1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Bandgap temperature sensor driver 4 * 5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/ 6 * Author: J Keerthy <j-keerthy@ti.com> 7 * Author: Moiz Sonasath <m-sonasath@ti.com> 8 * Couple of fixes, DT and MFD adaptation: 9 * Eduardo Valentin <eduardo.valentin@ti.com> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/export.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/interrupt.h> 17 #include <linux/clk.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/platform_device.h> 20 #include <linux/err.h> 21 #include <linux/types.h> 22 #include <linux/spinlock.h> 23 #include <linux/reboot.h> 24 #include <linux/of_device.h> 25 #include <linux/of_platform.h> 26 #include <linux/of_irq.h> 27 #include <linux/io.h> 28 29 #include "ti-bandgap.h" 30 31 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id); 32 33 /*** Helper functions to access registers and their bitfields ***/ 34 35 /** 36 * ti_bandgap_readl() - simple read helper function 37 * @bgp: pointer to ti_bandgap structure 38 * @reg: desired register (offset) to be read 39 * 40 * Helper function to read bandgap registers. It uses the io remapped area. 41 * Return: the register value. 42 */ 43 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg) 44 { 45 return readl(bgp->base + reg); 46 } 47 48 /** 49 * ti_bandgap_writel() - simple write helper function 50 * @bgp: pointer to ti_bandgap structure 51 * @val: desired register value to be written 52 * @reg: desired register (offset) to be written 53 * 54 * Helper function to write bandgap registers. It uses the io remapped area. 55 */ 56 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg) 57 { 58 writel(val, bgp->base + reg); 59 } 60 61 /** 62 * DOC: macro to update bits. 63 * 64 * RMW_BITS() - used to read, modify and update bandgap bitfields. 65 * The value passed will be shifted. 66 */ 67 #define RMW_BITS(bgp, id, reg, mask, val) \ 68 do { \ 69 struct temp_sensor_registers *t; \ 70 u32 r; \ 71 \ 72 t = bgp->conf->sensors[(id)].registers; \ 73 r = ti_bandgap_readl(bgp, t->reg); \ 74 r &= ~t->mask; \ 75 r |= (val) << __ffs(t->mask); \ 76 ti_bandgap_writel(bgp, r, t->reg); \ 77 } while (0) 78 79 /*** Basic helper functions ***/ 80 81 /** 82 * ti_bandgap_power() - controls the power state of a bandgap device 83 * @bgp: pointer to ti_bandgap structure 84 * @on: desired power state (1 - on, 0 - off) 85 * 86 * Used to power on/off a bandgap device instance. Only used on those 87 * that features tempsoff bit. 88 * 89 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported. 90 */ 91 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on) 92 { 93 int i; 94 95 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) 96 return -ENOTSUPP; 97 98 for (i = 0; i < bgp->conf->sensor_count; i++) 99 /* active on 0 */ 100 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on); 101 return 0; 102 } 103 104 /** 105 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature 106 * @bgp: pointer to ti_bandgap structure 107 * @reg: desired register (offset) to be read 108 * 109 * Function to read dra7 bandgap sensor temperature. This is done separately 110 * so as to workaround the errata "Bandgap Temperature read Dtemp can be 111 * corrupted" - Errata ID: i814". 112 * Read accesses to registers listed below can be corrupted due to incorrect 113 * resynchronization between clock domains. 114 * Read access to registers below can be corrupted : 115 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4) 116 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n 117 * 118 * Return: the register value. 119 */ 120 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg) 121 { 122 u32 val1, val2; 123 124 val1 = ti_bandgap_readl(bgp, reg); 125 val2 = ti_bandgap_readl(bgp, reg); 126 127 /* If both times we read the same value then that is right */ 128 if (val1 == val2) 129 return val1; 130 131 /* if val1 and val2 are different read it third time */ 132 return ti_bandgap_readl(bgp, reg); 133 } 134 135 /** 136 * ti_bandgap_read_temp() - helper function to read sensor temperature 137 * @bgp: pointer to ti_bandgap structure 138 * @id: bandgap sensor id 139 * 140 * Function to concentrate the steps to read sensor temperature register. 141 * This function is desired because, depending on bandgap device version, 142 * it might be needed to freeze the bandgap state machine, before fetching 143 * the register value. 