1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Bandgap temperature sensor driver 4 * 5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/ 6 * Author: J Keerthy <j-keerthy@ti.com> 7 * Author: Moiz Sonasath <m-sonasath@ti.com> 8 * Couple of fixes, DT and MFD adaptation: 9 * Eduardo Valentin <eduardo.valentin@ti.com> 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/cpu_pm.h> 14 #include <linux/device.h> 15 #include <linux/err.h> 16 #include <linux/export.h> 17 #include <linux/gpio/consumer.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/iopoll.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_platform.h> 28 #include <linux/platform_device.h> 29 #include <linux/pm.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/reboot.h> 32 #include <linux/spinlock.h> 33 #include <linux/sys_soc.h> 34 #include <linux/types.h> 35 36 #include "ti-bandgap.h" 37 38 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id); 39 #ifdef CONFIG_PM_SLEEP 40 static int bandgap_omap_cpu_notifier(struct notifier_block *nb, 41 unsigned long cmd, void *v); 42 #endif 43 44 /*** Helper functions to access registers and their bitfields ***/ 45 46 /** 47 * ti_bandgap_readl() - simple read helper function 48 * @bgp: pointer to ti_bandgap structure 49 * @reg: desired register (offset) to be read 50 * 51 * Helper function to read bandgap registers. It uses the io remapped area. 52 * Return: the register value. 53 */ 54 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg) 55 { 56 return readl(bgp->base + reg); 57 } 58 59 /** 60 * ti_bandgap_writel() - simple write helper function 61 * @bgp: pointer to ti_bandgap structure 62 * @val: desired register value to be written 63 * @reg: desired register (offset) to be written 64 * 65 * Helper function to write bandgap registers. It uses the io remapped area. 66 */ 67 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg) 68 { 69 writel(val, bgp->base + reg); 70 } 71 72 /** 73 * DOC: macro to update bits. 74 * 75 * RMW_BITS() - used to read, modify and update bandgap bitfields. 76 * The value passed will be shifted. 77 */ 78 #define RMW_BITS(bgp, id, reg, mask, val) \ 79 do { \ 80 struct temp_sensor_registers *t; \ 81 u32 r; \ 82 \ 83 t = bgp->conf->sensors[(id)].registers; \ 84 r = ti_bandgap_readl(bgp, t->reg); \ 85 r &= ~t->mask; \ 86 r |= (val) << __ffs(t->mask); \ 87 ti_bandgap_writel(bgp, r, t->reg); \ 88 } while (0) 89 90 /*** Basic helper functions ***/ 91 92 /** 93 * ti_bandgap_power() - controls the power state of a bandgap device 94 * @bgp: pointer to ti_bandgap structure 95 * @on: desired power state (1 - on, 0 - off) 96 * 97 * Used to power on/off a bandgap device instance. Only used on those 98 * that features tempsoff bit. 99 * 100 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported. 101 */ 102 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on) 103 { 104 int i; 105 106 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) 107 return -ENOTSUPP; 108 109 for (i = 0; i < bgp->conf->sensor_count; i++) 110 /* active on 0 */ 111 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on); 112 return 0; 113 } 114 115 /** 116 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature 117 * @bgp: pointer to ti_bandgap structure 118 * @reg: desired register (offset) to be read 119 * 120 * Function to read dra7 bandgap sensor temperature. This is done separately 121 * so as to workaround the errata "Bandgap Temperature read Dtemp can be 122 * corrupted" - Errata ID: i814". 123 * Read accesses to registers listed below can be corrupted due to incorrect 124 * resynchronization between clock domains. 125 * Read access to registers below can be corrupted : 126 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4) 127 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n 128 * 129 * Return: the register value. 130 */ 131 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg) 132 { 133 u32 val1, val2; 134 135 val1 = ti_bandgap_readl(bgp, reg); 136 val2 = ti_bandgap_readl(bgp, reg); 137 138 /* If both times we read the same value then that is right */ 139 if (val1 == val2) 140 return val1; 141 142 /* if val1 and val2 are different read it third time */ 143 return ti_bandgap_readl(bgp, reg); 144 } 145 146 /** 147 * ti_bandgap_read_temp() - helper function to read sensor temperature 148 * @bgp: pointer to ti_bandgap structure 149 * @id: bandgap sensor id 150 * 151 * Function to concentrate the steps to read sensor temperature register. 152 * This function is desired because, depending on bandgap device version, 153 * it might be needed to freeze the bandgap state machine, before fetching 154 * the register value. 155 * 156 * Return: temperature in ADC values. 