1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Bandgap temperature sensor driver 4 * 5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/ 6 * Author: J Keerthy <j-keerthy@ti.com> 7 * Author: Moiz Sonasath <m-sonasath@ti.com> 8 * Couple of fixes, DT and MFD adaptation: 9 * Eduardo Valentin <eduardo.valentin@ti.com> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/export.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/interrupt.h> 17 #include <linux/clk.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/platform_device.h> 20 #include <linux/err.h> 21 #include <linux/types.h> 22 #include <linux/spinlock.h> 23 #include <linux/reboot.h> 24 #include <linux/of_device.h> 25 #include <linux/of_platform.h> 26 #include <linux/of_irq.h> 27 #include <linux/io.h> 28 #include <linux/cpu_pm.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pm.h> 32 #include <linux/of.h> 33 #include <linux/of_device.h> 34 35 #include "ti-bandgap.h" 36 37 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id); 38 #ifdef CONFIG_PM_SLEEP 39 static int bandgap_omap_cpu_notifier(struct notifier_block *nb, 40 unsigned long cmd, void *v); 41 #endif 42 43 /*** Helper functions to access registers and their bitfields ***/ 44 45 /** 46 * ti_bandgap_readl() - simple read helper function 47 * @bgp: pointer to ti_bandgap structure 48 * @reg: desired register (offset) to be read 49 * 50 * Helper function to read bandgap registers. It uses the io remapped area. 51 * Return: the register value. 52 */ 53 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg) 54 { 55 return readl(bgp->base + reg); 56 } 57 58 /** 59 * ti_bandgap_writel() - simple write helper function 60 * @bgp: pointer to ti_bandgap structure 61 * @val: desired register value to be written 62 * @reg: desired register (offset) to be written 63 * 64 * Helper function to write bandgap registers. It uses the io remapped area. 65 */ 66 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg) 67 { 68 writel(val, bgp->base + reg); 69 } 70 71 /** 72 * DOC: macro to update bits. 73 * 74 * RMW_BITS() - used to read, modify and update bandgap bitfields. 75 * The value passed will be shifted. 76 */ 77 #define RMW_BITS(bgp, id, reg, mask, val) \ 78 do { \ 79 struct temp_sensor_registers *t; \ 80 u32 r; \ 81 \ 82 t = bgp->conf->sensors[(id)].registers; \ 83 r = ti_bandgap_readl(bgp, t->reg); \ 84 r &= ~t->mask; \ 85 r |= (val) << __ffs(t->mask); \ 86 ti_bandgap_writel(bgp, r, t->reg); \ 87 } while (0) 88 89 /*** Basic helper functions ***/ 90 91 /** 92 * ti_bandgap_power() - controls the power state of a bandgap device 93 * @bgp: pointer to ti_bandgap structure 94 * @on: desired power state (1 - on, 0 - off) 95 * 96 * Used to power on/off a bandgap device instance. Only used on those 97 * that features tempsoff bit. 98 * 99 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported. 100 */ 101 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on) 102 { 103 int i; 104 105 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) 106 return -ENOTSUPP; 107 108 for (i = 0; i < bgp->conf->sensor_count; i++) 109 /* active on 0 */ 110 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on); 111 return 0; 112 } 113 114 /** 115 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature 116 * @bgp: pointer to ti_bandgap structure 117 * @reg: desired register (offset) to be read 118 * 119 * Function to read dra7 bandgap sensor temperature. This is done separately 120 * so as to workaround the errata "Bandgap Temperature read Dtemp can be 121 * corrupted" - Errata ID: i814". 122 * Read accesses to registers listed below can be corrupted due to incorrect 123 * resynchronization between clock domains. 124 * Read access to registers below can be corrupted : 125 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4) 126 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n 127 * 128 * Return: the register value. 129 */ 130 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg) 131 { 132 u32 val1, val2; 133 134 val1 = ti_bandgap_readl(bgp, reg); 135 val2 = ti_bandgap_readl(bgp, reg); 136 137 /* If both times we read the same value then that is right */ 138 if (val1 == val2) 139 return val1; 140 141 /* if val1 and val2 are different read it third time */ 142 return ti_bandgap_readl(bgp, reg); 143 } 144 145 /** 146 * ti_bandgap_read_temp() - helper function to read sensor temperature 147 * @bgp: pointer to ti_bandgap structure 148 * @id: bandgap sensor id 149 * 150 * Function to concentrate the steps to read sensor temperature register. 