144 * 145 * Return: temperature in ADC values. 146 */ 147 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id) 148 { 149 struct temp_sensor_registers *tsr; 150 u32 temp, reg; 151 152 tsr = bgp->conf->sensors[id].registers; 153 reg = tsr->temp_sensor_ctrl; 154 155 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 156 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 157 /* 158 * In case we cannot read from cur_dtemp / dtemp_0, 159 * then we read from the last valid temp read 160 */ 161 reg = tsr->ctrl_dtemp_1; 162 } 163 164 /* read temperature */ 165 if (TI_BANDGAP_HAS(bgp, ERRATA_814)) 166 temp = ti_errata814_bandgap_read_temp(bgp, reg); 167 else 168 temp = ti_bandgap_readl(bgp, reg); 169 170 temp &= tsr->bgap_dtemp_mask; 171 172 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) 173 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 174 175 return temp; 176 } 177 178 /*** IRQ handlers ***/ 179 180 /** 181 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs 182 * @irq: IRQ number 183 * @data: private data (struct ti_bandgap *) 184 * 185 * This is the Talert handler. Use it only if bandgap device features 186 * HAS(TALERT). This handler goes over all sensors and checks their 187 * conditions and acts accordingly. In case there are events pending, 188 * it will reset the event mask to wait for the opposite event (next event). 189 * Every time there is a new event, it will be reported to thermal layer. 190 * 191 * Return: IRQ_HANDLED 192 */ 193 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data) 194 { 195 struct ti_bandgap *bgp = data; 196 struct temp_sensor_registers *tsr; 197 u32 t_hot = 0, t_cold = 0, ctrl; 198 int i; 199 200 spin_lock(&bgp->lock); 201 for (i = 0; i < bgp->conf->sensor_count; i++) { 202 tsr = bgp->conf->sensors[i].registers; 203 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status); 204 205 /* Read the status of t_hot */ 206 t_hot = ctrl & tsr->status_hot_mask; 207 208 /* Read the status of t_cold */ 209 t_cold = ctrl & tsr->status_cold_mask; 210 211 if (!t_cold && !t_hot) 212 continue; 213 214 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 215 /* 216 * One TALERT interrupt: Two sources 217 * If the interrupt is due to t_hot then mask t_hot and 218 * and unmask t_cold else mask t_cold and unmask t_hot 219 */ 220 if (t_hot) { 221 ctrl &= ~tsr->mask_hot_mask; 222 ctrl |= tsr->mask_cold_mask; 223 } else if (t_cold) { 224 ctrl &= ~tsr->mask_cold_mask; 225 ctrl |= tsr->mask_hot_mask; 226 } 227 228 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl); 229 230 dev_dbg(bgp->dev, 231 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n", 232 __func__, bgp->conf->sensors[i].domain, 233 t_hot, t_cold); 234 235 /* report temperature to whom may concern */ 236 if (bgp->conf->report_temperature) 237 bgp->conf->report_temperature(bgp, i); 238 } 239 spin_unlock(&bgp->lock); 240 241 return IRQ_HANDLED; 242 } 243 244 /** 245 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal 246 * @irq: IRQ number 247 * @data: private data (unused) 248 * 249 * This is the Tshut handler. Use it only if bandgap device features 250 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown 251 * the system. 252 * 253 * Return: IRQ_HANDLED 254 */ 255 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data) 256 { 257 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n", 258 __func__); 259 260 orderly_poweroff(true); 261 262 return IRQ_HANDLED; 263 } 264 265 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/ 266 267 /** 268 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale 269 * @bgp: struct ti_bandgap pointer 270 * @adc_val: value in ADC representation 271 * @t: address where to write the resulting temperature in mCelsius 272 * 273 * Simple conversion from ADC representation to mCelsius. In case the ADC value 274 * is out of the ADC conv table range, it returns -ERANGE, 0 on success. 275 * The conversion table is indexed by the ADC values. 276 * 277 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val 278 * argument is out of the ADC conv table range. 279 */ 280 static 281 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t) 282 { 283 const struct ti_bandgap_data *conf = bgp->conf; 284 285 /* look up for temperature in the table and return the temperature */ 286 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) 287 return -ERANGE; 288 289 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val]; 290 return 0; 291 } 292 293 /** 294 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap 295 * @bgp: struct ti_bandgap pointer 296 * @id: bandgap sensor id 297 * 298 * Checks if the bandgap pointer is valid and if the sensor id is also 299 * applicable. 