1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Bandgap temperature sensor driver 4 * 5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/ 6 * Author: J Keerthy <j-keerthy@ti.com> 7 * Author: Moiz Sonasath <m-sonasath@ti.com> 8 * Couple of fixes, DT and MFD adaptation: 9 * Eduardo Valentin <eduardo.valentin@ti.com> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/export.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/interrupt.h> 17 #include <linux/clk.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/platform_device.h> 20 #include <linux/err.h> 21 #include <linux/types.h> 22 #include <linux/spinlock.h> 23 #include <linux/reboot.h> 24 #include <linux/of_device.h> 25 #include <linux/of_platform.h> 26 #include <linux/of_irq.h> 27 #include <linux/io.h> 28 29 #include "ti-bandgap.h" 30 31 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id); 32 33 /*** Helper functions to access registers and their bitfields ***/ 34 35 /** 36 * ti_bandgap_readl() - simple read helper function 37 * @bgp: pointer to ti_bandgap structure 38 * @reg: desired register (offset) to be read 39 * 40 * Helper function to read bandgap registers. It uses the io remapped area. 41 * Return: the register value. 42 */ 43 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg) 44 { 45 return readl(bgp->base + reg); 46 } 47 48 /** 49 * ti_bandgap_writel() - simple write helper function 50 * @bgp: pointer to ti_bandgap structure 51 * @val: desired register value to be written 52 * @reg: desired register (offset) to be written 53 * 54 * Helper function to write bandgap registers. It uses the io remapped area. 55 */ 56 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg) 57 { 58 writel(val, bgp->base + reg); 59 } 60 61 /** 62 * DOC: macro to update bits. 63 * 64 * RMW_BITS() - used to read, modify and update bandgap bitfields. 65 * The value passed will be shifted. 66 */ 67 #define RMW_BITS(bgp, id, reg, mask, val) \ 68 do { \ 69 struct temp_sensor_registers *t; \ 70 u32 r; \ 71 \ 72 t = bgp->conf->sensors[(id)].registers; \ 73 r = ti_bandgap_readl(bgp, t->reg); \ 74 r &= ~t->mask; \ 75 r |= (val) << __ffs(t->mask); \ 76 ti_bandgap_writel(bgp, r, t->reg); \ 77 } while (0) 78 79 /*** Basic helper functions ***/ 80 81 /** 82 * ti_bandgap_power() - controls the power state of a bandgap device 83 * @bgp: pointer to ti_bandgap structure 84 * @on: desired power state (1 - on, 0 - off) 85 * 86 * Used to power on/off a bandgap device instance. Only used on those 87 * that features tempsoff bit. 88 * 89 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported. 90 */ 91 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on) 92 { 93 int i; 94 95 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) 96 return -ENOTSUPP; 97 98 for (i = 0; i < bgp->conf->sensor_count; i++) 99 /* active on 0 */ 100 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on); 101 return 0; 102 } 103 104 /** 105 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature 106 * @bgp: pointer to ti_bandgap structure 107 * @reg: desired register (offset) to be read 108 * 109 * Function to read dra7 bandgap sensor temperature. This is done separately 110 * so as to workaround the errata "Bandgap Temperature read Dtemp can be 111 * corrupted" - Errata ID: i814". 112 * Read accesses to registers listed below can be corrupted due to incorrect 113 * resynchronization between clock domains. 114 * Read access to registers below can be corrupted : 115 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4) 116 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n 117 * 118 * Return: the register value. 119 */ 120 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg) 121 { 122 u32 val1, val2; 123 124 val1 = ti_bandgap_readl(bgp, reg); 125 val2 = ti_bandgap_readl(bgp, reg); 126 127 /* If both times we read the same value then that is right */ 128 if (val1 == val2) 129 return val1; 130 131 /* if val1 and val2 are different read it third time */ 132 return ti_bandgap_readl(bgp, reg); 133 } 134 135 /** 136 * ti_bandgap_read_temp() - helper function to read sensor temperature 137 * @bgp: pointer to ti_bandgap structure 138 * @id: bandgap sensor id 139 * 140 * Function to concentrate the steps to read sensor temperature register. 141 * This function is desired because, depending on bandgap device version, 142 * it might be needed to freeze the bandgap state machine, before fetching 143 * the register value. 