151 * This function is desired because, depending on bandgap device version, 152 * it might be needed to freeze the bandgap state machine, before fetching 153 * the register value. 154 * 155 * Return: temperature in ADC values. 156 */ 157 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id) 158 { 159 struct temp_sensor_registers *tsr; 160 u32 temp, reg; 161 162 tsr = bgp->conf->sensors[id].registers; 163 reg = tsr->temp_sensor_ctrl; 164 165 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 166 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 167 /* 168 * In case we cannot read from cur_dtemp / dtemp_0, 169 * then we read from the last valid temp read 170 */ 171 reg = tsr->ctrl_dtemp_1; 172 } 173 174 /* read temperature */ 175 if (TI_BANDGAP_HAS(bgp, ERRATA_814)) 176 temp = ti_errata814_bandgap_read_temp(bgp, reg); 177 else 178 temp = ti_bandgap_readl(bgp, reg); 179 180 temp &= tsr->bgap_dtemp_mask; 181 182 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) 183 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 184 185 return temp; 186 } 187 188 /*** IRQ handlers ***/ 189 190 /** 191 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs 192 * @irq: IRQ number 193 * @data: private data (struct ti_bandgap *) 194 * 195 * This is the Talert handler. Use it only if bandgap device features 196 * HAS(TALERT). This handler goes over all sensors and checks their 197 * conditions and acts accordingly. In case there are events pending, 198 * it will reset the event mask to wait for the opposite event (next event). 199 * Every time there is a new event, it will be reported to thermal layer. 200 * 201 * Return: IRQ_HANDLED 202 */ 203 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data) 204 { 205 struct ti_bandgap *bgp = data; 206 struct temp_sensor_registers *tsr; 207 u32 t_hot = 0, t_cold = 0, ctrl; 208 int i; 209 210 spin_lock(&bgp->lock); 211 for (i = 0; i < bgp->conf->sensor_count; i++) { 212 tsr = bgp->conf->sensors[i].registers; 213 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status); 214 215 /* Read the status of t_hot */ 216 t_hot = ctrl & tsr->status_hot_mask; 217 218 /* Read the status of t_cold */ 219 t_cold = ctrl & tsr->status_cold_mask; 220 221 if (!t_cold && !t_hot) 222 continue; 223 224 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 225 /* 226 * One TALERT interrupt: Two sources 227 * If the interrupt is due to t_hot then mask t_hot and 228 * and unmask t_cold else mask t_cold and unmask t_hot 229 */ 230 if (t_hot) { 231 ctrl &= ~tsr->mask_hot_mask; 232 ctrl |= tsr->mask_cold_mask; 233 } else if (t_cold) { 234 ctrl &= ~tsr->mask_cold_mask; 235 ctrl |= tsr->mask_hot_mask; 236 } 237 238 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl); 239 240 dev_dbg(bgp->dev, 241 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n", 242 __func__, bgp->conf->sensors[i].domain, 243 t_hot, t_cold); 244 245 /* report temperature to whom may concern */ 246 if (bgp->conf->report_temperature) 247 bgp->conf->report_temperature(bgp, i); 248 } 249 spin_unlock(&bgp->lock); 250 251 return IRQ_HANDLED; 252 } 253 254 /** 255 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal 256 * @irq: IRQ number 257 * @data: private data (unused) 258 * 259 * This is the Tshut handler. Use it only if bandgap device features 260 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown 261 * the system. 262 * 263 * Return: IRQ_HANDLED 264 */ 265 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data) 266 { 267 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n", 268 __func__); 269 270 orderly_poweroff(true); 271 272 return IRQ_HANDLED; 273 } 274 275 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/ 276 277 /** 278 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale 279 * @bgp: struct ti_bandgap pointer 280 * @adc_val: value in ADC representation 281 * @t: address where to write the resulting temperature in mCelsius 282 * 283 * Simple conversion from ADC representation to mCelsius. In case the ADC value 284 * is out of the ADC conv table range, it returns -ERANGE, 0 on success. 285 * The conversion table is indexed by the ADC values. 286 * 287 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val 288 * argument is out of the ADC conv table range. 289 */ 290 static 291 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t) 292 { 293 const struct ti_bandgap_data *conf = bgp->conf; 294 295 /* look up for temperature in the table and return the temperature */ 296 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) 297 return -ERANGE; 298 299 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val]; 300 return 0; 301 } 302 303 /** 304 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap 305 * @bgp: struct ti_bandgap pointer 306 * @id: bandgap sensor id 307 * 308 * Checks if the bandgap pointer is valid and if the sensor id is also 309 * applicable. 