157 */ 158 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id) 159 { 160 struct temp_sensor_registers *tsr; 161 u32 temp, reg; 162 163 tsr = bgp->conf->sensors[id].registers; 164 reg = tsr->temp_sensor_ctrl; 165 166 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 167 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 168 /* 169 * In case we cannot read from cur_dtemp / dtemp_0, 170 * then we read from the last valid temp read 171 */ 172 reg = tsr->ctrl_dtemp_1; 173 } 174 175 /* read temperature */ 176 if (TI_BANDGAP_HAS(bgp, ERRATA_814)) 177 temp = ti_errata814_bandgap_read_temp(bgp, reg); 178 else 179 temp = ti_bandgap_readl(bgp, reg); 180 181 temp &= tsr->bgap_dtemp_mask; 182 183 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) 184 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 185 186 return temp; 187 } 188 189 /*** IRQ handlers ***/ 190 191 /** 192 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs 193 * @irq: IRQ number 194 * @data: private data (struct ti_bandgap *) 195 * 196 * This is the Talert handler. Use it only if bandgap device features 197 * HAS(TALERT). This handler goes over all sensors and checks their 198 * conditions and acts accordingly. In case there are events pending, 199 * it will reset the event mask to wait for the opposite event (next event). 200 * Every time there is a new event, it will be reported to thermal layer. 201 * 202 * Return: IRQ_HANDLED 203 */ 204 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data) 205 { 206 struct ti_bandgap *bgp = data; 207 struct temp_sensor_registers *tsr; 208 u32 t_hot = 0, t_cold = 0, ctrl; 209 int i; 210 211 spin_lock(&bgp->lock); 212 for (i = 0; i < bgp->conf->sensor_count; i++) { 213 tsr = bgp->conf->sensors[i].registers; 214 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status); 215 216 /* Read the status of t_hot */ 217 t_hot = ctrl & tsr->status_hot_mask; 218 219 /* Read the status of t_cold */ 220 t_cold = ctrl & tsr->status_cold_mask; 221 222 if (!t_cold && !t_hot) 223 continue; 224 225 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 226 /* 227 * One TALERT interrupt: Two sources 228 * If the interrupt is due to t_hot then mask t_hot and 229 * unmask t_cold else mask t_cold and unmask t_hot 230 */ 231 if (t_hot) { 232 ctrl &= ~tsr->mask_hot_mask; 233 ctrl |= tsr->mask_cold_mask; 234 } else if (t_cold) { 235 ctrl &= ~tsr->mask_cold_mask; 236 ctrl |= tsr->mask_hot_mask; 237 } 238 239 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl); 240 241 dev_dbg(bgp->dev, 242 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n", 243 __func__, bgp->conf->sensors[i].domain, 244 t_hot, t_cold); 245 246 /* report temperature to whom may concern */ 247 if (bgp->conf->report_temperature) 248 bgp->conf->report_temperature(bgp, i); 249 } 250 spin_unlock(&bgp->lock); 251 252 return IRQ_HANDLED; 253 } 254 255 /** 256 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal 257 * @irq: IRQ number 258 * @data: private data (unused) 259 * 260 * This is the Tshut handler. Use it only if bandgap device features 261 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown 262 * the system. 263 * 264 * Return: IRQ_HANDLED 265 */ 266 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data) 267 { 268 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n", 269 __func__); 270 271 orderly_poweroff(true); 272 273 return IRQ_HANDLED; 274 } 275 276 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/ 277 278 /** 279 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale 280 * @bgp: struct ti_bandgap pointer 281 * @adc_val: value in ADC representation 282 * @t: address where to write the resulting temperature in mCelsius 283 * 284 * Simple conversion from ADC representation to mCelsius. In case the ADC value 285 * is out of the ADC conv table range, it returns -ERANGE, 0 on success. 286 * The conversion table is indexed by the ADC values. 287 * 288 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val 289 * argument is out of the ADC conv table range. 290 */ 291 static 292 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t) 293 { 294 const struct ti_bandgap_data *conf = bgp->conf; 295 296 /* look up for temperature in the table and return the temperature */ 297 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) 298 return -ERANGE; 299 300 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val]; 301 return 0; 302 } 303 304 /** 305 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap 306 * @bgp: struct ti_bandgap pointer 307 * @id: bandgap sensor id 308 * 309 * Checks if the bandgap pointer is valid and if the sensor id is also 310 * applicable. 