144 * 145 * Return: temperature in ADC values. 146 */ 147 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id) 148 { 149 struct temp_sensor_registers *tsr; 150 u32 temp, reg; 151 152 tsr = bgp->conf->sensors[id].registers; 153 reg = tsr->temp_sensor_ctrl; 154 155 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 156 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 157 /* 158 * In case we cannot read from cur_dtemp / dtemp_0, 159 * then we read from the last valid temp read 160 */ 161 reg = tsr->ctrl_dtemp_1; 162 } 163 164 /* read temperature */ 165 if (TI_BANDGAP_HAS(bgp, ERRATA_814)) 166 temp = ti_errata814_bandgap_read_temp(bgp, reg); 167 else 168 temp = ti_bandgap_readl(bgp, reg); 169 170 temp &= tsr->bgap_dtemp_mask; 171 172 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) 173 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 174 175 return temp; 176 } 177 178 /*** IRQ handlers ***/ 179 180 /** 181 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs 182 * @irq: IRQ number 183 * @data: private data (struct ti_bandgap *) 184 * 185 * This is the Talert handler. Use it only if bandgap device features 186 * HAS(TALERT). This handler goes over all sensors and checks their 187 * conditions and acts accordingly. In case there are events pending, 188 * it will reset the event mask to wait for the opposite event (next event). 189 * Every time there is a new event, it will be reported to thermal layer. 190 * 191 * Return: IRQ_HANDLED 192 */ 193 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data) 194 { 195 struct ti_bandgap *bgp = data; 196 struct temp_sensor_registers *tsr; 197 u32 t_hot = 0, t_cold = 0, ctrl; 198 int i; 199 200 spin_lock(&bgp->lock); 201 for (i = 0; i < bgp->conf->sensor_count; i++) { 202 tsr = bgp->conf->sensors[i].registers; 203 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status); 204 205 /* Read the status of t_hot */ 206 t_hot = ctrl & tsr->status_hot_mask; 207 208 /* Read the status of t_cold */ 209 t_cold = ctrl & tsr->status_cold_mask; 210 211 if (!t_cold && !t_hot) 212 continue; 213 214 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 215 /* 216 * One TALERT interrupt: Two sources 217 * If the interrupt is due to t_hot then mask t_hot and 218 * and unmask t_cold else mask t_cold and unmask t_hot 219 */ 220 if (t_hot) { 221 ctrl &= ~tsr->mask_hot_mask; 222 ctrl |= tsr->mask_cold_mask; 223 } else if (t_cold) { 224 ctrl &= ~tsr->mask_cold_mask; 225 ctrl |= tsr->mask_hot_mask; 226 } 227 228 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl); 229 230 dev_dbg(bgp->dev, 231 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n", 232 __func__, bgp->conf->sensors[i].domain, 233 t_hot, t_cold); 234 235 /* report temperature to whom may concern */ 236 if (bgp->conf->report_temperature) 237 bgp->conf->report_temperature(bgp, i); 238 } 239 spin_unlock(&bgp->lock); 240 241 return IRQ_HANDLED; 242 } 243 244 /** 245 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal 246 * @irq: IRQ number 247 * @data: private data (unused) 248 * 249 * This is the Tshut handler. Use it only if bandgap device features 250 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown 251 * the system. 252 * 253 * Return: IRQ_HANDLED 254 */ 255 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data) 256 { 257 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n", 258 __func__); 259 260 orderly_poweroff(true); 261 262 return IRQ_HANDLED; 263 } 264 265 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/ 266 267 /** 268 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale 269 * @bgp: struct ti_bandgap pointer 270 * @adc_val: value in ADC representation 271 * @t: address where to write the resulting temperature in mCelsius 272 * 273 * Simple conversion from ADC representation to mCelsius. In case the ADC value 274 * is out of the ADC conv table range, it returns -ERANGE, 0 on success. 275 * The conversion table is indexed by the ADC values. 276 * 277 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val 278 * argument is out of the ADC conv table range. 279 */ 280 static 281 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t) 282 { 283 const struct ti_bandgap_data *conf = bgp->conf; 284 285 /* look up for temperature in the table and return the temperature */ 286 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) 287 return -ERANGE; 288 289 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val]; 290 return 0; 291 } 292 293 /** 294 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap 295 * @bgp: struct ti_bandgap pointer 296 * @id: bandgap sensor id 297 * 298 * Checks if the bandgap pointer is valid and if the sensor id is also 299 * applicable. 