310 * 311 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if 312 * @id cannot index @bgp sensors. 313 */ 314 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id) 315 { 316 if (!bgp || IS_ERR(bgp)) { 317 pr_err("%s: invalid bandgap pointer\n", __func__); 318 return -EINVAL; 319 } 320 321 if ((id < 0) || (id >= bgp->conf->sensor_count)) { 322 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n", 323 __func__, id); 324 return -ERANGE; 325 } 326 327 return 0; 328 } 329 330 /** 331 * ti_bandgap_read_counter() - read the sensor counter 332 * @bgp: pointer to bandgap instance 333 * @id: sensor id 334 * @interval: resulting update interval in miliseconds 335 */ 336 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id, 337 int *interval) 338 { 339 struct temp_sensor_registers *tsr; 340 int time; 341 342 tsr = bgp->conf->sensors[id].registers; 343 time = ti_bandgap_readl(bgp, tsr->bgap_counter); 344 time = (time & tsr->counter_mask) >> 345 __ffs(tsr->counter_mask); 346 time = time * 1000 / bgp->clk_rate; 347 *interval = time; 348 } 349 350 /** 351 * ti_bandgap_read_counter_delay() - read the sensor counter delay 352 * @bgp: pointer to bandgap instance 353 * @id: sensor id 354 * @interval: resulting update interval in miliseconds 355 */ 356 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id, 357 int *interval) 358 { 359 struct temp_sensor_registers *tsr; 360 int reg_val; 361 362 tsr = bgp->conf->sensors[id].registers; 363 364 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 365 reg_val = (reg_val & tsr->mask_counter_delay_mask) >> 366 __ffs(tsr->mask_counter_delay_mask); 367 switch (reg_val) { 368 case 0: 369 *interval = 0; 370 break; 371 case 1: 372 *interval = 1; 373 break; 374 case 2: 375 *interval = 10; 376 break; 377 case 3: 378 *interval = 100; 379 break; 380 case 4: 381 *interval = 250; 382 break; 383 case 5: 384 *interval = 500; 385 break; 386 default: 387 dev_warn(bgp->dev, "Wrong counter delay value read from register %X", 388 reg_val); 389 } 390 } 391 392 /** 393 * ti_bandgap_read_update_interval() - read the sensor update interval 394 * @bgp: pointer to bandgap instance 395 * @id: sensor id 396 * @interval: resulting update interval in miliseconds 397 * 398 * Return: 0 on success or the proper error code 399 */ 400 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id, 401 int *interval) 402 { 403 int ret = 0; 404 405 ret = ti_bandgap_validate(bgp, id); 406 if (ret) 407 goto exit; 408 409 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 410 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 411 ret = -ENOTSUPP; 412 goto exit; 413 } 414 415 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 416 ti_bandgap_read_counter(bgp, id, interval); 417 goto exit; 418 } 419 420 ti_bandgap_read_counter_delay(bgp, id, interval); 421 exit: 422 return ret; 423 } 424 425 /** 426 * ti_bandgap_write_counter_delay() - set the counter_delay 427 * @bgp: pointer to bandgap instance 428 * @id: sensor id 429 * @interval: desired update interval in miliseconds 430 * 431 * Return: 0 on success or the proper error code 432 */ 433 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id, 434 u32 interval) 435 { 436 int rval; 437 438 switch (interval) { 439 case 0: /* Immediate conversion */ 440 rval = 0x0; 441 break; 442 case 1: /* Conversion after ever 1ms */ 443 rval = 0x1; 444 break; 445 case 10: /* Conversion after ever 10ms */ 446 rval = 0x2; 447 break; 448 case 100: /* Conversion after ever 100ms */ 449 rval = 0x3; 450 break; 451 case 250: /* Conversion after ever 250ms */ 452 rval = 0x4; 453 break; 454 case 500: /* Conversion after ever 500ms */ 455 rval = 0x5; 456 break; 457 default: 458 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval); 459 return -EINVAL; 460 } 461 462 spin_lock(&bgp->lock); 463 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval); 464 spin_unlock(&bgp->lock); 465 466 return 0; 467 } 468 469 /** 470 * ti_bandgap_write_counter() - set the bandgap sensor counter 471 * @bgp: pointer to bandgap instance 472 * @id: sensor id 473 * @interval: desired update interval in miliseconds 474 */ 475 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id, 476 u32 interval) 477 { 478 interval = interval * bgp->clk_rate / 1000; 479 spin_lock(&bgp->lock); 480 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval); 481 spin_unlock(&bgp->lock); 482 } 483 484 /** 485 * ti_bandgap_write_update_interval() - set the update interval 486 * @bgp: pointer to bandgap instance 487 * @id: sensor id 488 * @interval: desired update interval in miliseconds 489 * 490 * Return: 0 on success or the proper error code 491 */ 492 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp, 493 int id, u32 interval) 494 { 495 int ret = ti_bandgap_validate(bgp, id); 496 if (ret) 497 goto exit; 498 499 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 500 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 501 ret = -ENOTSUPP; 502 goto exit; 503 } 504 505 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 506 ti_bandgap_write_counter(bgp, id, interval); 507 goto exit; 508 } 509 510 ret = ti_bandgap_write_counter_delay(bgp, id, interval); 511 exit: 512 return ret; 513 } 514 515 /** 516 * ti_bandgap_read_temperature() - report current temperature 517 * @bgp: pointer to bandgap instance 518 * @id: sensor id 519 * @temperature: resulting temperature 520 * 521 * Return: 0 on success or the proper error code 522 */ 523 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id, 524 int *temperature) 525 { 526 u32 temp; 527 int ret; 528 529 ret = ti_bandgap_validate(bgp, id); 530 if (ret) 531 return ret; 532 533 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) { 534 ret = ti_bandgap_force_single_read(bgp, id); 535 if (ret) 536 return ret; 537 } 538 539 spin_lock(&bgp->lock); 540 temp = ti_bandgap_read_temp(bgp, id); 541 spin_unlock(&bgp->lock); 542 543 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); 544 if (ret) 545 return -EIO; 546 547 *temperature = temp; 548 549 return 0; 550 } 551 552 /** 553 * ti_bandgap_set_sensor_data() - helper function to store thermal 554 * framework related data. 555 * @bgp: pointer to bandgap instance 556 * @id: sensor id 557 * @data: thermal framework related data to be stored 558 * 559 * Return: 0 on success or the proper error code 560 */ 561 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data) 562 { 563 int ret = ti_bandgap_validate(bgp, id); 564 if (ret) 565 return ret; 566 567 bgp->regval[id].data = data; 568 569 return 0; 570 } 571 572 /** 573 * ti_bandgap_get_sensor_data() - helper function to get thermal 574 * framework related data. 575 * @bgp: pointer to bandgap instance 576 * @id: sensor id 577 * 578 * Return: data stored by set function with sensor id on success or NULL 579 */ 580 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id) 581 { 582 int ret = ti_bandgap_validate(bgp, id); 583 if (ret) 584 return ERR_PTR(ret); 585 586 return bgp->regval[id].data; 587 } 588 589 /*** Helper functions used during device initialization ***/ 590 591 /** 592 * ti_bandgap_force_single_read() - executes 1 single ADC conversion 593 * @bgp: pointer to struct ti_bandgap 594 * @id: sensor id which it is desired to read 1 temperature 595 * 596 * Used to initialize the conversion state machine and set it to a valid 597 * state. Called during device initialization and context restore events. 598 * 599 * Return: 0 600 */ 601 static int 602 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id) 603 { 604 u32 counter = 1000; 605 struct temp_sensor_registers *tsr; 606 607 /* Select single conversion mode */ 608 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 609 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0); 610 611 /* Start of Conversion = 1 */ 612 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1); 613 614 /* Wait for EOCZ going up */ 615 tsr = bgp->conf->sensors[id].registers; 616 617 while (--counter) { 618 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 619 tsr->bgap_eocz_mask) 620 break; 621 } 622 623 /* Start of Conversion = 0 */ 624 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0); 625 626 /* Wait for EOCZ going down */ 627 counter = 1000; 628 while (--counter) { 629 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 630 tsr->bgap_eocz_mask)) 631 break; 632 } 633 634 return 0; 635 } 636 637 /** 638 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode 639 * @bgp: pointer to struct ti_bandgap 640 * 641 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may 642 * be used for junction temperature monitoring, it is desirable that the 643 * sensors are operational all the time, so that alerts are generated 644 * properly. 645 * 646 * Return: 0 647 */ 648 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp) 649 { 650 int i; 651 652 for (i = 0; i < bgp->conf->sensor_count; i++) { 653 /* Perform a single read just before enabling continuous */ 654 ti_bandgap_force_single_read(bgp, i); 655 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1); 656 } 657 658 return 0; 659 } 660 661 /** 662 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor 663 * @bgp: pointer to struct ti_bandgap 664 * @id: id of the individual sensor 665 * @trend: Pointer to trend. 