1 /*
2  * TI Bandgap temperature sensor driver
3  *
4  * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
5  * Author: J Keerthy <j-keerthy@ti.com>
6  * Author: Moiz Sonasath <m-sonasath@ti.com>
7  * Couple of fixes, DT and MFD adaptation:
8  *   Eduardo Valentin <eduardo.valentin@ti.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * version 2 as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
22  * 02110-1301 USA
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/export.h>
28 #include <linux/init.h>
29 #include <linux/kernel.h>
30 #include <linux/interrupt.h>
31 #include <linux/clk.h>
32 #include <linux/gpio.h>
33 #include <linux/platform_device.h>
34 #include <linux/err.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/reboot.h>
38 #include <linux/of_device.h>
39 #include <linux/of_platform.h>
40 #include <linux/of_irq.h>
41 #include <linux/of_gpio.h>
42 #include <linux/io.h>
43 
44 #include "ti-bandgap.h"
45 
46 /***   Helper functions to access registers and their bitfields   ***/
47 
48 /**
49  * ti_bandgap_readl() - simple read helper function
50  * @bgp: pointer to ti_bandgap structure
51  * @reg: desired register (offset) to be read
52  *
53  * Helper function to read bandgap registers. It uses the io remapped area.
54  * Return: the register value.
55  */
56 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
57 {
58 	return readl(bgp->base + reg);
59 }
60 
61 /**
62  * ti_bandgap_writel() - simple write helper function
63  * @bgp: pointer to ti_bandgap structure
64  * @val: desired register value to be written
65  * @reg: desired register (offset) to be written
66  *
67  * Helper function to write bandgap registers. It uses the io remapped area.
68  */
69 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
70 {
71 	writel(val, bgp->base + reg);
72 }
73 
74 /**
75  * DOC: macro to update bits.
76  *
77  * RMW_BITS() - used to read, modify and update bandgap bitfields.
78  *            The value passed will be shifted.
79  */
80 #define RMW_BITS(bgp, id, reg, mask, val)			\
81 do {								\
82 	struct temp_sensor_registers *t;			\
83 	u32 r;							\
84 								\
85 	t = bgp->conf->sensors[(id)].registers;		\
86 	r = ti_bandgap_readl(bgp, t->reg);			\
87 	r &= ~t->mask;						\
88 	r |= (val) << __ffs(t->mask);				\
89 	ti_bandgap_writel(bgp, r, t->reg);			\
90 } while (0)
91 
92 /***   Basic helper functions   ***/
93 
94 /**
95  * ti_bandgap_power() - controls the power state of a bandgap device
96  * @bgp: pointer to ti_bandgap structure
97  * @on: desired power state (1 - on, 0 - off)
98  *
99  * Used to power on/off a bandgap device instance. Only used on those
100  * that features tempsoff bit.
101  *
102  * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
103  */
104 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
105 {
106 	int i, ret = 0;
107 
108 	if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) {
109 		ret = -ENOTSUPP;
110 		goto exit;
111 	}
112 
113 	for (i = 0; i < bgp->conf->sensor_count; i++)
114 		/* active on 0 */
115 		RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
116 
117 exit:
118 	return ret;
119 }
120 
121 /**
122  * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
123  * @bgp: pointer to ti_bandgap structure
124  * @reg: desired register (offset) to be read
125  *
126  * Function to read dra7 bandgap sensor temperature. This is done separately
127  * so as to workaround the errata "Bandgap Temperature read Dtemp can be
128  * corrupted" - Errata ID: i814".
129  * Read accesses to registers listed below can be corrupted due to incorrect
130  * resynchronization between clock domains.
131  * Read access to registers below can be corrupted :
132  * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
133  * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
134  *
135  * Return: the register value.
136  */
137 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp,  u32 reg)
138 {
139 	u32 val1, val2;
140 
141 	val1 = ti_bandgap_readl(bgp, reg);
142 	val2 = ti_bandgap_readl(bgp, reg);
143 
144 	/* If both times we read the same value then that is right */
145 	if (val1 == val2)
146 		return val1;
147 
148 	/* if val1 and val2 are different read it third time */
149 	return ti_bandgap_readl(bgp, reg);
150 }
151 
152 /**
153  * ti_bandgap_read_temp() - helper function to read sensor temperature
154  * @bgp: pointer to ti_bandgap structure
155  * @id: bandgap sensor id
156  *
157  * Function to concentrate the steps to read sensor temperature register.
158  * This function is desired because, depending on bandgap device version,
159  * it might be needed to freeze the bandgap state machine, before fetching
160  * the register value.
161  *
162  * Return: temperature in ADC values.
163  */
164 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
165 {
166 	struct temp_sensor_registers *tsr;
167 	u32 temp, reg;
168 
169 	tsr = bgp->conf->sensors[id].registers;
170 	reg = tsr->temp_sensor_ctrl;
171 
172 	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
173 		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
174 		/*
175 		 * In case we cannot read from cur_dtemp / dtemp_0,
176 		 * then we read from the last valid temp read
177 		 */
178 		reg = tsr->ctrl_dtemp_1;
179 	}
180 
181 	/* read temperature */
182 	if (TI_BANDGAP_HAS(bgp, ERRATA_814))
183 		temp = ti_errata814_bandgap_read_temp(bgp, reg);
184 	else
185 		temp = ti_bandgap_readl(bgp, reg);
186 
187 	temp &= tsr->bgap_dtemp_mask;
188 
189 	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
190 		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
191 
192 	return temp;
193 }
194 
195 /***   IRQ handlers   ***/
196 
197 /**
198  * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
199  * @irq: IRQ number
200  * @data: private data (struct ti_bandgap *)
201  *
202  * This is the Talert handler. Use it only if bandgap device features
203  * HAS(TALERT). This handler goes over all sensors and checks their
204  * conditions and acts accordingly. In case there are events pending,
205  * it will reset the event mask to wait for the opposite event (next event).
206  * Every time there is a new event, it will be reported to thermal layer.