300 * 301 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if 302 * @id cannot index @bgp sensors. 303 */ 304 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id) 305 { 306 if (!bgp || IS_ERR(bgp)) { 307 pr_err("%s: invalid bandgap pointer\n", __func__); 308 return -EINVAL; 309 } 310 311 if ((id < 0) || (id >= bgp->conf->sensor_count)) { 312 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n", 313 __func__, id); 314 return -ERANGE; 315 } 316 317 return 0; 318 } 319 320 /** 321 * ti_bandgap_read_counter() - read the sensor counter 322 * @bgp: pointer to bandgap instance 323 * @id: sensor id 324 * @interval: resulting update interval in miliseconds 325 */ 326 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id, 327 int *interval) 328 { 329 struct temp_sensor_registers *tsr; 330 int time; 331 332 tsr = bgp->conf->sensors[id].registers; 333 time = ti_bandgap_readl(bgp, tsr->bgap_counter); 334 time = (time & tsr->counter_mask) >> 335 __ffs(tsr->counter_mask); 336 time = time * 1000 / bgp->clk_rate; 337 *interval = time; 338 } 339 340 /** 341 * ti_bandgap_read_counter_delay() - read the sensor counter delay 342 * @bgp: pointer to bandgap instance 343 * @id: sensor id 344 * @interval: resulting update interval in miliseconds 345 */ 346 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id, 347 int *interval) 348 { 349 struct temp_sensor_registers *tsr; 350 int reg_val; 351 352 tsr = bgp->conf->sensors[id].registers; 353 354 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 355 reg_val = (reg_val & tsr->mask_counter_delay_mask) >> 356 __ffs(tsr->mask_counter_delay_mask); 357 switch (reg_val) { 358 case 0: 359 *interval = 0; 360 break; 361 case 1: 362 *interval = 1; 363 break; 364 case 2: 365 *interval = 10; 366 break; 367 case 3: 368 *interval = 100; 369 break; 370 case 4: 371 *interval = 250; 372 break; 373 case 5: 374 *interval = 500; 375 break; 376 default: 377 dev_warn(bgp->dev, "Wrong counter delay value read from register %X", 378 reg_val); 379 } 380 } 381 382 /** 383 * ti_bandgap_read_update_interval() - read the sensor update interval 384 * @bgp: pointer to bandgap instance 385 * @id: sensor id 386 * @interval: resulting update interval in miliseconds 387 * 388 * Return: 0 on success or the proper error code 389 */ 390 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id, 391 int *interval) 392 { 393 int ret = 0; 394 395 ret = ti_bandgap_validate(bgp, id); 396 if (ret) 397 goto exit; 398 399 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 400 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 401 ret = -ENOTSUPP; 402 goto exit; 403 } 404 405 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 406 ti_bandgap_read_counter(bgp, id, interval); 407 goto exit; 408 } 409 410 ti_bandgap_read_counter_delay(bgp, id, interval); 411 exit: 412 return ret; 413 } 414 415 /** 416 * ti_bandgap_write_counter_delay() - set the counter_delay 417 * @bgp: pointer to bandgap instance 418 * @id: sensor id 419 * @interval: desired update interval in miliseconds 420 * 421 * Return: 0 on success or the proper error code 422 */ 423 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id, 424 u32 interval) 425 { 426 int rval; 427 428 switch (interval) { 429 case 0: /* Immediate conversion */ 430 rval = 0x0; 431 break; 432 case 1: /* Conversion after ever 1ms */ 433 rval = 0x1; 434 break; 435 case 10: /* Conversion after ever 10ms */ 436 rval = 0x2; 437 break; 438 case 100: /* Conversion after ever 100ms */ 439 rval = 0x3; 440 break; 441 case 250: /* Conversion after ever 250ms */ 442 rval = 0x4; 443 break; 444 case 500: /* Conversion after ever 500ms */ 445 rval = 0x5; 446 break; 447 default: 448 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval); 449 return -EINVAL; 450 } 451 452 spin_lock(&bgp->lock); 453 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval); 454 spin_unlock(&bgp->lock); 455 456 return 0; 457 } 458 459 /** 460 * ti_bandgap_write_counter() - set the bandgap sensor counter 461 * @bgp: pointer to bandgap instance 462 * @id: sensor id 463 * @interval: desired update interval in miliseconds 464 */ 465 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id, 