666 * 667 * This function needs to be called to fetch the temperature trend of a 668 * Particular sensor. The function computes the difference in temperature 669 * w.r.t time. For the bandgaps with built in history buffer the temperatures 670 * are read from the buffer and for those without the Buffer -ENOTSUPP is 671 * returned. 672 * 673 * Return: 0 if no error, else return corresponding error. If no 674 * error then the trend value is passed on to trend parameter 675 */ 676 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend) 677 { 678 struct temp_sensor_registers *tsr; 679 u32 temp1, temp2, reg1, reg2; 680 int t1, t2, interval, ret = 0; 681 682 ret = ti_bandgap_validate(bgp, id); 683 if (ret) 684 goto exit; 685 686 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) || 687 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 688 ret = -ENOTSUPP; 689 goto exit; 690 } 691 692 spin_lock(&bgp->lock); 693 694 tsr = bgp->conf->sensors[id].registers; 695 696 /* Freeze and read the last 2 valid readings */ 697 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 698 reg1 = tsr->ctrl_dtemp_1; 699 reg2 = tsr->ctrl_dtemp_2; 700 701 /* read temperature from history buffer */ 702 temp1 = ti_bandgap_readl(bgp, reg1); 703 temp1 &= tsr->bgap_dtemp_mask; 704 705 temp2 = ti_bandgap_readl(bgp, reg2); 706 temp2 &= tsr->bgap_dtemp_mask; 707 708 /* Convert from adc values to mCelsius temperature */ 709 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1); 710 if (ret) 711 goto unfreeze; 712 713 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2); 714 if (ret) 715 goto unfreeze; 716 717 /* Fetch the update interval */ 718 ret = ti_bandgap_read_update_interval(bgp, id, &interval); 719 if (ret) 720 goto unfreeze; 721 722 /* Set the interval to 1 ms if bandgap counter delay is not set */ 723 if (interval == 0) 724 interval = 1; 725 726 *trend = (t1 - t2) / interval; 727 728 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n", 729 t1, t2, *trend); 730 731 unfreeze: 732 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 733 spin_unlock(&bgp->lock); 734 exit: 735 return ret; 736 } 737 738 /** 739 * ti_bandgap_tshut_init() - setup and initialize tshut handling 740 * @bgp: pointer to struct ti_bandgap 741 * @pdev: pointer to device struct platform_device 742 * 743 * Call this function only in case the bandgap features HAS(TSHUT). 744 * In this case, the driver needs to handle the TSHUT signal as an IRQ. 745 * The IRQ is wired as a GPIO, and for this purpose, it is required 746 * to specify which GPIO line is used. TSHUT IRQ is fired anytime 747 * one of the bandgap sensors violates the TSHUT high/hot threshold. 748 * And in that case, the system must go off. 749 * 750 * Return: 0 if no error, else error status 751 */ 752 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp, 753 struct platform_device *pdev) 754 { 755 int status; 756 757 status = request_irq(gpiod_to_irq(bgp->tshut_gpiod), 758 ti_bandgap_tshut_irq_handler, 759 IRQF_TRIGGER_RISING, "tshut", NULL); 760 if (status) 761 dev_err(bgp->dev, "request irq failed for TSHUT"); 762 763 return 0; 764 } 765 766 /** 767 * ti_bandgap_alert_init() - setup and initialize talert handling 768 * @bgp: pointer to struct ti_bandgap 769 * @pdev: pointer to device struct platform_device 770 * 771 * Call this function only in case the bandgap features HAS(TALERT). 772 * In this case, the driver needs to handle the TALERT signals as an IRQs. 773 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold) 774 * are violated. In these situation, the driver must reprogram the thresholds, 775 * accordingly to specified policy. 776 * 777 * Return: 0 if no error, else return corresponding error. 778 */ 779 static int ti_bandgap_talert_init(struct ti_bandgap *bgp, 780 struct platform_device *pdev) 781 { 782 int ret; 783 784 bgp->irq = platform_get_irq(pdev, 0); 785 if (bgp->irq < 0) 786 return bgp->irq; 787 788 ret = request_threaded_irq(bgp->irq, NULL, 789 ti_bandgap_talert_irq_handler, 790 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 791 "talert", bgp); 792 if (ret) { 793 dev_err(&pdev->dev, "Request threaded irq failed.