300 * 301 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if 302 * @id cannot index @bgp sensors. 303 */ 304 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id) 305 { 306 if (!bgp || IS_ERR(bgp)) { 307 pr_err("%s: invalid bandgap pointer\n", __func__); 308 return -EINVAL; 309 } 310 311 if ((id < 0) || (id >= bgp->conf->sensor_count)) { 312 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n", 313 __func__, id); 314 return -ERANGE; 315 } 316 317 return 0; 318 } 319 320 /** 321 * ti_bandgap_read_counter() - read the sensor counter 322 * @bgp: pointer to bandgap instance 323 * @id: sensor id 324 * @interval: resulting update interval in miliseconds 325 */ 326 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id, 327 int *interval) 328 { 329 struct temp_sensor_registers *tsr; 330 int time; 331 332 tsr = bgp->conf->sensors[id].registers; 333 time = ti_bandgap_readl(bgp, tsr->bgap_counter); 334 time = (time & tsr->counter_mask) >> 335 __ffs(tsr->counter_mask); 336 time = time * 1000 / bgp->clk_rate; 337 *interval = time; 338 } 339 340 /** 341 * ti_bandgap_read_counter_delay() - read the sensor counter delay 342 * @bgp: pointer to bandgap instance 343 * @id: sensor id 344 * @interval: resulting update interval in miliseconds 345 */ 346 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id, 347 int *interval) 348 { 349 struct temp_sensor_registers *tsr; 350 int reg_val; 351 352 tsr = bgp->conf->sensors[id].registers; 353 354 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 355 reg_val = (reg_val & tsr->mask_counter_delay_mask) >> 356 __ffs(tsr->mask_counter_delay_mask); 357 switch (reg_val) { 358 case 0: 359 *interval = 0; 360 break; 361 case 1: 362 *interval = 1; 363 break; 364 case 2: 365 *interval = 10; 366 break; 367 case 3: 368 *interval = 100; 369 break; 370 case 4: 371 *interval = 250; 372 break; 373 case 5: 374 *interval = 500; 375 break; 376 default: 377 dev_warn(bgp->dev, "Wrong counter delay value read from register %X", 378 reg_val); 379 } 380 } 381 382 /** 383 * ti_bandgap_read_update_interval() - read the sensor update interval 384 * @bgp: pointer to bandgap instance 385 * @id: sensor id 386 * @interval: resulting update interval in miliseconds 387 * 388 * Return: 0 on success or the proper error code 389 */ 390 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id, 391 int *interval) 392 { 393 int ret = 0; 394 395 ret = ti_bandgap_validate(bgp, id); 396 if (ret) 397 goto exit; 398 399 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 400 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 401 ret = -ENOTSUPP; 402 goto exit; 403 } 404 405 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 406 ti_bandgap_read_counter(bgp, id, interval); 407 goto exit; 408 } 409 410 ti_bandgap_read_counter_delay(bgp, id, interval); 411 exit: 412 return ret; 413 } 414 415 /** 416 * ti_bandgap_write_counter_delay() - set the counter_delay 417 * @bgp: pointer to bandgap instance 418 * @id: sensor id 419 * @interval: desired update interval in miliseconds 420 * 421 * Return: 0 on success or the proper error code 422 */ 423 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id, 424 u32 interval) 425 { 426 int rval; 427 428 switch (interval) { 429 case 0: /* Immediate conversion */ 430 rval = 0x0; 431 break; 432 case 1: /* Conversion after ever 1ms */ 433 rval = 0x1; 434 break; 435 case 10: /* Conversion after ever 10ms */ 436 rval = 0x2; 437 break; 438 case 100: /* Conversion after ever 100ms */ 439 rval = 0x3; 440 break; 441 case 250: /* Conversion after ever 250ms */ 442 rval = 0x4; 443 break; 444 case 500: /* Conversion after ever 500ms */ 445 rval = 0x5; 446 break; 447 default: 448 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval); 449 return -EINVAL; 450 } 451 452 spin_lock(&bgp->lock); 453 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval); 454 spin_unlock(&bgp->lock); 455 456 return 0; 457 } 458 459 /** 460 * ti_bandgap_write_counter() - set the bandgap sensor counter 461 * @bgp: pointer to bandgap instance 462 * @id: sensor id 463 * @interval: desired update interval in miliseconds 464 */ 465 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id, 