207  *
208  * Return: IRQ_HANDLED
209  */
210 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
211 {
212 	struct ti_bandgap *bgp = data;
213 	struct temp_sensor_registers *tsr;
214 	u32 t_hot = 0, t_cold = 0, ctrl;
215 	int i;
216 
217 	spin_lock(&bgp->lock);
218 	for (i = 0; i < bgp->conf->sensor_count; i++) {
219 		tsr = bgp->conf->sensors[i].registers;
220 		ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
221 
222 		/* Read the status of t_hot */
223 		t_hot = ctrl & tsr->status_hot_mask;
224 
225 		/* Read the status of t_cold */
226 		t_cold = ctrl & tsr->status_cold_mask;
227 
228 		if (!t_cold && !t_hot)
229 			continue;
230 
231 		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
232 		/*
233 		 * One TALERT interrupt: Two sources
234 		 * If the interrupt is due to t_hot then mask t_hot and
235 		 * and unmask t_cold else mask t_cold and unmask t_hot
236 		 */
237 		if (t_hot) {
238 			ctrl &= ~tsr->mask_hot_mask;
239 			ctrl |= tsr->mask_cold_mask;
240 		} else if (t_cold) {
241 			ctrl &= ~tsr->mask_cold_mask;
242 			ctrl |= tsr->mask_hot_mask;
243 		}
244 
245 		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
246 
247 		dev_dbg(bgp->dev,
248 			"%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
249 			__func__, bgp->conf->sensors[i].domain,
250 			t_hot, t_cold);
251 
252 		/* report temperature to whom may concern */
253 		if (bgp->conf->report_temperature)
254 			bgp->conf->report_temperature(bgp, i);
255 	}
256 	spin_unlock(&bgp->lock);
257 
258 	return IRQ_HANDLED;
259 }
260 
261 /**
262  * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
263  * @irq: IRQ number
264  * @data: private data (unused)
265  *
266  * This is the Tshut handler. Use it only if bandgap device features
267  * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
268  * the system.
269  *
270  * Return: IRQ_HANDLED
271  */
272 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
273 {
274 	pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
275 		 __func__);
276 
277 	orderly_poweroff(true);
278 
279 	return IRQ_HANDLED;
280 }
281 
282 /***   Helper functions which manipulate conversion ADC <-> mi Celsius   ***/
283 
284 /**
285  * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
286  * @bgp: struct ti_bandgap pointer
287  * @adc_val: value in ADC representation
288  * @t: address where to write the resulting temperature in mCelsius
289  *
290  * Simple conversion from ADC representation to mCelsius. In case the ADC value
291  * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
292  * The conversion table is indexed by the ADC values.
293  *
294  * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
295  * argument is out of the ADC conv table range.
296  */
297 static
298 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
299 {
300 	const struct ti_bandgap_data *conf = bgp->conf;
301 	int ret = 0;
302 
303 	/* look up for temperature in the table and return the temperature */
304 	if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) {
305 		ret = -ERANGE;
306 		goto exit;
307 	}
308 
309 	*t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
310 
311 exit:
312 	return ret;
313 }
314 
315 /**
316  * ti_bandgap_mcelsius_to_adc() - converts a mCelsius value to ADC scale
317  * @bgp: struct ti_bandgap pointer
318  * @temp: value in mCelsius
319  * @adc: address where to write the resulting temperature in ADC representation
320  *
321  * Simple conversion from mCelsius to ADC values. In case the temp value
322  * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
323  * The conversion table is indexed by the ADC values.
324  *
325  * Return: 0 if conversion was successful, else -ERANGE in case the @temp
326  * argument is out of the ADC conv table range.
327  */
328 static
329 int ti_bandgap_mcelsius_to_adc(struct ti_bandgap *bgp, long temp, int *adc)
330 {
331 	const struct ti_bandgap_data *conf = bgp->conf;
332 	const int *conv_table = bgp->conf->conv_table;
333 	int high, low, mid, ret = 0;
334 
335 	low = 0;
336 	high = conf->adc_end_val - conf->adc_start_val;
337 	mid = (high + low) / 2;
338 
339 	if (temp < conv_table[low] || temp > conv_table[high]) {
340 		ret = -ERANGE;
341 		goto exit;
342 	}
343 
344 	while (low < high) {
345 		if (temp < conv_table[mid])
346 			high = mid - 1;
347 		else
348 			low = mid + 1;
349 		mid = (low + high) / 2;
350 	}
351 
352 	*adc = conf->adc_start_val + low;
353 
354 exit:
355 	return ret;
356 }
357 
358 /**
359  * ti_bandgap_add_hyst() - add hysteresis (in mCelsius) to an ADC value
360  * @bgp: struct ti_bandgap pointer
361  * @adc_val: temperature value in ADC representation
362  * @hyst_val: hysteresis value in mCelsius
363  * @sum: address where to write the resulting temperature (in ADC scale)
364  *
365  * Adds an hysteresis value (in mCelsius) to a ADC temperature value.
366  *
367  * Return: 0 on success, -ERANGE otherwise.
368  */
369 static
370 int ti_bandgap_add_hyst(struct ti_bandgap *bgp, int adc_val, int hyst_val,
371 			u32 *sum)
372 {
373 	int temp, ret;
374 
375 	/*
376 	 * Need to add in the mcelsius domain, so we have a temperature
377 	 * the conv_table range
378 	 */
379 	ret = ti_bandgap_adc_to_mcelsius(bgp, adc_val, &temp);
380 	if (ret < 0)
381 		goto exit;
382 
383 	temp += hyst_val;
384 
385 	ret = ti_bandgap_mcelsius_to_adc(bgp, temp, sum);
386 
387 exit:
388 	return ret;
389 }
390 
391 /***   Helper functions handling device Alert/Shutdown signals   ***/
392 
393 /**
394  * ti_bandgap_unmask_interrupts() - unmasks the events of thot & tcold
395  * @bgp: struct ti_bandgap pointer
396  * @id: bandgap sensor id
397  * @t_hot: hot temperature value to trigger alert signal
398  * @t_cold: cold temperature value to trigger alert signal
399  *
400  * Checks the requested t_hot and t_cold values and configures the IRQ event
401  * masks accordingly. Call this function only if bandgap features HAS(TALERT).
402  */
403 static void ti_bandgap_unmask_interrupts(struct ti_bandgap *bgp, int id,
404 					 u32 t_hot, u32 t_cold)
405 {
406 	struct temp_sensor_registers *tsr;
407 	u32 temp, reg_val;
408 
409 	/* Read the current on die temperature */
410 	temp = ti_bandgap_read_temp(bgp, id);
411 
412 	tsr = bgp->conf->sensors[id].registers;
413 	reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
414 
415 	if (temp < t_hot)
416 		reg_val |= tsr->mask_hot_mask;
417 	else
418 		reg_val &= ~tsr->mask_hot_mask;
419 
420 	if (t_cold < temp)
421 		reg_val |= tsr->mask_cold_mask;
422 	else
423 		reg_val &= ~tsr->mask_cold_mask;
424 	ti_bandgap_writel(bgp, reg_val, tsr->bgap_mask_ctrl);
425 }
426 
427 /**
428  * ti_bandgap_update_alert_threshold() - sequence to update thresholds
429  * @bgp: struct ti_bandgap pointer
430  * @id: bandgap sensor id
431  * @val: value (ADC) of a new threshold
432  * @hot: desired threshold to be updated. true if threshold hot, false if
433  *       threshold cold
434  *
435  * It will program the required thresholds (hot and cold) for TALERT signal.
