set_boot_acl = icm_ar_set_boot_acl, 2365 .approve_switch = icm_fr_approve_switch, 2366 .add_switch_key = icm_fr_add_switch_key, 2367 .challenge_switch_key = icm_fr_challenge_switch_key, 2368 .disconnect_pcie_paths = icm_disconnect_pcie_paths, 2369 .approve_xdomain_paths = icm_fr_approve_xdomain_paths, 2370 .disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths, 2371 }; 2372 2373 /* Titan Ridge */ 2374 static const struct tb_cm_ops icm_tr_ops = { 2375 .driver_ready = icm_driver_ready, 2376 .start = icm_start, 2377 .stop = icm_stop, 2378 .suspend = icm_suspend, 2379 .complete = icm_complete, 2380 .runtime_suspend = icm_runtime_suspend, 2381 .runtime_resume = icm_runtime_resume, 2382 .runtime_suspend_switch = icm_runtime_suspend_switch, 2383 .runtime_resume_switch = icm_runtime_resume_switch, 2384 .handle_event = icm_handle_event, 2385 .get_boot_acl = icm_ar_get_boot_acl, 2386 .set_boot_acl = icm_ar_set_boot_acl, 2387 .approve_switch = icm_tr_approve_switch, 2388 .add_switch_key = icm_tr_add_switch_key, 2389 .challenge_switch_key = icm_tr_challenge_switch_key, 2390 .disconnect_pcie_paths = icm_disconnect_pcie_paths, 2391 .approve_xdomain_paths = icm_tr_approve_xdomain_paths, 2392 .disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths, 2393 .usb4_switch_op = icm_usb4_switch_op, 2394 .usb4_switch_nvm_authenticate_status = 2395 icm_usb4_switch_nvm_authenticate_status, 2396 }; 2397 2398 /* Ice Lake */ 2399 static const struct tb_cm_ops icm_icl_ops = { 2400 .driver_ready = icm_driver_ready, 2401 .start = icm_start, 2402 .stop = icm_stop, 2403 .complete = icm_complete, 2404 .runtime_suspend = icm_runtime_suspend, 2405 .runtime_resume = icm_runtime_resume, 2406 .handle_event = icm_handle_event, 2407 .approve_xdomain_paths = icm_tr_approve_xdomain_paths, 2408 .disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths, 2409 .usb4_switch_op = icm_usb4_switch_op, 2410 .usb4_switch_nvm_authenticate_status = 2411 icm_usb4_switch_nvm_authenticate_status, 2412 }; 2413 2414 struct tb *icm_probe(struct tb_nhi *nhi) 2415 { 2416 struct icm *icm; 2417 struct tb *tb; 2418 2419 tb = tb_domain_alloc(nhi, sizeof(struct icm)); 2420 if (!tb) 2421 return NULL; 2422 2423 icm = tb_priv(tb); 2424 INIT_DELAYED_WORK(&icm->rescan_work, icm_rescan_work); 2425 mutex_init(&icm->request_lock); 2426 2427 switch (nhi->pdev->device) { 2428 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 2429 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 2430 icm->can_upgrade_nvm = true; 2431 icm->is_supported = icm_fr_is_supported; 2432 icm->get_route = icm_fr_get_route; 2433 icm->save_devices = icm_fr_save_devices; 2434 icm->driver_ready = icm_fr_driver_ready; 2435 icm->device_connected = icm_fr_device_connected; 2436 icm->device_disconnected = icm_fr_device_disconnected; 2437 icm->xdomain_connected = icm_fr_xdomain_connected; 2438 icm->xdomain_disconnected = icm_fr_xdomain_disconnected; 2439 tb->cm_ops = &icm_fr_ops; 2440 break; 2441 2442 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI: 2443 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI: 2444 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI: 2445 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI: 2446 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI: 2447 icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES; 2448 /* 2449 * NVM upgrade has not been