\n"); 794 return ret; 795 } 796 797 return 0; 798 } 799 800 static const struct of_device_id of_ti_bandgap_match[]; 801 /** 802 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap 803 * @pdev: pointer to device struct platform_device 804 * 805 * Used to read the device tree properties accordingly to the bandgap 806 * matching version. Based on bandgap version and its capabilities it 807 * will build a struct ti_bandgap out of the required DT entries. 808 * 809 * Return: valid bandgap structure if successful, else returns ERR_PTR 810 * return value must be verified with IS_ERR. 811 */ 812 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev) 813 { 814 struct device_node *node = pdev->dev.of_node; 815 const struct of_device_id *of_id; 816 struct ti_bandgap *bgp; 817 struct resource *res; 818 int i; 819 820 /* just for the sake */ 821 if (!node) { 822 dev_err(&pdev->dev, "no platform information available\n"); 823 return ERR_PTR(-EINVAL); 824 } 825 826 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL); 827 if (!bgp) 828 return ERR_PTR(-ENOMEM); 829 830 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev); 831 if (of_id) 832 bgp->conf = of_id->data; 833 834 /* register shadow for context save and restore */ 835 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count, 836 sizeof(*bgp->regval), GFP_KERNEL); 837 if (!bgp->regval) 838 return ERR_PTR(-ENOMEM); 839 840 i = 0; 841 do { 842 void __iomem *chunk; 843 844 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 845 if (!res) 846 break; 847 chunk = devm_ioremap_resource(&pdev->dev, res); 848 if (i == 0) 849 bgp->base = chunk; 850 if (IS_ERR(chunk)) 851 return ERR_CAST(chunk); 852 853 i++; 854 } while (res); 855 856 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 857 bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN); 858 if (IS_ERR(bgp->tshut_gpiod)) { 859 dev_err(&pdev->dev, "invalid gpio for tshut\n"); 860 return ERR_CAST(bgp->tshut_gpiod); 861 } 862 } 863 864 return bgp; 865 } 866 867 /*** Device driver call backs ***/ 868 869 static 870 int ti_bandgap_probe(struct platform_device *pdev) 871 { 872 struct ti_bandgap *bgp; 873 int clk_rate, ret, i; 874 875 bgp = ti_bandgap_build(pdev); 876 if (IS_ERR(bgp)) { 877 dev_err(&pdev->dev, "failed to fetch platform data\n"); 878 return PTR_ERR(bgp); 879 } 880 bgp->dev = &pdev->dev; 881 882 if (TI_BANDGAP_HAS(bgp, UNRELIABLE)) 883 dev_warn(&pdev->dev, 884 "This OMAP thermal sensor is unreliable. You've been warned\n"); 885 886 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 887 ret = ti_bandgap_tshut_init(bgp, pdev); 888 if (ret) { 889 dev_err(&pdev->dev, 890 "failed to initialize system tshut IRQ\n"); 891 return ret; 892 } 893 } 894 895 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name); 896 if (IS_ERR(bgp->fclock)) { 897 dev_err(&pdev->dev, "failed to request fclock reference\n"); 898 ret = PTR_ERR(bgp->fclock); 899 goto free_irqs; 900 } 901 902 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name); 903 if (IS_ERR(bgp->div_clk)) { 904 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n"); 905 ret = PTR_ERR(bgp->div_clk); 906 goto put_fclock; 907 } 908 909 for (i = 0; i < bgp->conf->sensor_count; i++) { 910 struct temp_sensor_registers *tsr; 911 u32 val; 912 913 tsr = bgp->conf->sensors[i].registers; 914 /* 915 * check if the efuse has a non-zero value if not 916 * it is an untrimmed sample and the temperatures 917 * may not be accurate 918 */ 919 val = ti_bandgap_readl(bgp, tsr->bgap_efuse); 920 if (!val) 921 dev_info(&pdev->dev, 922 "Non-trimmed BGAP, Temp not accurate\n"); 923 } 924 925 clk_rate = clk_round_rate(bgp->div_clk, 926 bgp->conf->sensors[0].ts_data->max_freq); 927 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq || 928 clk_rate <= 0) { 929 ret = -ENODEV; 930 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate); 931 goto put_clks; 932 } 933 934 ret = clk_set_rate(bgp->div_clk, clk_rate); 935 if (ret) 936 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n"); 937 938 bgp->clk_rate = clk_rate; 939 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 940 clk_prepare_enable(bgp->fclock); 941 942 943 spin_lock_init(&bgp->lock); 944 bgp->dev = &pdev->dev; 945 platform_set_drvdata(pdev, bgp); 946 947 ti_bandgap_power(bgp, true); 948 949 /* Set default counter to 1 for now */ 950 if (TI_BANDGAP_HAS(bgp, COUNTER)) 951 for (i = 0; i < bgp->conf->sensor_count; i++) 952 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1); 953 954 /* Set default thresholds for alert and shutdown */ 955 for (i = 0; i < bgp->conf->sensor_count; i++) { 956 struct temp_sensor_data *ts_data; 957 958 ts_data = bgp->conf->sensors[i].ts_data; 959 960 if (TI_BANDGAP_HAS(bgp, TALERT)) { 961 /* Set initial Talert thresholds */ 962 RMW_BITS(bgp, i, bgap_threshold, 963 