436  * This function can be used to update t_hot or t_cold, depending on @hot value.
437  * It checks the resulting t_hot and t_cold values, based on the new passed @val
438  * and configures the thresholds so that t_hot is always greater than t_cold.
439  * Call this function only if bandgap features HAS(TALERT).
440  *
441  * Return: 0 if no error, else corresponding error
442  */
443 static int ti_bandgap_update_alert_threshold(struct ti_bandgap *bgp, int id,
444 					     int val, bool hot)
445 {
446 	struct temp_sensor_data *ts_data = bgp->conf->sensors[id].ts_data;
447 	struct temp_sensor_registers *tsr;
448 	u32 thresh_val, reg_val, t_hot, t_cold, ctrl;
449 	int err = 0;
450 
451 	tsr = bgp->conf->sensors[id].registers;
452 
453 	/* obtain the current value */
454 	thresh_val = ti_bandgap_readl(bgp, tsr->bgap_threshold);
455 	t_cold = (thresh_val & tsr->threshold_tcold_mask) >>
456 		__ffs(tsr->threshold_tcold_mask);
457 	t_hot = (thresh_val & tsr->threshold_thot_mask) >>
458 		__ffs(tsr->threshold_thot_mask);
459 	if (hot)
460 		t_hot = val;
461 	else
462 		t_cold = val;
463 
464 	if (t_cold > t_hot) {
465 		if (hot)
466 			err = ti_bandgap_add_hyst(bgp, t_hot,
467 						  -ts_data->hyst_val,
468 						  &t_cold);
469 		else
470 			err = ti_bandgap_add_hyst(bgp, t_cold,
471 						  ts_data->hyst_val,
472 						  &t_hot);
473 	}
474 
475 	/* write the new threshold values */
476 	reg_val = thresh_val &
477 		  ~(tsr->threshold_thot_mask | tsr->threshold_tcold_mask);
478 	reg_val |= (t_hot << __ffs(tsr->threshold_thot_mask)) |
479 		   (t_cold << __ffs(tsr->threshold_tcold_mask));
480 
481 	/**
482 	 * Errata i813:
483 	 * Spurious Thermal Alert: Talert can happen randomly while the device
484 	 * remains under the temperature limit defined for this event to trig.
485 	 * This spurious event is caused by a incorrect re-synchronization
486 	 * between clock domains. The comparison between configured threshold
487 	 * and current temperature value can happen while the value is
488 	 * transitioning (metastable), thus causing inappropriate event
489 	 * generation. No spurious event occurs as long as the threshold value
490 	 * stays unchanged. Spurious event can be generated while a thermal
491 	 * alert threshold is modified in
492 	 * CONTROL_BANDGAP_THRESHOLD_MPU/GPU/CORE/DSPEVE/IVA_n.
493 	 */
494 
495 	if (TI_BANDGAP_HAS(bgp, ERRATA_813)) {
496 		/* Mask t_hot and t_cold events at the IP Level */
497 		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
498 
499 		if (hot)
500 			ctrl &= ~tsr->mask_hot_mask;
501 		else
502 			ctrl &= ~tsr->mask_cold_mask;
503 
504 		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
505 	}
506 
507 	/* Write the threshold value */
508 	ti_bandgap_writel(bgp, reg_val, tsr->bgap_threshold);
509 
510 	if (TI_BANDGAP_HAS(bgp, ERRATA_813)) {
511 		/* Unmask t_hot and t_cold events at the IP Level */
512 		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
513 		if (hot)
514 			ctrl |= tsr->mask_hot_mask;
515 		else
516 			ctrl |= tsr->mask_cold_mask;
517 
518 		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
519 	}
520 
521 	if (err) {
522 		dev_err(bgp->dev, "failed to reprogram thot threshold\n");
523 		err = -EIO;
524 		goto exit;
525 	}
526 
527 	ti_bandgap_unmask_interrupts(bgp, id, t_hot, t_cold);
528 exit:
529 	return err;
530 }
531 
532 /**
533  * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
534  * @bgp: struct ti_bandgap pointer
535  * @id: bandgap sensor id
536  *
537  * Checks if the bandgap pointer is valid and if the sensor id is also
538  * applicable.
539  *
540  * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
541  * @id cannot index @bgp sensors.
542  */
543 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
544 {
545 	int ret = 0;
546 
547 	if (!bgp || IS_ERR(bgp)) {
548 		pr_err("%s: invalid bandgap pointer\n", __func__);
549 		ret = -EINVAL;
550 		goto exit;
551 	}
552 
553 	if ((id < 0) || (id >= bgp->conf->sensor_count)) {
554 		dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
555 			__func__, id);
556 		ret = -ERANGE;
557 	}
558 
559 exit:
560 	return ret;
561 }
562 
563 /**
564  * _ti_bandgap_write_threshold() - helper to update TALERT t_cold or t_hot
565  * @bgp: struct ti_bandgap pointer
566  * @id: bandgap sensor id
567  * @val: value (mCelsius) of a new threshold
568  * @hot: desired threshold to be updated. true if threshold hot, false if
569  *       threshold cold
570  *
571  * It will update the required thresholds (hot and cold) for TALERT signal.
572  * This function can be used to update t_hot or t_cold, depending on @hot value.
573  * Validates the mCelsius range and update the requested threshold.
574  * Call this function only if bandgap features HAS(TALERT).
575  *
576  * Return: 0 if no error, else corresponding error value.