466 u32 interval) 467 { 468 interval = interval * bgp->clk_rate / 1000; 469 spin_lock(&bgp->lock); 470 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval); 471 spin_unlock(&bgp->lock); 472 } 473 474 /** 475 * ti_bandgap_write_update_interval() - set the update interval 476 * @bgp: pointer to bandgap instance 477 * @id: sensor id 478 * @interval: desired update interval in miliseconds 479 * 480 * Return: 0 on success or the proper error code 481 */ 482 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp, 483 int id, u32 interval) 484 { 485 int ret = ti_bandgap_validate(bgp, id); 486 if (ret) 487 goto exit; 488 489 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 490 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 491 ret = -ENOTSUPP; 492 goto exit; 493 } 494 495 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 496 ti_bandgap_write_counter(bgp, id, interval); 497 goto exit; 498 } 499 500 ret = ti_bandgap_write_counter_delay(bgp, id, interval); 501 exit: 502 return ret; 503 } 504 505 /** 506 * ti_bandgap_read_temperature() - report current temperature 507 * @bgp: pointer to bandgap instance 508 * @id: sensor id 509 * @temperature: resulting temperature 510 * 511 * Return: 0 on success or the proper error code 512 */ 513 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id, 514 int *temperature) 515 { 516 u32 temp; 517 int ret; 518 519 ret = ti_bandgap_validate(bgp, id); 520 if (ret) 521 return ret; 522 523 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) { 524 ret = ti_bandgap_force_single_read(bgp, id); 525 if (ret) 526 return ret; 527 } 528 529 spin_lock(&bgp->lock); 530 temp = ti_bandgap_read_temp(bgp, id); 531 spin_unlock(&bgp->lock); 532 533 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); 534 if (ret) 535 return -EIO; 536 537 *temperature = temp; 538 539 return 0; 540 } 541 542 /** 543 * ti_bandgap_set_sensor_data() - helper function to store thermal 544 * framework related data. 545 * @bgp: pointer to bandgap instance 546 * @id: sensor id 547 * @data: thermal framework related data to be stored 548 * 549 * Return: 0 on success or the proper error code 550 */ 551 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data) 552 { 553 int ret = ti_bandgap_validate(bgp, id); 554 if (ret) 555 return ret; 556 557 bgp->regval[id].data = data; 558 559 return 0; 560 } 561 562 /** 563 * ti_bandgap_get_sensor_data() - helper function to get thermal 564 * framework related data. 565 * @bgp: pointer to bandgap instance 566 * @id: sensor id 567 * 568 * Return: data stored by set function with sensor id on success or NULL 569 */ 570 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id) 571 { 572 int ret = ti_bandgap_validate(bgp, id); 573 if (ret) 574 return ERR_PTR(ret); 575 576 return bgp->regval[id].data; 577 } 578 579 /*** Helper functions used during device initialization ***/ 580 581 /** 582 * ti_bandgap_force_single_read() - executes 1 single ADC conversion 583 * @bgp: pointer to struct ti_bandgap 584 * @id: sensor id which it is desired to read 1 temperature 585 * 586 * Used to initialize the conversion state machine and set it to a valid 587 * state. Called during device initialization and context restore events. 588 * 589 * Return: 0 590 */ 591 static int 592 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id) 593 { 594 u32 counter = 1000; 595 struct temp_sensor_registers *tsr; 596 597 /* Select single conversion mode */ 598 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 599 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0); 600 601 /* Start of Conversion = 1 */ 602 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1); 603 604 /* Wait for EOCZ going up */ 605 tsr = bgp->conf->sensors[id].registers; 606 607 while (--counter) { 608 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 609 tsr->bgap_eocz_mask) 610 break; 611 } 612 613 /* Start of Conversion = 0 */ 614 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0); 615 616 /* Wait for EOCZ going down */ 617 counter = 1000; 618 while (--counter) { 619 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 620 tsr->bgap_eocz_mask)) 621 break; 622 } 623 624 return 0; 625 } 626 627 /** 628 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode 629 * @bgp: pointer to struct ti_bandgap 630 * 631 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may 632 * be used for junction temperature monitoring, it is desirable that the 633 * sensors are operational all the time, so that alerts are generated 634 * properly. 