threshold_tcold_mask, ts_data->t_cold); 964 RMW_BITS(bgp, i, bgap_threshold, 965 threshold_thot_mask, ts_data->t_hot); 966 /* Enable the alert events */ 967 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1); 968 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1); 969 } 970 971 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) { 972 /* Set initial Tshut thresholds */ 973 RMW_BITS(bgp, i, tshut_threshold, 974 tshut_hot_mask, ts_data->tshut_hot); 975 RMW_BITS(bgp, i, tshut_threshold, 976 tshut_cold_mask, ts_data->tshut_cold); 977 } 978 } 979 980 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 981 ti_bandgap_set_continuous_mode(bgp); 982 983 /* Set .250 seconds time as default counter */ 984 if (TI_BANDGAP_HAS(bgp, COUNTER)) 985 for (i = 0; i < bgp->conf->sensor_count; i++) 986 RMW_BITS(bgp, i, bgap_counter, counter_mask, 987 bgp->clk_rate / 4); 988 989 /* Every thing is good? Then expose the sensors */ 990 for (i = 0; i < bgp->conf->sensor_count; i++) { 991 char *domain; 992 993 if (bgp->conf->sensors[i].register_cooling) { 994 ret = bgp->conf->sensors[i].register_cooling(bgp, i); 995 if (ret) 996 goto remove_sensors; 997 } 998 999 if (bgp->conf->expose_sensor) { 1000 domain = bgp->conf->sensors[i].domain; 1001 ret = bgp->conf->expose_sensor(bgp, i, domain); 1002 if (ret) 1003 goto remove_last_cooling; 1004 } 1005 } 1006 1007 /* 1008 * Enable the Interrupts once everything is set. Otherwise irq handler 1009 * might be called as soon as it is enabled where as rest of framework 1010 * is still getting initialised. 1011 */ 1012 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1013 ret = ti_bandgap_talert_init(bgp, pdev); 1014 if (ret) { 1015 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n"); 1016 i = bgp->conf->sensor_count; 1017 goto disable_clk; 1018 } 1019 } 1020 1021 #ifdef CONFIG_PM_SLEEP 1022 bgp->nb.notifier_call = bandgap_omap_cpu_notifier; 1023 cpu_pm_register_notifier(&bgp->nb); 1024 #endif 1025 1026 return 0; 1027 1028 remove_last_cooling: 1029 if (bgp->conf->sensors[i].unregister_cooling) 1030 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1031 remove_sensors: 1032 for (i--; i >= 0; i--) { 1033 if (bgp->conf->sensors[i].unregister_cooling) 1034 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1035 if (bgp->conf->remove_sensor) 1036 bgp->conf->remove_sensor(bgp, i); 1037 } 1038 ti_bandgap_power(bgp, false); 1039 disable_clk: 1040 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1041 clk_disable_unprepare(bgp->fclock); 1042 put_clks: 1043 clk_put(bgp->div_clk); 1044 put_fclock: 1045 clk_put(bgp->fclock); 1046 free_irqs: 1047 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1048 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1049 1050 return ret; 1051 } 1052 1053 static 1054 int ti_bandgap_remove(struct platform_device *pdev) 1055 { 1056 struct ti_bandgap *bgp = platform_get_drvdata(pdev); 1057 int i; 1058 1059 cpu_pm_unregister_notifier(&bgp->nb); 1060 1061 /* Remove sensor interfaces */ 1062 for (i = 0; i < bgp->conf->sensor_count; i++) { 1063 if (bgp->conf->sensors[i].unregister_cooling) 1064 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1065 1066 if (bgp->conf->remove_sensor) 1067 bgp->conf->remove_sensor(bgp, i); 1068 } 1069 1070 ti_bandgap_power(bgp, false); 1071 1072 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1073 clk_disable_unprepare(bgp->fclock); 1074 clk_put(bgp->fclock); 1075 clk_put(bgp->div_clk); 1076 1077 if (TI_BANDGAP_HAS(bgp, TALERT)) 1078 free_irq(bgp->irq, bgp); 1079 1080 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1081 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1082 1083 return 0; 1084 } 1085 1086 #ifdef CONFIG_PM_SLEEP 1087 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp) 1088 { 1089 int i; 1090 1091 for (i = 0; i < bgp->conf->sensor_count; i++) { 1092 struct temp_sensor_registers *tsr; 1093 struct temp_sensor_regval *rval; 1094 1095 rval = &bgp->regval[i]; 1096 tsr = bgp->conf->sensors[i].registers; 1097 1098 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1099 rval->bg_mode_ctrl = ti_bandgap_readl(bgp, 1100 tsr->bgap_mode_ctrl); 1101 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1102 rval->bg_counter = ti_bandgap_readl(bgp, 1103 tsr->bgap_counter); 1104 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1105 rval->bg_threshold = ti_bandgap_readl(bgp, 1106 tsr->bgap_threshold); 1107 rval->bg_ctrl = ti_bandgap_readl(bgp, 1108 tsr->bgap_mask_ctrl); 1109 } 1110 1111 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1112 rval->tshut_threshold = ti_bandgap_readl(bgp, 1113 