577  */
578 static int _ti_bandgap_write_threshold(struct ti_bandgap *bgp, int id, int val,
579 				       bool hot)
580 {
581 	struct temp_sensor_data *ts_data;
582 	struct temp_sensor_registers *tsr;
583 	u32 adc_val;
584 	int ret;
585 
586 	ret = ti_bandgap_validate(bgp, id);
587 	if (ret)
588 		goto exit;
589 
590 	if (!TI_BANDGAP_HAS(bgp, TALERT)) {
591 		ret = -ENOTSUPP;
592 		goto exit;
593 	}
594 
595 	ts_data = bgp->conf->sensors[id].ts_data;
596 	tsr = bgp->conf->sensors[id].registers;
597 	if (hot) {
598 		if (val < ts_data->min_temp + ts_data->hyst_val)
599 			ret = -EINVAL;
600 	} else {
601 		if (val > ts_data->max_temp + ts_data->hyst_val)
602 			ret = -EINVAL;
603 	}
604 
605 	if (ret)
606 		goto exit;
607 
608 	ret = ti_bandgap_mcelsius_to_adc(bgp, val, &adc_val);
609 	if (ret < 0)
610 		goto exit;
611 
612 	spin_lock(&bgp->lock);
613 	ret = ti_bandgap_update_alert_threshold(bgp, id, adc_val, hot);
614 	spin_unlock(&bgp->lock);
615 
616 exit:
617 	return ret;
618 }
619 
620 /**
621  * _ti_bandgap_read_threshold() - helper to read TALERT t_cold or t_hot
622  * @bgp: struct ti_bandgap pointer
623  * @id: bandgap sensor id
624  * @val: value (mCelsius) of a threshold
625  * @hot: desired threshold to be read. true if threshold hot, false if
626  *       threshold cold
627  *
628  * It will fetch the required thresholds (hot and cold) for TALERT signal.
629  * This function can be used to read t_hot or t_cold, depending on @hot value.
630  * Call this function only if bandgap features HAS(TALERT).
631  *
632  * Return: 0 if no error, -ENOTSUPP if it has no TALERT support, or the
633  * corresponding error value if some operation fails.
634  */
635 static int _ti_bandgap_read_threshold(struct ti_bandgap *bgp, int id,
636 				      int *val, bool hot)
637 {
638 	struct temp_sensor_registers *tsr;
639 	u32 temp, mask;
640 	int ret = 0;
641 
642 	ret = ti_bandgap_validate(bgp, id);
643 	if (ret)
644 		goto exit;
645 
646 	if (!TI_BANDGAP_HAS(bgp, TALERT)) {
647 		ret = -ENOTSUPP;
648 		goto exit;
649 	}
650 
651 	tsr = bgp->conf->sensors[id].registers;
652 	if (hot)
653 		mask = tsr->threshold_thot_mask;
654 	else
655 		mask = tsr->threshold_tcold_mask;
656 
657 	temp = ti_bandgap_readl(bgp, tsr->bgap_threshold);
658 	temp = (temp & mask) >> __ffs(mask);
659 	ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
660 	if (ret) {
661 		dev_err(bgp->dev, "failed to read thot\n");
662 		ret = -EIO;
663 		goto exit;
664 	}
665 
666 	*val = temp;
667 
668 exit:
669 	return ret;
670 }
671 
672 /***   Exposed APIs   ***/
673 
674 /**
675  * ti_bandgap_read_thot() - reads sensor current thot
676  * @bgp: pointer to bandgap instance
677  * @id: sensor id
678  * @thot: resulting current thot value
679  *
680  * Return: 0 on success or the proper error code
681  */
682 int ti_bandgap_read_thot(struct ti_bandgap *bgp, int id, int *thot)
683 {
684 	return _ti_bandgap_read_threshold(bgp, id, thot, true);
685 }
686 
687 /**
688  * ti_bandgap_write_thot() - sets sensor current thot
689  * @bgp: pointer to bandgap instance
690  * @id: sensor id
691  * @val: desired thot value
692  *
693  * Return: 0 on success or the proper error code
694  */
695 int ti_bandgap_write_thot(struct ti_bandgap *bgp, int id, int val)
696 {
697 	return _ti_bandgap_write_threshold(bgp, id, val, true);
698 }
699 
700 /**
701  * ti_bandgap_read_tcold() - reads sensor current tcold
702  * @bgp: pointer to bandgap instance
703  * @id: sensor id
704  * @tcold: resulting current tcold value
705  *
706  * Return: 0 on success or the proper error code
707  */
708 int ti_bandgap_read_tcold(struct ti_bandgap *bgp, int id, int *tcold)
709 {
710 	return _ti_bandgap_read_threshold(bgp, id, tcold, false);
711 }
712 
713 /**
714  * ti_bandgap_write_tcold() - sets the sensor tcold
715  * @bgp: pointer to bandgap instance
716  * @id: sensor id
717  * @val: desired tcold value
718  *
719  * Return: 0 on success or the proper error code
720  */
721 int ti_bandgap_write_tcold(struct ti_bandgap *bgp, int id, int val)
722 {
723 	return _ti_bandgap_write_threshold(bgp, id, val, false);
724 }
725 
726 /**
727  * ti_bandgap_read_counter() - read the sensor counter
728  * @bgp: pointer to bandgap instance
729  * @id: sensor id
730  * @interval: resulting update interval in miliseconds
731  */
732 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
733 				    int *interval)
734 {
735 	struct temp_sensor_registers *tsr;
736 	int time;
737 
738 	tsr = bgp->conf->sensors[id].registers;
739 	time = ti_bandgap_readl(bgp, tsr->bgap_counter);
740 	time = (time & tsr->counter_mask) >>
741 					__ffs(tsr->counter_mask);
742 	time = time * 1000 / bgp->clk_rate;
743 	*interval = time;
744 }
745 
746 /**
747  * ti_bandgap_read_counter_delay() - read the sensor counter delay
748  * @bgp: pointer to bandgap instance
749  * @id: sensor id
750  * @interval: resulting update interval in miliseconds
751  */
752 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
753 					  int *interval)
754 {
755 	struct temp_sensor_registers *tsr;
756 	int reg_val;
757 
758 	tsr = bgp->conf->sensors[id].registers;
759 
760 	reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
761 	reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
762 				__ffs(tsr->mask_counter_delay_mask);
763 	switch (reg_val) {
764 	case 0:
765 		*interval = 0;
766 		break;
767 	case 1:
768 		*interval = 1;
769 		break;
770 	case 2:
771 		*interval = 10;
772 		break;
773 	case 3:
774 		*interval = 100;
775 		break;
776 	case 4:
777 		*interval = 250;
778 		break;
779 	case 5:
780 		*interval = 500;
781 		break;
782 	default:
783 		dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
784 			 reg_val);
785 	}
786 }
787 
788 /**
789  * ti_bandgap_read_update_interval() - read the sensor update interval
790  * @bgp: pointer to bandgap instance
791  * @id: sensor id
792  * @interval: resulting update interval in miliseconds
793  *
794  * Return: 0 on success or the proper error code
795  */
796 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
797 				    int *interval)
798 {
799 	int ret = 0;
800 
801 	ret = ti_bandgap_validate(bgp, id);
802 	if (ret)
803 		goto exit;
804 
805 	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
806 	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
807 		ret = -ENOTSUPP;
808 		goto exit;
809 	}
810 
811 	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
812 		ti_bandgap_read_counter(bgp, id, interval);
813 		goto exit;
814 	}
815 
816 	ti_bandgap_read_counter_delay(bgp, id, interval);
817 exit:
818 	return ret;
819 }
820 
821 /**
822  * ti_bandgap_write_counter_delay() - set the counter_delay
823  * @bgp: pointer to bandgap instance
824  * @id: sensor id
825  * @interval: desired update interval in miliseconds
826  *
827  * Return: 0 on success or the proper error code
828  */
829 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
830 					  u32 interval)
831 {
832 	int rval;
833 
834 	switch (interval) {
835 	case 0: /* Immediate conversion */
836 		rval = 0x0;
837 		break;
838 	case 1: /* Conversion after ever 1ms */
839 		rval = 0x1;
840 		break;
841 	case 10: /* Conversion after ever 10ms */
842 		rval = 0x2;
843 		break;
844 	case 100: /* Conversion after ever 100ms */
845 		rval = 0x3;
846 		break;
847 	case 250: /* Conversion after ever 250ms */
848 		rval = 0x4;
849 		break;
850 	case 500: /* Conversion after ever 500ms */
851 		rval = 0x5;
852 		break;
853 	default:
854 		dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
855 		return -EINVAL;
856 	}
857 
858 	spin_lock(&bgp->lock);
859 	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
860 	spin_unlock(&bgp->lock);
861 
862 	return 0;
863 }
864 
865 /**
866  * ti_bandgap_write_counter() - set the bandgap sensor counter
867  * @bgp: pointer to bandgap instance
868  * @id: sensor id
869  * @interval: desired update interval in miliseconds
870  */
871 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
872 				     u32 interval)
873 {
874 	interval = interval * bgp->clk_rate / 1000;
875 	spin_lock(&bgp->lock);
876 	RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
877 	spin_unlock(&bgp->lock);
878 }
879 
880 /**
881  * ti_bandgap_write_update_interval() - set the update interval
882  * @bgp: pointer to bandgap instance
883  * @id: sensor id
884  * @interval: desired update interval in miliseconds
885  *
886  * Return: 0 on success or the proper error code
887  */
888 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
889 				     int id, u32 interval)
890 {
891 	int ret = ti_bandgap_validate(bgp, id);
892 	if (ret)
893 		goto exit;
894 
895 	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
896 	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
897 		ret = -ENOTSUPP;
898 		goto exit;
899 	}
900 
901 	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
902 		ti_bandgap_write_counter(bgp, id, interval);
903 		goto exit;
904 	}
905 
906 	ret = ti_bandgap_write_counter_delay(bgp, id, interval);
907 exit:
908 	return ret;
909 }
910 
911 /**
912  * ti_bandgap_read_temperature() - report current temperature
913  * @bgp: pointer to bandgap instance
914  * @id: sensor id
915  * @temperature: resulting temperature
916  *
917  * Return: 0 on success or the proper error code
918  */
919 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
920 				int *temperature)
921 {
922 	u32 temp;
923 	int ret;
924 
925 	ret = ti_bandgap_validate(bgp, id);
926 	if (ret)
927 		return ret;
928 
929 	spin_lock(&bgp->lock);
930 	temp = ti_bandgap_read_temp(bgp, id);
931 	spin_unlock(&bgp->lock);
932 
933 	ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
934 	if (ret)
935 		return -EIO;
936 
937 	*temperature = temp;
938 
939 	return 0;
940 }
941 
942 /**
943  * ti_bandgap_set_sensor_data() - helper function to store thermal
944  * framework related data.
945  * @bgp: pointer to bandgap instance
946  * @id: sensor id
947  * @data: thermal framework related data to be stored
948  *
949  * Return: 0 on success or the proper error code
950  */
951 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
952 {
953 	int ret = ti_bandgap_validate(bgp, id);
954 	if (ret)
955 		return ret;
956 
957 	bgp->regval[id].data = data;
958 
959 	return 0;
960 }
961 
962 /**
963  * ti_bandgap_get_sensor_data() - helper function to get thermal
964  * framework related data.
965  * @bgp: pointer to bandgap instance
966  * @id: sensor id
967  *
968  * Return: data stored by set function with sensor id on success or NULL
969  */
970 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
971 {
972 	int ret = ti_bandgap_validate(bgp, id);
973 	if (ret)
974 		return ERR_PTR(ret);
975 
976 	return bgp->regval[id].data;
977 }
978 
979 /***   Helper functions used during device initialization   ***/
980 
981 /**
982  * ti_bandgap_force_single_read() - executes 1 single ADC conversion
983  * @bgp: pointer to struct ti_bandgap
984  * @id: sensor id which it is desired to read 1 temperature
985  *
986  * Used to initialize the conversion state machine and set it to a valid
987  * state. Called during device initialization and context restore events.
988  *
989  * Return: 0
990  */
991 static int
992 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
993 {
994 	u32 temp = 0, counter = 1000;
995 
996 	/* Select single conversion mode */
997 	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
998 		RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
999 
1000 	/* Start of Conversion = 1 */
1001 	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
1002 	/* Wait until DTEMP is updated */
1003 	temp = ti_bandgap_read_temp(bgp, id);
1004 
1005 	while ((temp == 0) && --counter)
1006 		temp = ti_bandgap_read_temp(bgp, id);
1007 	/* REVISIT: Check correct condition for end of conversion */
1008 
1009 	/* Start of Conversion = 0 */
1010 	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * ti_bandgap_set_continous_mode() - One time enabling of continuous mode
1017  * @bgp: pointer to struct ti_bandgap
1018  *
1019  * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
1020  * be used for junction temperature monitoring, it is desirable that the
1021  * sensors are operational all the time, so that alerts are generated
1022  * properly.
1023  *
1024  * Return: 0
1025  */
1026 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
1027 {
1028 	int i;
1029 
1030 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1031 		/* Perform a single read just before enabling continuous */
1032 		ti_bandgap_force_single_read(bgp, i);
1033 		RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /**
1040  * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
1041  * @bgp: pointer to struct ti_bandgap
1042  * @id: id of the individual sensor
1043  * @trend: Pointer to trend.
1044  *
1045  * This function needs to be called to fetch the temperature trend of a
1046  * Particular sensor. The function computes the difference in temperature
1047  * w.r.t time. For the bandgaps with built in history buffer the temperatures
1048  * are read from the buffer and for those without the Buffer -ENOTSUPP is
1049  * returned.