311 * 312 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if 313 * @id cannot index @bgp sensors. 314 */ 315 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id) 316 { 317 if (IS_ERR_OR_NULL(bgp)) { 318 pr_err("%s: invalid bandgap pointer\n", __func__); 319 return -EINVAL; 320 } 321 322 if ((id < 0) || (id >= bgp->conf->sensor_count)) { 323 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n", 324 __func__, id); 325 return -ERANGE; 326 } 327 328 return 0; 329 } 330 331 /** 332 * ti_bandgap_read_counter() - read the sensor counter 333 * @bgp: pointer to bandgap instance 334 * @id: sensor id 335 * @interval: resulting update interval in miliseconds 336 */ 337 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id, 338 int *interval) 339 { 340 struct temp_sensor_registers *tsr; 341 int time; 342 343 tsr = bgp->conf->sensors[id].registers; 344 time = ti_bandgap_readl(bgp, tsr->bgap_counter); 345 time = (time & tsr->counter_mask) >> 346 __ffs(tsr->counter_mask); 347 time = time * 1000 / bgp->clk_rate; 348 *interval = time; 349 } 350 351 /** 352 * ti_bandgap_read_counter_delay() - read the sensor counter delay 353 * @bgp: pointer to bandgap instance 354 * @id: sensor id 355 * @interval: resulting update interval in miliseconds 356 */ 357 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id, 358 int *interval) 359 { 360 struct temp_sensor_registers *tsr; 361 int reg_val; 362 363 tsr = bgp->conf->sensors[id].registers; 364 365 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 366 reg_val = (reg_val & tsr->mask_counter_delay_mask) >> 367 __ffs(tsr->mask_counter_delay_mask); 368 switch (reg_val) { 369 case 0: 370 *interval = 0; 371 break; 372 case 1: 373 *interval = 1; 374 break; 375 case 2: 376 *interval = 10; 377 break; 378 case 3: 379 *interval = 100; 380 break; 381 case 4: 382 *interval = 250; 383 break; 384 case 5: 385 *interval = 500; 386 break; 387 default: 388 dev_warn(bgp->dev, "Wrong counter delay value read from register %X", 389 reg_val); 390 } 391 } 392 393 /** 394 * ti_bandgap_read_update_interval() - read the sensor update interval 395 * @bgp: pointer to bandgap instance 396 * @id: sensor id 397 * @interval: resulting update interval in miliseconds 398 * 399 * Return: 0 on success or the proper error code 400 */ 401 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id, 402 int *interval) 403 { 404 int ret = 0; 405 406 ret = ti_bandgap_validate(bgp, id); 407 if (ret) 408 goto exit; 409 410 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 411 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 412 ret = -ENOTSUPP; 413 goto exit; 414 } 415 416 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 417 ti_bandgap_read_counter(bgp, id, interval); 418 goto exit; 419 } 420 421 ti_bandgap_read_counter_delay(bgp, id, interval); 422 exit: 423 return ret; 424 } 425 426 /** 427 * ti_bandgap_write_counter_delay() - set the counter_delay 428 * @bgp: pointer to bandgap instance 429 * @id: sensor id 430 * @interval: desired update interval in miliseconds 431 * 432 * Return: 0 on success or the proper error code 433 */ 434 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id, 435 u32 interval) 436 { 437 int rval; 438 439 switch (interval) { 440 case 0: /* Immediate conversion */ 441 rval = 0x0; 442 break; 443 case 1: /* Conversion after ever 1ms */ 444 rval = 0x1; 445 break; 446 case 10: /* Conversion after ever 10ms */ 447 rval = 0x2; 448 break; 449 case 100: /* Conversion after ever 100ms */ 450 rval = 0x3; 451 break; 452 case 250: /* Conversion after ever 250ms */ 453 rval = 0x4; 454 break; 455 case 500: /* Conversion after ever 500ms */ 456 rval = 0x5; 457 break; 458 default: 459 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval); 460 return -EINVAL; 461 } 462 463 spin_lock(&bgp->lock); 464 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval); 465 spin_unlock(&bgp->lock); 466 467 return 0; 468 } 469 470 /** 471 * ti_bandgap_write_counter() - set the bandgap sensor counter 472 * @bgp: pointer to bandgap instance 473 * @id: sensor id 474 * @interval: desired update interval in miliseconds 475 */ 476 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id, 477 u32 interval) 478 { 479 interval = interval * bgp->clk_rate / 1000; 480 spin_lock(&bgp->lock); 481 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval); 482 spin_unlock(&bgp->lock); 483 } 484 485 /** 486 * ti_bandgap_write_update_interval() - set the update interval 487 * @bgp: pointer to bandgap instance 488 * @id: sensor id 489 * @interval: desired update interval in miliseconds 490 * 491 * Return: 0 on success or the proper error code 492 */ 493 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp, 494 int id, u32 