466 u32 interval) 467 { 468 interval = interval * bgp->clk_rate / 1000; 469 spin_lock(&bgp->lock); 470 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval); 471 spin_unlock(&bgp->lock); 472 } 473 474 /** 475 * ti_bandgap_write_update_interval() - set the update interval 476 * @bgp: pointer to bandgap instance 477 * @id: sensor id 478 * @interval: desired update interval in miliseconds 479 * 480 * Return: 0 on success or the proper error code 481 */ 482 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp, 483 int id, u32 interval) 484 { 485 int ret = ti_bandgap_validate(bgp, id); 486 if (ret) 487 goto exit; 488 489 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 490 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 491 ret = -ENOTSUPP; 492 goto exit; 493 } 494 495 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 496 ti_bandgap_write_counter(bgp, id, interval); 497 goto exit; 498 } 499 500 ret = ti_bandgap_write_counter_delay(bgp, id, interval); 501 exit: 502 return ret; 503 } 504 505 /** 506 * ti_bandgap_read_temperature() - report current temperature 507 * @bgp: pointer to bandgap instance 508 * @id: sensor id 509 * @temperature: resulting temperature 510 * 511 * Return: 0 on success or the proper error code 512 */ 513 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id, 514 int *temperature) 515 { 516 u32 temp; 517 int ret; 518 519 ret = ti_bandgap_validate(bgp, id); 520 if (ret) 521 return ret; 522 523 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) { 524 ret = ti_bandgap_force_single_read(bgp, id); 525 if (ret) 526 return ret; 527 } 528 529 spin_lock(&bgp->lock); 530 temp = ti_bandgap_read_temp(bgp, id); 531 spin_unlock(&bgp->lock); 532 533 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); 534 if (ret) 535 return -EIO; 536 537 *temperature = temp; 538 539 return 0; 540 } 541 542 /** 543 * ti_bandgap_set_sensor_data() - helper function to store thermal 544 * framework related data. 545 * @bgp: pointer to bandgap instance 546 * @id: sensor id 547 * @data: thermal framework related data to be stored 548 * 549 * Return: 0 on success or the proper error code 550 */ 551 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data) 552 { 553 int ret = ti_bandgap_validate(bgp, id); 554 if (ret) 555 return ret; 556 557 bgp->regval[id].data = data; 558 559 return 0; 560 } 561 562 /** 563 * ti_bandgap_get_sensor_data() - helper function to get thermal 564 * framework related data. 565 * @bgp: pointer to bandgap instance 566 * @id: sensor id 567 * 568 * Return: data stored by set function with sensor id on success or NULL 569 */ 570 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id) 571 { 572 int ret = ti_bandgap_validate(bgp, id); 573 if (ret) 574 return ERR_PTR(ret); 575 576 return bgp->regval[id].data; 577 } 578 579 /*** Helper functions used during device initialization ***/ 580 581 /** 582 * ti_bandgap_force_single_read() - executes 1 single ADC conversion 583 * @bgp: pointer to struct ti_bandgap 584 * @id: sensor id which it is desired to read 1 temperature 585 * 586 * Used to initialize the conversion state machine and set it to a valid 587 * state. Called during device initialization and context restore events. 588 * 589 * Return: 0 590 */ 591 static int 592 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id) 593 { 594 u32 counter = 1000; 595 struct temp_sensor_registers *tsr; 596 597 /* Select single conversion mode */ 598 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 599 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0); 600 601 /* Start of Conversion = 1 */ 602 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1); 603 604 /* Wait for EOCZ going up */ 605 tsr = bgp->conf->sensors[id].registers; 606 607 while (--counter) { 608 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 609 tsr->bgap_eocz_mask) 610 break; 611 } 612 613 /* Start of Conversion = 0 */ 614 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0); 615 616 /* Wait for EOCZ going down */ 617 counter = 1000; 618 while (--counter) { 619 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 620 tsr->bgap_eocz_mask)) 621 break; 622 } 623 624 return 0; 625 } 626 627 /** 628 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode 629 * @bgp: pointer to struct ti_bandgap 630 * 631 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may 632 * be used for junction temperature monitoring, it is desirable that the 633 * sensors are operational all the time, so that alerts are generated 634 * properly. 