635 * 636 * Return: 0 637 */ 638 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp) 639 { 640 int i; 641 642 for (i = 0; i < bgp->conf->sensor_count; i++) { 643 /* Perform a single read just before enabling continuous */ 644 ti_bandgap_force_single_read(bgp, i); 645 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1); 646 } 647 648 return 0; 649 } 650 651 /** 652 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor 653 * @bgp: pointer to struct ti_bandgap 654 * @id: id of the individual sensor 655 * @trend: Pointer to trend. 656 * 657 * This function needs to be called to fetch the temperature trend of a 658 * Particular sensor. The function computes the difference in temperature 659 * w.r.t time. For the bandgaps with built in history buffer the temperatures 660 * are read from the buffer and for those without the Buffer -ENOTSUPP is 661 * returned. 662 * 663 * Return: 0 if no error, else return corresponding error. If no 664 * error then the trend value is passed on to trend parameter 665 */ 666 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend) 667 { 668 struct temp_sensor_registers *tsr; 669 u32 temp1, temp2, reg1, reg2; 670 int t1, t2, interval, ret = 0; 671 672 ret = ti_bandgap_validate(bgp, id); 673 if (ret) 674 goto exit; 675 676 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) || 677 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 678 ret = -ENOTSUPP; 679 goto exit; 680 } 681 682 spin_lock(&bgp->lock); 683 684 tsr = bgp->conf->sensors[id].registers; 685 686 /* Freeze and read the last 2 valid readings */ 687 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 688 reg1 = tsr->ctrl_dtemp_1; 689 reg2 = tsr->ctrl_dtemp_2; 690 691 /* read temperature from history buffer */ 692 temp1 = ti_bandgap_readl(bgp, reg1); 693 temp1 &= tsr->bgap_dtemp_mask; 694 695 temp2 = ti_bandgap_readl(bgp, reg2); 696 temp2 &= tsr->bgap_dtemp_mask; 697 698 /* Convert from adc values to mCelsius temperature */ 699 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1); 700 if (ret) 701 goto unfreeze; 702 703 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2); 704 if (ret) 705 goto unfreeze; 706 707 /* Fetch the update interval */ 708 ret = ti_bandgap_read_update_interval(bgp, id, &interval); 709 if (ret) 710 goto unfreeze; 711 712 /* Set the interval to 1 ms if bandgap counter delay is not set */ 713 if (interval == 0) 714 interval = 1; 715 716 *trend = (t1 - t2) / interval; 717 718 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n", 719 t1, t2, *trend); 720 721 unfreeze: 722 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 723 spin_unlock(&bgp->lock); 724 exit: 725 return ret; 726 } 727 728 /** 729 * ti_bandgap_tshut_init() - setup and initialize tshut handling 730 * @bgp: pointer to struct ti_bandgap 731 * @pdev: pointer to device struct platform_device 732 * 733 * Call this function only in case the bandgap features HAS(TSHUT). 734 * In this case, the driver needs to handle the TSHUT signal as an IRQ. 735 * The IRQ is wired as a GPIO, and for this purpose, it is required 736 * to specify which GPIO line is used. TSHUT IRQ is fired anytime 737 * one of the bandgap sensors violates the TSHUT high/hot threshold. 738 * And in that case, the system must go off. 739 * 740 * Return: 0 if no error, else error status 741 */ 742 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp, 743 struct platform_device *pdev) 744 { 745 int status; 746 747 status = request_irq(gpiod_to_irq(bgp->tshut_gpiod), 748 ti_bandgap_tshut_irq_handler, 749 IRQF_TRIGGER_RISING, "tshut", NULL); 750 if (status) 751 dev_err(bgp->dev, "request irq failed for TSHUT"); 752 753 return 0; 754 } 755 756 /** 757 * ti_bandgap_alert_init() - setup and initialize talert handling 758 * @bgp: pointer to struct ti_bandgap 759 * @pdev: pointer to device struct platform_device 760 * 761 * Call this function only in case the bandgap features HAS(TALERT). 762 * In this case, the driver needs to handle the TALERT signals as an IRQs. 763 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold) 764 * are violated. In these situation, the driver must reprogram the thresholds, 765 * accordingly to specified policy. 766 * 767 * Return: 0 if no error, else return corresponding error. 