1050  *
1051  * Return: 0 if no error, else return corresponding error. If no
1052  *		error then the trend value is passed on to trend parameter
1053  */
1054 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
1055 {
1056 	struct temp_sensor_registers *tsr;
1057 	u32 temp1, temp2, reg1, reg2;
1058 	int t1, t2, interval, ret = 0;
1059 
1060 	ret = ti_bandgap_validate(bgp, id);
1061 	if (ret)
1062 		goto exit;
1063 
1064 	if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
1065 	    !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
1066 		ret = -ENOTSUPP;
1067 		goto exit;
1068 	}
1069 
1070 	spin_lock(&bgp->lock);
1071 
1072 	tsr = bgp->conf->sensors[id].registers;
1073 
1074 	/* Freeze and read the last 2 valid readings */
1075 	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
1076 	reg1 = tsr->ctrl_dtemp_1;
1077 	reg2 = tsr->ctrl_dtemp_2;
1078 
1079 	/* read temperature from history buffer */
1080 	temp1 = ti_bandgap_readl(bgp, reg1);
1081 	temp1 &= tsr->bgap_dtemp_mask;
1082 
1083 	temp2 = ti_bandgap_readl(bgp, reg2);
1084 	temp2 &= tsr->bgap_dtemp_mask;
1085 
1086 	/* Convert from adc values to mCelsius temperature */
1087 	ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
1088 	if (ret)
1089 		goto unfreeze;
1090 
1091 	ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
1092 	if (ret)
1093 		goto unfreeze;
1094 
1095 	/* Fetch the update interval */
1096 	ret = ti_bandgap_read_update_interval(bgp, id, &interval);
1097 	if (ret)
1098 		goto unfreeze;
1099 
1100 	/* Set the interval to 1 ms if bandgap counter delay is not set */
1101 	if (interval == 0)
1102 		interval = 1;
1103 
1104 	*trend = (t1 - t2) / interval;
1105 
1106 	dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
1107 		t1, t2, *trend);
1108 
1109 unfreeze:
1110 	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
1111 	spin_unlock(&bgp->lock);
1112 exit:
1113 	return ret;
1114 }
1115 
1116 /**
1117  * ti_bandgap_tshut_init() - setup and initialize tshut handling
1118  * @bgp: pointer to struct ti_bandgap
1119  * @pdev: pointer to device struct platform_device
1120  *
1121  * Call this function only in case the bandgap features HAS(TSHUT).
1122  * In this case, the driver needs to handle the TSHUT signal as an IRQ.
1123  * The IRQ is wired as a GPIO, and for this purpose, it is required
1124  * to specify which GPIO line is used. TSHUT IRQ is fired anytime
1125  * one of the bandgap sensors violates the TSHUT high/hot threshold.
1126  * And in that case, the system must go off.
1127  *
1128  * Return: 0 if no error, else error status
1129  */
1130 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
1131 				 struct platform_device *pdev)
1132 {
1133 	int gpio_nr = bgp->tshut_gpio;
1134 	int status;
1135 
1136 	/* Request for gpio_86 line */
1137 	status = gpio_request(gpio_nr, "tshut");
1138 	if (status < 0) {
1139 		dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86);
1140 		return status;
1141 	}
1142 	status = gpio_direction_input(gpio_nr);
1143 	if (status) {
1144 		dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr);
1145 		return status;
1146 	}
1147 
1148 	status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler,
1149 			     IRQF_TRIGGER_RISING, "tshut", NULL);
1150 	if (status) {
1151 		gpio_free(gpio_nr);
1152 		dev_err(bgp->dev, "request irq failed for TSHUT");
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 /**
1159  * ti_bandgap_alert_init() - setup and initialize talert handling
1160  * @bgp: pointer to struct ti_bandgap
1161  * @pdev: pointer to device struct platform_device
1162  *
1163  * Call this function only in case the bandgap features HAS(TALERT).
1164  * In this case, the driver needs to handle the TALERT signals as an IRQs.
1165  * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
1166  * are violated. In these situation, the driver must reprogram the thresholds,
1167  * accordingly to specified policy.
1168  *
1169  * Return: 0 if no error, else return corresponding error.
1170  */
1171 static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
1172 				  struct platform_device *pdev)
1173 {
1174 	int ret;
1175 
1176 	bgp->irq = platform_get_irq(pdev, 0);
1177 	if (bgp->irq < 0) {
1178 		dev_err(&pdev->dev, "get_irq failed\n");
1179 		return bgp->irq;
1180 	}
1181 	ret = request_threaded_irq(bgp->irq, NULL,
1182 				   ti_bandgap_talert_irq_handler,
1183 				   IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1184 				   "talert", bgp);
1185 	if (ret) {
1186 		dev_err(&pdev->dev, "Request threaded irq failed.\n");
1187 		return ret;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static const struct of_device_id of_ti_bandgap_match[];
1194 /**
1195  * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
1196  * @pdev: pointer to device struct platform_device
1197  *
1198  * Used to read the device tree properties accordingly to the bandgap
1199  * matching version. Based on bandgap version and its capabilities it
1200  * will build a struct ti_bandgap out of the required DT entries.
1201  *
1202  * Return: valid bandgap structure if successful, else returns ERR_PTR
1203  * return value must be verified with IS_ERR.