635 * 636 * Return: 0 637 */ 638 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp) 639 { 640 int i; 641 642 for (i = 0; i < bgp->conf->sensor_count; i++) { 643 /* Perform a single read just before enabling continuous */ 644 ti_bandgap_force_single_read(bgp, i); 645 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1); 646 } 647 648 return 0; 649 } 650 651 /** 652 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor 653 * @bgp: pointer to struct ti_bandgap 654 * @id: id of the individual sensor 655 * @trend: Pointer to trend. 656 * 657 * This function needs to be called to fetch the temperature trend of a 658 * Particular sensor. The function computes the difference in temperature 659 * w.r.t time. For the bandgaps with built in history buffer the temperatures 660 * are read from the buffer and for those without the Buffer -ENOTSUPP is 661 * returned. 662 * 663 * Return: 0 if no error, else return corresponding error. If no 664 * error then the trend value is passed on to trend parameter 665 */ 666 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend) 667 { 668 struct temp_sensor_registers *tsr; 669 u32 temp1, temp2, reg1, reg2; 670 int t1, t2, interval, ret = 0; 671 672 ret = ti_bandgap_validate(bgp, id); 673 if (ret) 674 goto exit; 675 676 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) || 677 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 678 ret = -ENOTSUPP; 679 goto exit; 680 } 681 682 spin_lock(&bgp->lock); 683 684 tsr = bgp->conf->sensors[id].registers; 685 686 /* Freeze and read the last 2 valid readings */ 687 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 688 reg1 = tsr->ctrl_dtemp_1; 689 reg2 = tsr->ctrl_dtemp_2; 690 691 /* read temperature from history buffer */ 692 temp1 = ti_bandgap_readl(bgp, reg1); 693 temp1 &= tsr->bgap_dtemp_mask; 694 695 temp2 = ti_bandgap_readl(bgp, reg2); 696 temp2 &= tsr->bgap_dtemp_mask; 697 698 /* Convert from adc values to mCelsius temperature */ 699 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1); 700 if (ret) 701 goto unfreeze; 702 703 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2); 704 if (ret) 705 goto unfreeze; 706 707 /* Fetch the update interval */ 708 ret = ti_bandgap_read_update_interval(bgp, id, &interval); 709 if (ret) 710 goto unfreeze; 711 712 /* Set the interval to 1 ms if bandgap counter delay is not set */ 713 if (interval == 0) 714 interval = 1; 715 716 *trend = (t1 - t2) / interval; 717 718 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n", 719 t1, t2, *trend); 720 721 unfreeze: 722 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 723 spin_unlock(&bgp->lock); 724 exit: 725 return ret; 726 } 727 728 /** 729 * ti_bandgap_tshut_init() - setup and initialize tshut handling 730 * @bgp: pointer to struct ti_bandgap 731 * @pdev: pointer to device struct platform_device 732 * 733 * Call this function only in case the bandgap features HAS(TSHUT). 734 * In this case, the driver needs to handle the TSHUT signal as an IRQ. 735 * The IRQ is wired as a GPIO, and for this purpose, it is required 736 * to specify which GPIO line is used. TSHUT IRQ is fired anytime 737 * one of the bandgap sensors violates the TSHUT high/hot threshold. 738 * And in that case, the system must go off. 739 * 740 * Return: 0 if no error, else error status 741 */ 742 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp, 743 struct platform_device *pdev) 744 { 745 int status; 746 747 status = request_irq(gpiod_to_irq(bgp->tshut_gpiod), 748 ti_bandgap_tshut_irq_handler, 749 IRQF_TRIGGER_RISING, "tshut", NULL); 750 if (status) 751 dev_err(bgp->dev, "request irq failed for TSHUT"); 752 753 return 0; 754 } 755 756 /** 757 * ti_bandgap_alert_init() - setup and initialize talert handling 758 * @bgp: pointer to struct ti_bandgap 759 * @pdev: pointer to device struct platform_device 760 * 761 * Call this function only in case the bandgap features HAS(TALERT). 762 * In this case, the driver needs to handle the TALERT signals as an IRQs. 763 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold) 764 * are violated. In these situation, the driver must reprogram the thresholds, 765 * accordingly to specified policy. 766 * 767 * Return: 0 if no error, else return corresponding error. 