interval) 495 { 496 int ret = ti_bandgap_validate(bgp, id); 497 if (ret) 498 goto exit; 499 500 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 501 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 502 ret = -ENOTSUPP; 503 goto exit; 504 } 505 506 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 507 ti_bandgap_write_counter(bgp, id, interval); 508 goto exit; 509 } 510 511 ret = ti_bandgap_write_counter_delay(bgp, id, interval); 512 exit: 513 return ret; 514 } 515 516 /** 517 * ti_bandgap_read_temperature() - report current temperature 518 * @bgp: pointer to bandgap instance 519 * @id: sensor id 520 * @temperature: resulting temperature 521 * 522 * Return: 0 on success or the proper error code 523 */ 524 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id, 525 int *temperature) 526 { 527 u32 temp; 528 int ret; 529 530 ret = ti_bandgap_validate(bgp, id); 531 if (ret) 532 return ret; 533 534 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) { 535 ret = ti_bandgap_force_single_read(bgp, id); 536 if (ret) 537 return ret; 538 } 539 540 spin_lock(&bgp->lock); 541 temp = ti_bandgap_read_temp(bgp, id); 542 spin_unlock(&bgp->lock); 543 544 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); 545 if (ret) 546 return -EIO; 547 548 *temperature = temp; 549 550 return 0; 551 } 552 553 /** 554 * ti_bandgap_set_sensor_data() - helper function to store thermal 555 * framework related data. 556 * @bgp: pointer to bandgap instance 557 * @id: sensor id 558 * @data: thermal framework related data to be stored 559 * 560 * Return: 0 on success or the proper error code 561 */ 562 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data) 563 { 564 int ret = ti_bandgap_validate(bgp, id); 565 if (ret) 566 return ret; 567 568 bgp->regval[id].data = data; 569 570 return 0; 571 } 572 573 /** 574 * ti_bandgap_get_sensor_data() - helper function to get thermal 575 * framework related data. 576 * @bgp: pointer to bandgap instance 577 * @id: sensor id 578 * 579 * Return: data stored by set function with sensor id on success or NULL 580 */ 581 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id) 582 { 583 int ret = ti_bandgap_validate(bgp, id); 584 if (ret) 585 return ERR_PTR(ret); 586 587 return bgp->regval[id].data; 588 } 589 590 /*** Helper functions used during device initialization ***/ 591 592 /** 593 * ti_bandgap_force_single_read() - executes 1 single ADC conversion 594 * @bgp: pointer to struct ti_bandgap 595 * @id: sensor id which it is desired to read 1 temperature 596 * 597 * Used to initialize the conversion state machine and set it to a valid 598 * state. Called during device initialization and context restore events. 599 * 600 * Return: 0 601 */ 602 static int 603 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id) 604 { 605 struct temp_sensor_registers *tsr = bgp->conf->sensors[id].registers; 606 void __iomem *temp_sensor_ctrl = bgp->base + tsr->temp_sensor_ctrl; 607 int error; 608 u32 val; 609 610 /* Select continuous or single conversion mode */ 611 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) { 612 if (TI_BANDGAP_HAS(bgp, CONT_MODE_ONLY)) 613 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 1); 614 else 615 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0); 616 } 617 618 /* Set Start of Conversion if available */ 619 if (tsr->bgap_soc_mask) { 620 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1); 621 622 /* Wait for EOCZ going up */ 623 error = readl_poll_timeout_atomic(temp_sensor_ctrl, val, 624 val & tsr->bgap_eocz_mask, 625 1, 1000); 626 if (error) 627 dev_warn(bgp->dev, "eocz timed out waiting high\n"); 628 629 /* Clear Start of Conversion if available */ 630 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0); 631 } 632 633 /* Wait for EOCZ going down, always needed even if no bgap_soc_mask */ 634 error = readl_poll_timeout_atomic(temp_sensor_ctrl, val, 635 !(val & tsr->bgap_eocz_mask), 636 1, 1500); 637 if (error) 638 dev_warn(bgp->dev, "eocz timed out waiting low\n"); 639 640 return 0; 641 } 642 643 /** 644 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode 645 * @bgp: pointer to struct ti_bandgap 646 * 647 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may 648 * be used for junction temperature monitoring, it is desirable that the 649 * sensors are operational all the time, so that alerts are generated 650 * properly. 651 * 652 * Return: 0 653 */ 654 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp) 655 { 656 int i; 657 658 for (i = 0; i < bgp->conf->sensor_count; i++) { 659 /* Perform a single read just before enabling continuous */ 660 ti_bandgap_force_single_read(bgp, i); 661 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1); 662 } 663 664 return 0; 665 } 666 667 /** 668 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor 669 * @bgp: pointer to struct ti_bandgap 670 * @id: id of the individual sensor 671 * @trend: Pointer to trend. 