1204  */
1205 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
1206 {
1207 	struct device_node *node = pdev->dev.of_node;
1208 	const struct of_device_id *of_id;
1209 	struct ti_bandgap *bgp;
1210 	struct resource *res;
1211 	int i;
1212 
1213 	/* just for the sake */
1214 	if (!node) {
1215 		dev_err(&pdev->dev, "no platform information available\n");
1216 		return ERR_PTR(-EINVAL);
1217 	}
1218 
1219 	bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
1220 	if (!bgp) {
1221 		dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n");
1222 		return ERR_PTR(-ENOMEM);
1223 	}
1224 
1225 	of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
1226 	if (of_id)
1227 		bgp->conf = of_id->data;
1228 
1229 	/* register shadow for context save and restore */
1230 	bgp->regval = devm_kzalloc(&pdev->dev, sizeof(*bgp->regval) *
1231 				   bgp->conf->sensor_count, GFP_KERNEL);
1232 	if (!bgp->regval) {
1233 		dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n");
1234 		return ERR_PTR(-ENOMEM);
1235 	}
1236 
1237 	i = 0;
1238 	do {
1239 		void __iomem *chunk;
1240 
1241 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1242 		if (!res)
1243 			break;
1244 		chunk = devm_ioremap_resource(&pdev->dev, res);
1245 		if (i == 0)
1246 			bgp->base = chunk;
1247 		if (IS_ERR(chunk))
1248 			return ERR_CAST(chunk);
1249 
1250 		i++;
1251 	} while (res);
1252 
1253 	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1254 		bgp->tshut_gpio = of_get_gpio(node, 0);
1255 		if (!gpio_is_valid(bgp->tshut_gpio)) {
1256 			dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n",
1257 				bgp->tshut_gpio);
1258 			return ERR_PTR(-EINVAL);
1259 		}
1260 	}
1261 
1262 	return bgp;
1263 }
1264 
1265 /***   Device driver call backs   ***/
1266 
1267 static
1268 int ti_bandgap_probe(struct platform_device *pdev)
1269 {
1270 	struct ti_bandgap *bgp;
1271 	int clk_rate, ret = 0, i;
1272 
1273 	bgp = ti_bandgap_build(pdev);
1274 	if (IS_ERR(bgp)) {
1275 		dev_err(&pdev->dev, "failed to fetch platform data\n");
1276 		return PTR_ERR(bgp);
1277 	}
1278 	bgp->dev = &pdev->dev;
1279 
1280 	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1281 		ret = ti_bandgap_tshut_init(bgp, pdev);
1282 		if (ret) {
1283 			dev_err(&pdev->dev,
1284 				"failed to initialize system tshut IRQ\n");
1285 			return ret;
1286 		}
1287 	}
1288 
1289 	bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
1290 	ret = IS_ERR(bgp->fclock);
1291 	if (ret) {
1292 		dev_err(&pdev->dev, "failed to request fclock reference\n");
1293 		ret = PTR_ERR(bgp->fclock);
1294 		goto free_irqs;
1295 	}
1296 
1297 	bgp->div_clk = clk_get(NULL,  bgp->conf->div_ck_name);
1298 	ret = IS_ERR(bgp->div_clk);
1299 	if (ret) {
1300 		dev_err(&pdev->dev,
1301 			"failed to request div_ts_ck clock ref\n");
1302 		ret = PTR_ERR(bgp->div_clk);
1303 		goto free_irqs;
1304 	}
1305 
1306 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1307 		struct temp_sensor_registers *tsr;
1308 		u32 val;
1309 
1310 		tsr = bgp->conf->sensors[i].registers;
1311 		/*
1312 		 * check if the efuse has a non-zero value if not
1313 		 * it is an untrimmed sample and the temperatures
1314 		 * may not be accurate
1315 		 */
1316 		val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
1317 		if (ret || !val)
1318 			dev_info(&pdev->dev,
1319 				 "Non-trimmed BGAP, Temp not accurate\n");
1320 	}
1321 
1322 	clk_rate = clk_round_rate(bgp->div_clk,
1323 				  bgp->conf->sensors[0].ts_data->max_freq);
1324 	if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
1325 	    clk_rate <= 0) {
1326 		ret = -ENODEV;
1327 		dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
1328 		goto put_clks;
1329 	}
1330 
1331 	ret = clk_set_rate(bgp->div_clk, clk_rate);
1332 	if (ret)
1333 		dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
1334 
1335 	bgp->clk_rate = clk_rate;
1336 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1337 		clk_prepare_enable(bgp->fclock);
1338 
1339 
1340 	spin_lock_init(&bgp->lock);
1341 	bgp->dev = &pdev->dev;
1342 	platform_set_drvdata(pdev, bgp);
1343 
1344 	ti_bandgap_power(bgp, true);
1345 
1346 	/* Set default counter to 1 for now */
1347 	if (TI_BANDGAP_HAS(bgp, COUNTER))
1348 		for (i = 0; i < bgp->conf->sensor_count; i++)
1349 			RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
1350 
1351 	/* Set default thresholds for alert and shutdown */
1352 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1353 		struct temp_sensor_data *ts_data;
1354 
1355 		ts_data = bgp->conf->sensors[i].ts_data;
1356 
1357 		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1358 			/* Set initial Talert thresholds */
1359 			RMW_BITS(bgp, i, bgap_threshold,
1360 				 threshold_tcold_mask, ts_data->t_cold);
1361 			RMW_BITS(bgp, i, bgap_threshold,
1362 				 threshold_thot_mask, ts_data->t_hot);
1363 			/* Enable the alert events */
1364 			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
1365 			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
1366 		}
1367 
1368 		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
1369 			/* Set initial Tshut thresholds */
1370 			RMW_BITS(bgp, i, tshut_threshold,
1371 				 tshut_hot_mask, ts_data->tshut_hot);
1372 			RMW_BITS(bgp, i, tshut_threshold,
1373 				 tshut_cold_mask, ts_data->tshut_cold);
1374 		}
1375 	}
1376 
1377 	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1378 		ti_bandgap_set_continuous_mode(bgp);
1379 
1380 	/* Set .250 seconds time as default counter */
1381 	if (TI_BANDGAP_HAS(bgp, COUNTER))
1382 		for (i = 0; i < bgp->conf->sensor_count; i++)
1383 			RMW_BITS(bgp, i, bgap_counter, counter_mask,
1384 				 bgp->clk_rate / 4);
1385 
1386 	/* Every thing is good? Then expose the sensors */
1387 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1388 		char *domain;
1389 
1390 		if (bgp->conf->sensors[i].register_cooling) {
1391 			ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1392 			if (ret)
1393 				goto remove_sensors;
1394 		}
1395 
1396 		if (bgp->conf->expose_sensor) {
1397 			domain = bgp->conf->sensors[i].domain;
1398 			ret = bgp->conf->expose_sensor(bgp, i, domain);
1399 			if (ret)
1400 				goto remove_last_cooling;
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * Enable the Interrupts once everything is set. Otherwise irq handler
1406 	 * might be called as soon as it is enabled where as rest of framework
1407 	 * is still getting initialised.