768 */ 769 static int ti_bandgap_talert_init(struct ti_bandgap *bgp, 770 struct platform_device *pdev) 771 { 772 int ret; 773 774 bgp->irq = platform_get_irq(pdev, 0); 775 if (bgp->irq < 0) 776 return bgp->irq; 777 778 ret = request_threaded_irq(bgp->irq, NULL, 779 ti_bandgap_talert_irq_handler, 780 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 781 "talert", bgp); 782 if (ret) { 783 dev_err(&pdev->dev, "Request threaded irq failed.\n"); 784 return ret; 785 } 786 787 return 0; 788 } 789 790 static const struct of_device_id of_ti_bandgap_match[]; 791 /** 792 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap 793 * @pdev: pointer to device struct platform_device 794 * 795 * Used to read the device tree properties accordingly to the bandgap 796 * matching version. Based on bandgap version and its capabilities it 797 * will build a struct ti_bandgap out of the required DT entries. 798 * 799 * Return: valid bandgap structure if successful, else returns ERR_PTR 800 * return value must be verified with IS_ERR. 801 */ 802 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev) 803 { 804 struct device_node *node = pdev->dev.of_node; 805 const struct of_device_id *of_id; 806 struct ti_bandgap *bgp; 807 struct resource *res; 808 int i; 809 810 /* just for the sake */ 811 if (!node) { 812 dev_err(&pdev->dev, "no platform information available\n"); 813 return ERR_PTR(-EINVAL); 814 } 815 816 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL); 817 if (!bgp) 818 return ERR_PTR(-ENOMEM); 819 820 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev); 821 if (of_id) 822 bgp->conf = of_id->data; 823 824 /* register shadow for context save and restore */ 825 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count, 826 sizeof(*bgp->regval), GFP_KERNEL); 827 if (!bgp->regval) 828 return ERR_PTR(-ENOMEM); 829 830 i = 0; 831 do { 832 void __iomem *chunk; 833 834 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 835 if (!res) 836 break; 837 chunk = devm_ioremap_resource(&pdev->dev, res); 838 if (i == 0) 839 bgp->base = chunk; 840 if (IS_ERR(chunk)) 841 return ERR_CAST(chunk); 842 843 i++; 844 } while (res); 845 846 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 847 bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN); 848 if (IS_ERR(bgp->tshut_gpiod)) { 849 dev_err(&pdev->dev, "invalid gpio for tshut\n"); 850 return ERR_CAST(bgp->tshut_gpiod); 851 } 852 } 853 854 return bgp; 855 } 856 857 /*** Device driver call backs ***/ 858 859 static 860 int ti_bandgap_probe(struct platform_device *pdev) 861 { 862 struct ti_bandgap *bgp; 863 int clk_rate, ret, i; 864 865 bgp = ti_bandgap_build(pdev); 866 if (IS_ERR(bgp)) { 867 dev_err(&pdev->dev, "failed to fetch platform data\n"); 868 return PTR_ERR(bgp); 869 } 870 bgp->dev = &pdev->dev; 871 872 if (TI_BANDGAP_HAS(bgp, UNRELIABLE)) 873 dev_warn(&pdev->dev, 874 "This OMAP thermal sensor is unreliable. You've been warned\n"); 875 876 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 877 ret = ti_bandgap_tshut_init(bgp, pdev); 878 if (ret) { 879 dev_err(&pdev->dev, 880 "failed to initialize system tshut IRQ\n"); 881 return ret; 882 } 883 } 884 885 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name); 886 if (IS_ERR(bgp->fclock)) { 887 dev_err(&pdev->dev, "failed to request fclock reference\n"); 888 ret = PTR_ERR(bgp->fclock); 889 goto free_irqs; 890 } 891 892 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name); 893 if (IS_ERR(bgp->div_clk)) { 894 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n"); 895 ret = PTR_ERR(bgp->div_clk); 896 goto put_fclock; 897 } 898 899 for (i = 0; i < bgp->conf->sensor_count; i++) { 900 struct temp_sensor_registers *tsr; 901 u32 val; 902 903 tsr = bgp->conf->sensors[i].registers; 904 /* 905 * check if the efuse has a non-zero value if not 906 * it is an untrimmed sample and the temperatures 907 * may not be accurate 908 */ 909 val = ti_bandgap_readl(bgp, tsr->bgap_efuse); 910 if (!val) 911 dev_info(&pdev->dev, 912 "Non-trimmed BGAP, Temp not accurate\n"); 913 } 914 915 clk_rate = clk_round_rate(bgp->div_clk, 916 bgp->conf->sensors[0].ts_data->max_freq); 917 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq || 918 clk_rate <= 0) { 919 ret = -ENODEV; 920 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate); 921 goto put_clks; 922 } 923 924 ret = clk_set_rate(bgp->div_clk, clk_rate); 925 if (ret) 926 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n"); 927 928 bgp->clk_rate = clk_rate; 929 