tsr->tshut_threshold); 1114 } 1115 1116 return 0; 1117 } 1118 1119 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp) 1120 { 1121 int i; 1122 1123 for (i = 0; i < bgp->conf->sensor_count; i++) { 1124 struct temp_sensor_registers *tsr; 1125 struct temp_sensor_regval *rval; 1126 u32 val = 0; 1127 1128 rval = &bgp->regval[i]; 1129 tsr = bgp->conf->sensors[i].registers; 1130 1131 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1132 val = ti_bandgap_readl(bgp, tsr->bgap_counter); 1133 1134 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1135 ti_bandgap_writel(bgp, rval->tshut_threshold, 1136 tsr->tshut_threshold); 1137 /* Force immediate temperature measurement and update 1138 * of the DTEMP field 1139 */ 1140 ti_bandgap_force_single_read(bgp, i); 1141 1142 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1143 ti_bandgap_writel(bgp, rval->bg_counter, 1144 tsr->bgap_counter); 1145 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1146 ti_bandgap_writel(bgp, rval->bg_mode_ctrl, 1147 tsr->bgap_mode_ctrl); 1148 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1149 ti_bandgap_writel(bgp, rval->bg_threshold, 1150 tsr->bgap_threshold); 1151 ti_bandgap_writel(bgp, rval->bg_ctrl, 1152 tsr->bgap_mask_ctrl); 1153 } 1154 } 1155 1156 return 0; 1157 } 1158 1159 static int ti_bandgap_suspend(struct device *dev) 1160 { 1161 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1162 int err; 1163 1164 err = ti_bandgap_save_ctxt(bgp); 1165 ti_bandgap_power(bgp, false); 1166 1167 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1168 clk_disable_unprepare(bgp->fclock); 1169 1170 bgp->is_suspended = true; 1171 1172 return err; 1173 } 1174 1175 static int bandgap_omap_cpu_notifier(struct notifier_block *nb, 1176 unsigned long cmd, void *v) 1177 { 1178 struct ti_bandgap *bgp; 1179 1180 bgp = container_of(nb, struct ti_bandgap, nb); 1181 1182 spin_lock(&bgp->lock); 1183 switch (cmd) { 1184 case CPU_CLUSTER_PM_ENTER: 1185 if (bgp->is_suspended) 1186 break; 1187 ti_bandgap_save_ctxt(bgp); 1188 ti_bandgap_power(bgp, false); 1189 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1190 clk_disable(bgp->fclock); 1191 break; 1192 case CPU_CLUSTER_PM_ENTER_FAILED: 1193 case CPU_CLUSTER_PM_EXIT: 1194 if (bgp->is_suspended) 1195 break; 1196 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1197 clk_enable(bgp->fclock); 1198 ti_bandgap_power(bgp, true); 1199 ti_bandgap_restore_ctxt(bgp); 1200 break; 1201 } 1202 spin_unlock(&bgp->lock); 1203 1204 return NOTIFY_OK; 1205 } 1206 1207 static int ti_bandgap_resume(struct device *dev) 1208 { 1209 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1210 1211 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1212 clk_prepare_enable(bgp->fclock); 1213 1214 ti_bandgap_power(bgp, true); 1215 bgp->is_suspended = false; 1216 1217 return ti_bandgap_restore_ctxt(bgp); 1218 } 1219 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend, 1220 ti_bandgap_resume); 1221 1222 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops) 1223 #else 1224 #define DEV_PM_OPS NULL 1225 #endif 1226 1227 static const struct of_device_id of_ti_bandgap_match[] = { 1228 #ifdef CONFIG_OMAP3_THERMAL 1229 { 1230 .compatible = "ti,omap34xx-bandgap", 1231 .data = (void *)&omap34xx_data, 1232 }, 1233 { 1234 .compatible = "ti,omap36xx-bandgap", 1235 .data = (void *)&omap36xx_data, 1236 }, 1237 #endif 1238 #ifdef CONFIG_OMAP4_THERMAL 1239 { 1240 .compatible = "ti,omap4430-bandgap", 1241 .data = (void *)&omap4430_data, 1242 }, 1243 { 1244 .compatible = "ti,omap4460-bandgap", 1245 .data = (void *)&omap4460_data, 1246 }, 1247 { 1248 .compatible = "ti,omap4470-bandgap", 1249 .data = (void *)&omap4470_data, 1250 }, 1251 #endif 1252 #ifdef CONFIG_OMAP5_THERMAL 1253 { 1254 .compatible = "ti,omap5430-bandgap", 1255 .data = (void *)&omap5430_data, 1256 }, 1257 #endif 1258 #ifdef CONFIG_DRA752_THERMAL 1259 { 1260 .compatible = "ti,dra752-bandgap", 1261 .data = (void *)&dra752_data, 1262 }, 1263 #endif 1264 /* Sentinel */ 1265 { }, 1266 }; 1267 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match); 1268 1269 static struct platform_driver ti_bandgap_sensor_driver = { 1270 .probe = ti_bandgap_probe, 1271 .remove = ti_bandgap_remove, 1272 .driver = { 1273 .name = "ti-soc-thermal", 1274 .pm = DEV_PM_OPS, 1275 .of_match_table = of_ti_bandgap_match, 1276 }, 1277 }; 1278 1279 module_platform_driver(ti_bandgap_sensor_driver); 1280 1281 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver"); 1282 MODULE_LICENSE("GPL v2"); 1283 MODULE_ALIAS("platform:ti-soc-thermal"); 1284 MODULE_AUTHOR("Texas Instrument Inc."); 1285