672 * 673 * This function needs to be called to fetch the temperature trend of a 674 * Particular sensor. The function computes the difference in temperature 675 * w.r.t time. For the bandgaps with built in history buffer the temperatures 676 * are read from the buffer and for those without the Buffer -ENOTSUPP is 677 * returned. 678 * 679 * Return: 0 if no error, else return corresponding error. If no 680 * error then the trend value is passed on to trend parameter 681 */ 682 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend) 683 { 684 struct temp_sensor_registers *tsr; 685 u32 temp1, temp2, reg1, reg2; 686 int t1, t2, interval, ret = 0; 687 688 ret = ti_bandgap_validate(bgp, id); 689 if (ret) 690 goto exit; 691 692 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) || 693 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 694 ret = -ENOTSUPP; 695 goto exit; 696 } 697 698 spin_lock(&bgp->lock); 699 700 tsr = bgp->conf->sensors[id].registers; 701 702 /* Freeze and read the last 2 valid readings */ 703 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 704 reg1 = tsr->ctrl_dtemp_1; 705 reg2 = tsr->ctrl_dtemp_2; 706 707 /* read temperature from history buffer */ 708 temp1 = ti_bandgap_readl(bgp, reg1); 709 temp1 &= tsr->bgap_dtemp_mask; 710 711 temp2 = ti_bandgap_readl(bgp, reg2); 712 temp2 &= tsr->bgap_dtemp_mask; 713 714 /* Convert from adc values to mCelsius temperature */ 715 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1); 716 if (ret) 717 goto unfreeze; 718 719 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2); 720 if (ret) 721 goto unfreeze; 722 723 /* Fetch the update interval */ 724 ret = ti_bandgap_read_update_interval(bgp, id, &interval); 725 if (ret) 726 goto unfreeze; 727 728 /* Set the interval to 1 ms if bandgap counter delay is not set */ 729 if (interval == 0) 730 interval = 1; 731 732 *trend = (t1 - t2) / interval; 733 734 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n", 735 t1, t2, *trend); 736 737 unfreeze: 738 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 739 spin_unlock(&bgp->lock); 740 exit: 741 return ret; 742 } 743 744 /** 745 * ti_bandgap_tshut_init() - setup and initialize tshut handling 746 * @bgp: pointer to struct ti_bandgap 747 * @pdev: pointer to device struct platform_device 748 * 749 * Call this function only in case the bandgap features HAS(TSHUT). 750 * In this case, the driver needs to handle the TSHUT signal as an IRQ. 751 * The IRQ is wired as a GPIO, and for this purpose, it is required 752 * to specify which GPIO line is used. TSHUT IRQ is fired anytime 753 * one of the bandgap sensors violates the TSHUT high/hot threshold. 754 * And in that case, the system must go off. 755 * 756 * Return: 0 if no error, else error status 757 */ 758 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp, 759 struct platform_device *pdev) 760 { 761 int status; 762 763 status = request_irq(gpiod_to_irq(bgp->tshut_gpiod), 764 ti_bandgap_tshut_irq_handler, 765 IRQF_TRIGGER_RISING, "tshut", NULL); 766 if (status) 767 dev_err(bgp->dev, "request irq failed for TSHUT"); 768 769 return 0; 770 } 771 772 /** 773 * ti_bandgap_talert_init() - setup and initialize talert handling 774 * @bgp: pointer to struct ti_bandgap 775 * @pdev: pointer to device struct platform_device 776 * 777 * Call this function only in case the bandgap features HAS(TALERT). 778 * In this case, the driver needs to handle the TALERT signals as an IRQs. 779 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold) 780 * are violated. In these situation, the driver must reprogram the thresholds, 781 * accordingly to specified policy. 782 * 783 * Return: 0 if no error, else return corresponding error. 784 */ 785 static int ti_bandgap_talert_init(struct ti_bandgap *bgp, 786 struct platform_device *pdev) 787 { 788 int ret; 789 790 bgp->irq = platform_get_irq(pdev, 0); 791 if (bgp->irq < 0) 792 return bgp->irq; 793 794 ret = request_threaded_irq(bgp->irq, NULL, 795 ti_bandgap_talert_irq_handler, 796 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 797 "talert", bgp); 798 if (ret) { 799 dev_err(&pdev->dev, "Request threaded irq failed.\n"); 800 return ret; 801 } 802 803 return 0; 804 } 805 806 static const struct of_device_id of_ti_bandgap_match[]; 807 /** 808 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap 809 * @pdev: pointer to device struct platform_device 810 * 811 * Used to read the device tree properties accordingly to the bandgap 812 * matching version. Based on bandgap version and its capabilities it 813 * will build a struct ti_bandgap out of the required DT entries. 