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 930 clk_prepare_enable(bgp->fclock); 931 932 933 spin_lock_init(&bgp->lock); 934 bgp->dev = &pdev->dev; 935 platform_set_drvdata(pdev, bgp); 936 937 ti_bandgap_power(bgp, true); 938 939 /* Set default counter to 1 for now */ 940 if (TI_BANDGAP_HAS(bgp, COUNTER)) 941 for (i = 0; i < bgp->conf->sensor_count; i++) 942 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1); 943 944 /* Set default thresholds for alert and shutdown */ 945 for (i = 0; i < bgp->conf->sensor_count; i++) { 946 struct temp_sensor_data *ts_data; 947 948 ts_data = bgp->conf->sensors[i].ts_data; 949 950 if (TI_BANDGAP_HAS(bgp, TALERT)) { 951 /* Set initial Talert thresholds */ 952 RMW_BITS(bgp, i, bgap_threshold, 953 threshold_tcold_mask, ts_data->t_cold); 954 RMW_BITS(bgp, i, bgap_threshold, 955 threshold_thot_mask, ts_data->t_hot); 956 /* Enable the alert events */ 957 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1); 958 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1); 959 } 960 961 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) { 962 /* Set initial Tshut thresholds */ 963 RMW_BITS(bgp, i, tshut_threshold, 964 tshut_hot_mask, ts_data->tshut_hot); 965 RMW_BITS(bgp, i, tshut_threshold, 966 tshut_cold_mask, ts_data->tshut_cold); 967 } 968 } 969 970 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 971 ti_bandgap_set_continuous_mode(bgp); 972 973 /* Set .250 seconds time as default counter */ 974 if (TI_BANDGAP_HAS(bgp, COUNTER)) 975 for (i = 0; i < bgp->conf->sensor_count; i++) 976 RMW_BITS(bgp, i, bgap_counter, counter_mask, 977 bgp->clk_rate / 4); 978 979 /* Every thing is good? Then expose the sensors */ 980 for (i = 0; i < bgp->conf->sensor_count; i++) { 981 char *domain; 982 983 if (bgp->conf->sensors[i].register_cooling) { 984 ret = bgp->conf->sensors[i].register_cooling(bgp, i); 985 if (ret) 986 goto remove_sensors; 987 } 988 989 if (bgp->conf->expose_sensor) { 990 domain = bgp->conf->sensors[i].domain; 991 ret = bgp->conf->expose_sensor(bgp, i, domain); 992 if (ret) 993 goto remove_last_cooling; 994 } 995 } 996 997 /* 998 * Enable the Interrupts once everything is set. Otherwise irq handler 999 * might be called as soon as it is enabled where as rest of framework 1000 * is still getting initialised. 1001 */ 1002 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1003 ret = ti_bandgap_talert_init(bgp, pdev); 1004 if (ret) { 1005 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n"); 1006 i = bgp->conf->sensor_count; 1007 goto disable_clk; 1008 } 1009 } 1010 1011 return 0; 1012 1013 remove_last_cooling: 1014 if (bgp->conf->sensors[i].unregister_cooling) 1015 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1016 remove_sensors: 1017 for (i--; i >= 0; i--) { 1018 if (bgp->conf->sensors[i].unregister_cooling) 1019 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1020 if (bgp->conf->remove_sensor) 1021 bgp->conf->remove_sensor(bgp, i); 1022 } 1023 ti_bandgap_power(bgp, false); 1024 disable_clk: 1025 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1026 clk_disable_unprepare(bgp->fclock); 1027 put_clks: 1028 clk_put(bgp->div_clk); 1029 put_fclock: 1030 clk_put(bgp->fclock); 1031 free_irqs: 1032 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1033 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1034 1035 return ret; 1036 } 1037 1038 static 1039 int ti_bandgap_remove(struct platform_device *pdev) 1040 { 1041 struct ti_bandgap *bgp = platform_get_drvdata(pdev); 1042 int i; 1043 1044 /* First thing is to remove sensor interfaces */ 1045 for (i = 0; i < bgp->conf->sensor_count; i++) { 1046 if (bgp->conf->sensors[i].unregister_cooling) 1047 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1048 1049 if (bgp->conf->remove_sensor) 1050 bgp->conf->remove_sensor(bgp, i); 1051 } 1052 1053 ti_bandgap_power(bgp, false); 1054 1055 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1056 clk_disable_unprepare(bgp->fclock); 1057 clk_put(bgp->fclock); 1058 clk_put(bgp->div_clk); 1059 1060 if (TI_BANDGAP_HAS(bgp, TALERT)) 1061 free_irq(bgp->irq, bgp); 1062 1063 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1064 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1065 1066 return 0; 1067 } 1068 1069 #ifdef CONFIG_PM_SLEEP 1070 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp) 1071 { 1072 int i; 1073 1074 for (i = 0; i < bgp->conf->sensor_count; i++) { 1075 struct