1408 	 */
1409 	if (TI_BANDGAP_HAS(bgp, TALERT)) {
1410 		ret = ti_bandgap_talert_init(bgp, pdev);
1411 		if (ret) {
1412 			dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1413 			i = bgp->conf->sensor_count;
1414 			goto disable_clk;
1415 		}
1416 	}
1417 
1418 	return 0;
1419 
1420 remove_last_cooling:
1421 	if (bgp->conf->sensors[i].unregister_cooling)
1422 		bgp->conf->sensors[i].unregister_cooling(bgp, i);
1423 remove_sensors:
1424 	for (i--; i >= 0; i--) {
1425 		if (bgp->conf->sensors[i].unregister_cooling)
1426 			bgp->conf->sensors[i].unregister_cooling(bgp, i);
1427 		if (bgp->conf->remove_sensor)
1428 			bgp->conf->remove_sensor(bgp, i);
1429 	}
1430 	ti_bandgap_power(bgp, false);
1431 disable_clk:
1432 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1433 		clk_disable_unprepare(bgp->fclock);
1434 put_clks:
1435 	clk_put(bgp->fclock);
1436 	clk_put(bgp->div_clk);
1437 free_irqs:
1438 	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1439 		free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1440 		gpio_free(bgp->tshut_gpio);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 static
1447 int ti_bandgap_remove(struct platform_device *pdev)
1448 {
1449 	struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1450 	int i;
1451 
1452 	/* First thing is to remove sensor interfaces */
1453 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1454 		if (bgp->conf->sensors[i].unregister_cooling)
1455 			bgp->conf->sensors[i].unregister_cooling(bgp, i);
1456 
1457 		if (bgp->conf->remove_sensor)
1458 			bgp->conf->remove_sensor(bgp, i);
1459 	}
1460 
1461 	ti_bandgap_power(bgp, false);
1462 
1463 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1464 		clk_disable_unprepare(bgp->fclock);
1465 	clk_put(bgp->fclock);
1466 	clk_put(bgp->div_clk);
1467 
1468 	if (TI_BANDGAP_HAS(bgp, TALERT))
1469 		free_irq(bgp->irq, bgp);
1470 
1471 	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1472 		free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1473 		gpio_free(bgp->tshut_gpio);
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 #ifdef CONFIG_PM_SLEEP
1480 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1481 {
1482 	int i;
1483 
1484 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1485 		struct temp_sensor_registers *tsr;
1486 		struct temp_sensor_regval *rval;
1487 
1488 		rval = &bgp->regval[i];
1489 		tsr = bgp->conf->sensors[i].registers;
1490 
1491 		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1492 			rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1493 							tsr->bgap_mode_ctrl);
1494 		if (TI_BANDGAP_HAS(bgp, COUNTER))
1495 			rval->bg_counter = ti_bandgap_readl(bgp,
1496 							tsr->bgap_counter);
1497 		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1498 			rval->bg_threshold = ti_bandgap_readl(bgp,
1499 							tsr->bgap_threshold);
1500 			rval->bg_ctrl = ti_bandgap_readl(bgp,
1501 						   tsr->bgap_mask_ctrl);
1502 		}
1503 
1504 		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1505 			rval->tshut_threshold = ti_bandgap_readl(bgp,
1506 						   tsr->tshut_threshold);
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1513 {
1514 	int i;
1515 
1516 	for (i = 0; i < bgp->conf->sensor_count; i++) {
1517 		struct temp_sensor_registers *tsr;
1518 		struct temp_sensor_regval *rval;
1519 		u32 val = 0;
1520 
1521 		rval = &bgp->regval[i];
1522 		tsr = bgp->conf->sensors[i].registers;
1523 
1524 		if (TI_BANDGAP_HAS(bgp, COUNTER))
1525 			val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1526 
1527 		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1528 			ti_bandgap_writel(bgp, rval->tshut_threshold,
1529 					  tsr->tshut_threshold);
1530 		/* Force immediate temperature measurement and update
1531 		 * of the DTEMP field
1532 		 */
1533 		ti_bandgap_force_single_read(bgp, i);
1534 
1535 		if (TI_BANDGAP_HAS(bgp, COUNTER))
1536 			ti_bandgap_writel(bgp, rval->bg_counter,
1537 					  tsr->bgap_counter);
1538 		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1539 			ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1540 					  tsr->bgap_mode_ctrl);
1541 		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1542 			ti_bandgap_writel(bgp, rval->bg_threshold,
1543 					  tsr->bgap_threshold);
1544 			ti_bandgap_writel(bgp, rval->bg_ctrl,
1545 					  tsr->bgap_mask_ctrl);
1546 		}
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static int ti_bandgap_suspend(struct device *dev)
1553 {
1554 	struct ti_bandgap *bgp = dev_get_drvdata(dev);
1555 	int err;
1556 
1557 	err = ti_bandgap_save_ctxt(bgp);
1558 	ti_bandgap_power(bgp, false);
1559 
1560 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1561 		clk_disable_unprepare(bgp->fclock);
1562 
1563 	return err;
1564 }
1565 
1566 static int ti_bandgap_resume(struct device *dev)
1567 {
1568 	struct ti_bandgap *bgp = dev_get_drvdata(dev);
1569 
1570 	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1571 		clk_prepare_enable(bgp->fclock);
1572 
1573 	ti_bandgap_power(bgp, true);
1574 
1575 	return ti_bandgap_restore_ctxt(bgp);
1576 }
1577 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1578 			 ti_bandgap_resume);
1579 
1580 #define DEV_PM_OPS	(&ti_bandgap_dev_pm_ops)
1581 #else
1582 #define DEV_PM_OPS	NULL
1583 #endif
1584 
1585 static const struct of_device_id of_ti_bandgap_match[] = {
1586 #ifdef CONFIG_OMAP4_THERMAL
1587 	{
1588 		.compatible = "ti,omap4430-bandgap",
1589 		.data = (void *)&omap4430_data,
1590 	},
1591 	{
1592 		.compatible = "ti,omap4460-bandgap",
1593 		.data = (void *)&omap4460_data,
1594 	},
1595 	{
1596 		.compatible = "ti,omap4470-bandgap",
1597 		.data = (void *)&omap4470_data,
1598 	},
1599 #endif
1600 #ifdef CONFIG_OMAP5_THERMAL
1601 	{
1602 		.compatible = "ti,omap5430-bandgap",
1603 		.data = (void *)&omap5430_data,
1604 	},
1605 #endif
1606 #ifdef CONFIG_DRA752_THERMAL
1607 	{
1608 		.compatible = "ti,dra752-bandgap",
1609 		.data = (void *)&dra752_data,
1610 	},
1611 #endif
1612 	/* Sentinel */
1613 	{ },
1614 };
1615 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1616 
1617 static struct platform_driver ti_bandgap_sensor_driver = {
1618 	.probe = ti_bandgap_probe,
1619 	.remove = ti_bandgap_remove,
1620 	.driver = {
1621 			.name = "ti-soc-thermal",
1622 			.pm = DEV_PM_OPS,
1623 			.of_match_table	= of_ti_bandgap_match,
1624 	},
1625 };
1626 
1627 module_platform_driver(ti_bandgap_sensor_driver);
1628 
1629 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1630 MODULE_LICENSE("GPL v2");
1631 MODULE_ALIAS("platform:ti-soc-thermal");
1632 MODULE_AUTHOR("Texas Instrument Inc.");
1633