814 * 815 * Return: valid bandgap structure if successful, else returns ERR_PTR 816 * return value must be verified with IS_ERR. 817 */ 818 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev) 819 { 820 struct device_node *node = pdev->dev.of_node; 821 const struct of_device_id *of_id; 822 struct ti_bandgap *bgp; 823 struct resource *res; 824 int i; 825 826 /* just for the sake */ 827 if (!node) { 828 dev_err(&pdev->dev, "no platform information available\n"); 829 return ERR_PTR(-EINVAL); 830 } 831 832 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL); 833 if (!bgp) 834 return ERR_PTR(-ENOMEM); 835 836 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev); 837 if (of_id) 838 bgp->conf = of_id->data; 839 840 /* register shadow for context save and restore */ 841 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count, 842 sizeof(*bgp->regval), GFP_KERNEL); 843 if (!bgp->regval) 844 return ERR_PTR(-ENOMEM); 845 846 i = 0; 847 do { 848 void __iomem *chunk; 849 850 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 851 if (!res) 852 break; 853 chunk = devm_ioremap_resource(&pdev->dev, res); 854 if (i == 0) 855 bgp->base = chunk; 856 if (IS_ERR(chunk)) 857 return ERR_CAST(chunk); 858 859 i++; 860 } while (res); 861 862 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 863 bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN); 864 if (IS_ERR(bgp->tshut_gpiod)) { 865 dev_err(&pdev->dev, "invalid gpio for tshut\n"); 866 return ERR_CAST(bgp->tshut_gpiod); 867 } 868 } 869 870 return bgp; 871 } 872 873 /* 874 * List of SoCs on which the CPU PM notifier can cause erros on the DTEMP 875 * readout. 876 * Enabled notifier on these machines results in erroneous, random values which 877 * could trigger unexpected thermal shutdown. 878 */ 879 static const struct soc_device_attribute soc_no_cpu_notifier[] = { 880 { .machine = "OMAP4430" }, 881 { /* sentinel */ } 882 }; 883 884 /*** Device driver call backs ***/ 885 886 static 887 int ti_bandgap_probe(struct platform_device *pdev) 888 { 889 struct ti_bandgap *bgp; 890 int clk_rate, ret, i; 891 892 bgp = ti_bandgap_build(pdev); 893 if (IS_ERR(bgp)) { 894 dev_err(&pdev->dev, "failed to fetch platform data\n"); 895 return PTR_ERR(bgp); 896 } 897 bgp->dev = &pdev->dev; 898 899 if (TI_BANDGAP_HAS(bgp, UNRELIABLE)) 900 dev_warn(&pdev->dev, 901 "This OMAP thermal sensor is unreliable. You've been warned\n"); 902 903 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 904 ret = ti_bandgap_tshut_init(bgp, pdev); 905 if (ret) { 906 dev_err(&pdev->dev, 907 "failed to initialize system tshut IRQ\n"); 908 return ret; 909 } 910 } 911 912 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name); 913 if (IS_ERR(bgp->fclock)) { 914 dev_err(&pdev->dev, "failed to request fclock reference\n"); 915 ret = PTR_ERR(bgp->fclock); 916 goto free_irqs; 917 } 918 919 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name); 920 if (IS_ERR(bgp->div_clk)) { 921 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n"); 922 ret = PTR_ERR(bgp->div_clk); 923 goto put_fclock; 924 } 925 926 for (i = 0; i < bgp->conf->sensor_count; i++) { 927 struct temp_sensor_registers *tsr; 928 u32 val; 929 930 tsr = bgp->conf->sensors[i].registers; 931 /* 932 * check if the efuse has a non-zero value if not 933 * it is an untrimmed sample and the temperatures 934 * may not be accurate 935 */ 936 val = ti_bandgap_readl(bgp, tsr->bgap_efuse); 937 if (!val) 938 dev_info(&pdev->dev, 939 "Non-trimmed BGAP, Temp not accurate\n"); 940 } 941 942 clk_rate = clk_round_rate(bgp->div_clk, 943 bgp->conf->sensors[0].ts_data->max_freq); 944 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq || 945 clk_rate <= 0) { 946 ret = -ENODEV; 947 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate); 948 goto put_clks; 949 } 950 951 ret = clk_set_rate(bgp->div_clk, clk_rate); 952 if (ret) 953 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n"); 954 955 bgp->clk_rate = clk_rate; 956 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 957 clk_prepare_enable(bgp->fclock); 958 959 960 spin_lock_init(&bgp->lock); 961 bgp->dev = &pdev->dev; 962 platform_set_drvdata(pdev, bgp); 963 964 ti_bandgap_power(bgp, true); 965 966 /* Set default counter to 1 for now */ 967 if (TI_BANDGAP_HAS(bgp, COUNTER)) 968 for (i = 0; i < bgp->conf->sensor_count; i++) 969 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1); 970 971 /* Set default thresholds for alert and shutdown */ 972 for (i = 0; i < bgp->conf->sensor_count; i++) { 973 struct