temp_sensor_registers *tsr; 1076 struct temp_sensor_regval *rval; 1077 1078 rval = &bgp->regval[i]; 1079 tsr = bgp->conf->sensors[i].registers; 1080 1081 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1082 rval->bg_mode_ctrl = ti_bandgap_readl(bgp, 1083 tsr->bgap_mode_ctrl); 1084 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1085 rval->bg_counter = ti_bandgap_readl(bgp, 1086 tsr->bgap_counter); 1087 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1088 rval->bg_threshold = ti_bandgap_readl(bgp, 1089 tsr->bgap_threshold); 1090 rval->bg_ctrl = ti_bandgap_readl(bgp, 1091 tsr->bgap_mask_ctrl); 1092 } 1093 1094 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1095 rval->tshut_threshold = ti_bandgap_readl(bgp, 1096 tsr->tshut_threshold); 1097 } 1098 1099 return 0; 1100 } 1101 1102 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp) 1103 { 1104 int i; 1105 1106 for (i = 0; i < bgp->conf->sensor_count; i++) { 1107 struct temp_sensor_registers *tsr; 1108 struct temp_sensor_regval *rval; 1109 u32 val = 0; 1110 1111 rval = &bgp->regval[i]; 1112 tsr = bgp->conf->sensors[i].registers; 1113 1114 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1115 val = ti_bandgap_readl(bgp, tsr->bgap_counter); 1116 1117 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1118 ti_bandgap_writel(bgp, rval->tshut_threshold, 1119 tsr->tshut_threshold); 1120 /* Force immediate temperature measurement and update 1121 * of the DTEMP field 1122 */ 1123 ti_bandgap_force_single_read(bgp, i); 1124 1125 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1126 ti_bandgap_writel(bgp, rval->bg_counter, 1127 tsr->bgap_counter); 1128 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1129 ti_bandgap_writel(bgp, rval->bg_mode_ctrl, 1130 tsr->bgap_mode_ctrl); 1131 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1132 ti_bandgap_writel(bgp, rval->bg_threshold, 1133 tsr->bgap_threshold); 1134 ti_bandgap_writel(bgp, rval->bg_ctrl, 1135 tsr->bgap_mask_ctrl); 1136 } 1137 } 1138 1139 return 0; 1140 } 1141 1142 static int ti_bandgap_suspend(struct device *dev) 1143 { 1144 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1145 int err; 1146 1147 err = ti_bandgap_save_ctxt(bgp); 1148 ti_bandgap_power(bgp, false); 1149 1150 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1151 clk_disable_unprepare(bgp->fclock); 1152 1153 return err; 1154 } 1155 1156 static int ti_bandgap_resume(struct device *dev) 1157 { 1158 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1159 1160 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1161 clk_prepare_enable(bgp->fclock); 1162 1163 ti_bandgap_power(bgp, true); 1164 1165 return ti_bandgap_restore_ctxt(bgp); 1166 } 1167 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend, 1168 ti_bandgap_resume); 1169 1170 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops) 1171 #else 1172 #define DEV_PM_OPS NULL 1173 #endif 1174 1175 static const struct of_device_id of_ti_bandgap_match[] = { 1176 #ifdef CONFIG_OMAP3_THERMAL 1177 { 1178 .compatible = "ti,omap34xx-bandgap", 1179 .data = (void *)&omap34xx_data, 1180 }, 1181 { 1182 .compatible = "ti,omap36xx-bandgap", 1183 .data = (void *)&omap36xx_data, 1184 }, 1185 #endif 1186 #ifdef CONFIG_OMAP4_THERMAL 1187 { 1188 .compatible = "ti,omap4430-bandgap", 1189 .data = (void *)&omap4430_data, 1190 }, 1191 { 1192 .compatible = "ti,omap4460-bandgap", 1193 .data = (void *)&omap4460_data, 1194 }, 1195 { 1196 .compatible = "ti,omap4470-bandgap", 1197 .data = (void *)&omap4470_data, 1198 }, 1199 #endif 1200 #ifdef CONFIG_OMAP5_THERMAL 1201 { 1202 .compatible = "ti,omap5430-bandgap", 1203 .data = (void *)&omap5430_data, 1204 }, 1205 #endif 1206 #ifdef CONFIG_DRA752_THERMAL 1207 { 1208 .compatible = "ti,dra752-bandgap", 1209 .data = (void *)&dra752_data, 1210 }, 1211 #endif 1212 /* Sentinel */ 1213 { }, 1214 }; 1215 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match); 1216 1217 static struct platform_driver ti_bandgap_sensor_driver = { 1218 .probe = ti_bandgap_probe, 1219 .remove = ti_bandgap_remove, 1220 .driver = { 1221 .name = "ti-soc-thermal", 1222 .pm = DEV_PM_OPS, 1223 .of_match_table = of_ti_bandgap_match, 1224 }, 1225 }; 1226 1227 module_platform_driver(ti_bandgap_sensor_driver); 1228 1229 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver"); 1230 MODULE_LICENSE("GPL v2"); 1231 MODULE_ALIAS("platform:ti-soc-thermal"); 1232 MODULE_AUTHOR("Texas Instrument Inc."); 1233