tested on Apple systems and 2450 * they don't provide images publicly either. To be on 2451 * the safe side prevent root switch NVM upgrade on Macs 2452 * for now. 2453 */ 2454 icm->can_upgrade_nvm = !x86_apple_machine; 2455 icm->is_supported = icm_ar_is_supported; 2456 icm->cio_reset = icm_ar_cio_reset; 2457 icm->get_mode = icm_ar_get_mode; 2458 icm->get_route = icm_ar_get_route; 2459 icm->save_devices = icm_fr_save_devices; 2460 icm->driver_ready = icm_ar_driver_ready; 2461 icm->device_connected = icm_fr_device_connected; 2462 icm->device_disconnected = icm_fr_device_disconnected; 2463 icm->xdomain_connected = icm_fr_xdomain_connected; 2464 icm->xdomain_disconnected = icm_fr_xdomain_disconnected; 2465 tb->cm_ops = &icm_ar_ops; 2466 break; 2467 2468 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI: 2469 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI: 2470 icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES; 2471 icm->can_upgrade_nvm = !x86_apple_machine; 2472 icm->is_supported = icm_ar_is_supported; 2473 icm->cio_reset = icm_tr_cio_reset; 2474 icm->get_mode = icm_ar_get_mode; 2475 icm->driver_ready = icm_tr_driver_ready; 2476 icm->device_connected = icm_tr_device_connected; 2477 icm->device_disconnected = icm_tr_device_disconnected; 2478 icm->xdomain_connected = icm_tr_xdomain_connected; 2479 icm->xdomain_disconnected = icm_tr_xdomain_disconnected; 2480 tb->cm_ops = &icm_tr_ops; 2481 break; 2482 2483 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2484 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2485 icm->is_supported = icm_fr_is_supported; 2486 icm->driver_ready = icm_icl_driver_ready; 2487 icm->set_uuid = icm_icl_set_uuid; 2488 icm->device_connected = icm_icl_device_connected; 2489 icm->device_disconnected = icm_tr_device_disconnected; 2490 icm->xdomain_connected = icm_tr_xdomain_connected; 2491 icm->xdomain_disconnected = icm_tr_xdomain_disconnected; 2492 icm->rtd3_veto = icm_icl_rtd3_veto; 2493 tb->cm_ops = &icm_icl_ops; 2494 break; 2495 2496 case PCI_DEVICE_ID_INTEL_TGL_NHI0: 2497 case PCI_DEVICE_ID_INTEL_TGL_NHI1: 2498 case PCI_DEVICE_ID_INTEL_TGL_H_NHI0: 2499 case PCI_DEVICE_ID_INTEL_TGL_H_NHI1: 2500 icm->is_supported = icm_tgl_is_supported; 2501 icm->driver_ready = icm_icl_driver_ready; 2502 icm->set_uuid = icm_icl_set_uuid; 2503 icm->device_connected = icm_icl_device_connected; 2504 icm->device_disconnected = icm_tr_device_disconnected; 2505 icm->xdomain_connected = icm_tr_xdomain_connected; 2506 icm->xdomain_disconnected = icm_tr_xdomain_disconnected; 2507 icm->rtd3_veto = icm_icl_rtd3_veto; 2508 tb->cm_ops = &icm_icl_ops; 2509 break; 2510 2511 case PCI_DEVICE_ID_INTEL_MAPLE_RIDGE_4C_NHI: 2512 icm->is_supported = icm_tgl_is_supported; 2513 icm->get_mode = icm_ar_get_mode; 2514 icm->driver_ready = icm_tr_driver_ready; 2515 icm->device_connected = icm_tr_device_connected; 2516 icm->device_disconnected = icm_tr_device_disconnected; 2517 icm->xdomain_connected = icm_tr_xdomain_connected; 2518 icm->xdomain_disconnected = icm_tr_xdomain_disconnected; 2519 tb->cm_ops = &icm_tr_ops; 2520 break; 2521 } 2522 2523 if (!icm->is_supported || !icm->is_supported(tb)) { 2524 dev_dbg(&nhi->pdev->dev, "ICM not supported on this controller\n"); 2525 tb_domain_put(tb); 2526 return NULL; 2527 } 2528 2529 tb_dbg(tb, "using firmware connection manager\n"); 2530 2531 return tb; 2532 } 2533