temp_sensor_data *ts_data; 974 975 ts_data = bgp->conf->sensors[i].ts_data; 976 977 if (TI_BANDGAP_HAS(bgp, TALERT)) { 978 /* Set initial Talert thresholds */ 979 RMW_BITS(bgp, i, bgap_threshold, 980 threshold_tcold_mask, ts_data->t_cold); 981 RMW_BITS(bgp, i, bgap_threshold, 982 threshold_thot_mask, ts_data->t_hot); 983 /* Enable the alert events */ 984 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1); 985 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1); 986 } 987 988 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) { 989 /* Set initial Tshut thresholds */ 990 RMW_BITS(bgp, i, tshut_threshold, 991 tshut_hot_mask, ts_data->tshut_hot); 992 RMW_BITS(bgp, i, tshut_threshold, 993 tshut_cold_mask, ts_data->tshut_cold); 994 } 995 } 996 997 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 998 ti_bandgap_set_continuous_mode(bgp); 999 1000 /* Set .250 seconds time as default counter */ 1001 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1002 for (i = 0; i < bgp->conf->sensor_count; i++) 1003 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1004 bgp->clk_rate / 4); 1005 1006 /* Every thing is good? Then expose the sensors */ 1007 for (i = 0; i < bgp->conf->sensor_count; i++) { 1008 char *domain; 1009 1010 if (bgp->conf->sensors[i].register_cooling) { 1011 ret = bgp->conf->sensors[i].register_cooling(bgp, i); 1012 if (ret) 1013 goto remove_sensors; 1014 } 1015 1016 if (bgp->conf->expose_sensor) { 1017 domain = bgp->conf->sensors[i].domain; 1018 ret = bgp->conf->expose_sensor(bgp, i, domain); 1019 if (ret) 1020 goto remove_last_cooling; 1021 } 1022 } 1023 1024 /* 1025 * Enable the Interrupts once everything is set. Otherwise irq handler 1026 * might be called as soon as it is enabled where as rest of framework 1027 * is still getting initialised. 1028 */ 1029 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1030 ret = ti_bandgap_talert_init(bgp, pdev); 1031 if (ret) { 1032 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n"); 1033 i = bgp->conf->sensor_count; 1034 goto disable_clk; 1035 } 1036 } 1037 1038 #ifdef CONFIG_PM_SLEEP 1039 bgp->nb.notifier_call = bandgap_omap_cpu_notifier; 1040 if (!soc_device_match(soc_no_cpu_notifier)) 1041 cpu_pm_register_notifier(&bgp->nb); 1042 #endif 1043 1044 return 0; 1045 1046 remove_last_cooling: 1047 if (bgp->conf->sensors[i].unregister_cooling) 1048 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1049 remove_sensors: 1050 for (i--; i >= 0; i--) { 1051 if (bgp->conf->sensors[i].unregister_cooling) 1052 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1053 if (bgp->conf->remove_sensor) 1054 bgp->conf->remove_sensor(bgp, i); 1055 } 1056 ti_bandgap_power(bgp, false); 1057 disable_clk: 1058 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1059 clk_disable_unprepare(bgp->fclock); 1060 put_clks: 1061 clk_put(bgp->div_clk); 1062 put_fclock: 1063 clk_put(bgp->fclock); 1064 free_irqs: 1065 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1066 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1067 1068 return ret; 1069 } 1070 1071 static 1072 int ti_bandgap_remove(struct platform_device *pdev) 1073 { 1074 struct ti_bandgap *bgp = platform_get_drvdata(pdev); 1075 int i; 1076 1077 if (!soc_device_match(soc_no_cpu_notifier)) 1078 cpu_pm_unregister_notifier(&bgp->nb); 1079 1080 /* Remove sensor interfaces */ 1081 for (i = 0; i < bgp->conf->sensor_count; i++) { 1082 if (bgp->conf->sensors[i].unregister_cooling) 1083 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1084 1085 if (bgp->conf->remove_sensor) 1086 bgp->conf->remove_sensor(bgp, i); 1087 } 1088 1089 ti_bandgap_power(bgp, false); 1090 1091 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1092 clk_disable_unprepare(bgp->fclock); 1093 clk_put(bgp->fclock); 1094 clk_put(bgp->div_clk); 1095 1096 if (TI_BANDGAP_HAS(bgp, TALERT)) 1097 free_irq(bgp->irq, bgp); 1098 1099 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1100 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1101 1102 return 0; 1103 } 1104 1105 #ifdef CONFIG_PM_SLEEP 1106 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp) 1107 { 1108 int i; 1109 1110 for (i = 0; i < bgp->conf->sensor_count; i++) { 1111 struct temp_sensor_registers *tsr; 1112 struct temp_sensor_regval *rval; 1113 1114 rval = &bgp->regval[i]; 1115 tsr = bgp->conf->sensors[i].registers; 1116 1117 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1118 rval->bg_mode_ctrl = ti_bandgap_readl(bgp, 1119 tsr->bgap_mode_ctrl); 1120 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1121 rval->bg_counter = ti_bandgap_readl(bgp, 1122 tsr->bgap_counter); 1123 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1124 rval->bg_threshold = ti_bandgap_readl(bgp, 1125 tsr->bgap_threshold); 1126 rval->bg_ctrl = ti_bandgap_readl(bgp, 1127 tsr->bgap_mask_ctrl); 1128 } 1129 1130 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1131 rval->tshut_threshold = ti_bandgap_readl(bgp, 1132 tsr->tshut_threshold); 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp) 1139 { 1140 int i; 1141 1142 for (i = 0; i < bgp->conf->sensor_count; i++) { 1143 struct temp_sensor_registers *tsr; 1144 struct temp_sensor_regval *rval; 1145 1146 rval = &bgp->regval[i]; 1147 tsr = bgp->conf->sensors[i].registers; 1148 1149 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1150 ti_bandgap_writel(bgp, rval->tshut_threshold, 1151 tsr->tshut_threshold); 1152 /* Force immediate temperature measurement and update 1153 * of the DTEMP field 1154 */ 1155 ti_bandgap_force_single_read(bgp, i); 1156 1157 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1158 ti_bandgap_writel(bgp, rval->bg_counter, 1159 tsr->bgap_counter); 1160 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1161 ti_bandgap_writel(bgp, rval->bg_mode_ctrl, 1162 tsr->bgap_mode_ctrl); 1163 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1164 ti_bandgap_writel(bgp, rval->bg_threshold, 1165 tsr->bgap_threshold); 1166 ti_bandgap_writel(bgp, rval->bg_ctrl, 1167 tsr->bgap_mask_ctrl); 1168 } 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int ti_bandgap_suspend(struct device *dev) 1175 { 1176 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1177 int err; 1178 1179 err = ti_bandgap_save_ctxt(bgp); 1180 ti_bandgap_power(bgp, false); 1181 1182 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1183 clk_disable_unprepare(bgp->fclock); 1184 1185 bgp->is_suspended = true; 1186 1187 return err; 1188 } 1189 1190 static int bandgap_omap_cpu_notifier(struct notifier_block *nb, 1191 unsigned long cmd, void *v) 1192 { 1193 struct ti_bandgap *bgp; 1194 1195 bgp = container_of(nb, struct ti_bandgap, nb); 1196 1197 spin_lock(&bgp->lock); 1198 switch (cmd) { 1199 case CPU_CLUSTER_PM_ENTER: 1200 if (bgp->is_suspended) 1201 break; 1202 ti_bandgap_save_ctxt(bgp); 1203 ti_bandgap_power(bgp, false); 1204 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1205 clk_disable(bgp->fclock); 1206 break; 1207 case CPU_CLUSTER_PM_ENTER_FAILED: 1208 case CPU_CLUSTER_PM_EXIT: 1209 if (bgp->is_suspended) 1210 break; 1211 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1212 clk_enable(bgp->fclock); 1213 ti_bandgap_power(bgp, true); 1214 ti_bandgap_restore_ctxt(bgp); 1215 break; 1216 } 1217 spin_unlock(&bgp->lock); 1218 1219 return NOTIFY_OK; 1220 } 1221 1222 static int ti_bandgap_resume(struct device *dev) 1223 { 1224 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1225 1226 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1227 clk_prepare_enable(bgp->fclock); 1228 1229 ti_bandgap_power(bgp, true); 1230 bgp->is_suspended = false; 1231 1232 return ti_bandgap_restore_ctxt(bgp); 1233 } 1234 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend, 1235 ti_bandgap_resume); 1236 1237 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops) 1238 #else 1239 #define DEV_PM_OPS NULL 1240 #endif 1241 1242 static const struct of_device_id of_ti_bandgap_match[] = { 1243 #ifdef CONFIG_OMAP3_THERMAL 1244 { 1245 .compatible = "ti,omap34xx-bandgap", 1246 .data = (void *)&omap34xx_data, 1247 }, 1248 { 1249 .compatible = "ti,omap36xx-bandgap", 1250 .data = (void *)&omap36xx_data, 1251 }, 1252 #endif 1253 #ifdef CONFIG_OMAP4_THERMAL 1254 { 1255 .compatible = "ti,omap4430-bandgap", 1256 .data = (void *)&omap4430_data, 1257 }, 1258 { 1259 .compatible = "ti,omap4460-bandgap", 1260 .data = (void *)&omap4460_data, 1261 }, 1262 { 1263 .compatible = "ti,omap4470-bandgap", 1264 .data = (void *)&omap4470_data, 1265 }, 1266 #endif 1267 #ifdef CONFIG_OMAP5_THERMAL 1268 { 1269 .compatible = "ti,omap5430-bandgap", 1270 .data = (void *)&omap5430_data, 1271 }, 1272 #endif 1273 #ifdef CONFIG_DRA752_THERMAL 1274 { 1275 .compatible = "ti,dra752-bandgap", 1276 .data = (void *)&dra752_data, 1277 }, 1278 #endif 1279 /* Sentinel */ 1280 { }, 1281 }; 1282 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match); 1283 1284 static struct platform_driver ti_bandgap_sensor_driver = { 1285 .probe = ti_bandgap_probe, 1286 .remove = ti_bandgap_remove, 1287 .driver = { 1288 .name = "ti-soc-thermal", 1289 .pm = DEV_PM_OPS, 1290 .of_match_table = of_ti_bandgap_match, 1291 }, 1292 }; 1293 1294 module_platform_driver(ti_bandgap_sensor_driver); 1295 1296 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver"); 1297 MODULE_LICENSE("GPL v2"); 1298 MODULE_ALIAS("platform:ti-soc-thermal"); 1299 MODULE_AUTHOR("Texas Instrument Inc."); 1300