768 */ 769 static int ti_bandgap_talert_init(struct ti_bandgap *bgp, 770 struct platform_device *pdev) 771 { 772 int ret; 773 774 bgp->irq = platform_get_irq(pdev, 0); 775 if (bgp->irq < 0) { 776 dev_err(&pdev->dev, "get_irq failed\n"); 777 return bgp->irq; 778 } 779 ret = request_threaded_irq(bgp->irq, NULL, 780 ti_bandgap_talert_irq_handler, 781 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 782 "talert", bgp); 783 if (ret) { 784 dev_err(&pdev->dev, "Request threaded irq failed.\n"); 785 return ret; 786 } 787 788 return 0; 789 } 790 791 static const struct of_device_id of_ti_bandgap_match[]; 792 /** 793 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap 794 * @pdev: pointer to device struct platform_device 795 * 796 * Used to read the device tree properties accordingly to the bandgap 797 * matching version. Based on bandgap version and its capabilities it 798 * will build a struct ti_bandgap out of the required DT entries. 799 * 800 * Return: valid bandgap structure if successful, else returns ERR_PTR 801 * return value must be verified with IS_ERR. 802 */ 803 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev) 804 { 805 struct device_node *node = pdev->dev.of_node; 806 const struct of_device_id *of_id; 807 struct ti_bandgap *bgp; 808 struct resource *res; 809 int i; 810 811 /* just for the sake */ 812 if (!node) { 813 dev_err(&pdev->dev, "no platform information available\n"); 814 return ERR_PTR(-EINVAL); 815 } 816 817 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL); 818 if (!bgp) 819 return ERR_PTR(-ENOMEM); 820 821 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev); 822 if (of_id) 823 bgp->conf = of_id->data; 824 825 /* register shadow for context save and restore */ 826 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count, 827 sizeof(*bgp->regval), GFP_KERNEL); 828 if (!bgp->regval) 829 return ERR_PTR(-ENOMEM); 830 831 i = 0; 832 do { 833 void __iomem *chunk; 834 835 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 836 if (!res) 837 break; 838 chunk = devm_ioremap_resource(&pdev->dev, res); 839 if (i == 0) 840 bgp->base = chunk; 841 if (IS_ERR(chunk)) 842 return ERR_CAST(chunk); 843 844 i++; 845 } while (res); 846 847 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 848 bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN); 849 if (IS_ERR(bgp->tshut_gpiod)) { 850 dev_err(&pdev->dev, "invalid gpio for tshut\n"); 851 return ERR_CAST(bgp->tshut_gpiod); 852 } 853 } 854 855 return bgp; 856 } 857 858 /*** Device driver call backs ***/ 859 860 static 861 int ti_bandgap_probe(struct platform_device *pdev) 862 { 863 struct ti_bandgap *bgp; 864 int clk_rate, ret, i; 865 866 bgp = ti_bandgap_build(pdev); 867 if (IS_ERR(bgp)) { 868 dev_err(&pdev->dev, "failed to fetch platform data\n"); 869 return PTR_ERR(bgp); 870 } 871 bgp->dev = &pdev->dev; 872 873 if (TI_BANDGAP_HAS(bgp, UNRELIABLE)) 874 dev_warn(&pdev->dev, 875 "This OMAP thermal sensor is unreliable. You've been warned\n"); 876 877 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 878 ret = ti_bandgap_tshut_init(bgp, pdev); 879 if (ret) { 880 dev_err(&pdev->dev, 881 "failed to initialize system tshut IRQ\n"); 882 return ret; 883 } 884 } 885 886 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name); 887 if (IS_ERR(bgp->fclock)) { 888 dev_err(&pdev->dev, "failed to request fclock reference\n"); 889 ret = PTR_ERR(bgp->fclock); 890 goto free_irqs; 891 } 892 893 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name); 894 if (IS_ERR(bgp->div_clk)) { 895 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n"); 896 ret = PTR_ERR(bgp->div_clk); 897 goto put_fclock; 898 } 899 900 for (i = 0; i < bgp->conf->sensor_count; i++) { 901 struct temp_sensor_registers *tsr; 902 u32 val; 903 904 tsr = bgp->conf->sensors[i].registers; 905 /* 906 * check if the efuse has a non-zero value if not 907 * it is an untrimmed sample and the temperatures 908 * may not be accurate 909 */ 910 val = ti_bandgap_readl(bgp, tsr->bgap_efuse); 911 if (!val) 912 dev_info(&pdev->dev, 913 "Non-trimmed BGAP, Temp not accurate\n"); 914 } 915 916 clk_rate = clk_round_rate(bgp->div_clk, 917 bgp->conf->sensors[0].ts_data->max_freq); 918 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq || 919 clk_rate <= 0) { 920 ret = -ENODEV; 921 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate); 922 goto put_clks; 923 } 924 925 ret = clk_set_rate(bgp->div_clk, clk_rate); 926 if (ret) 927 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n"); 928 929 bgp->clk_rate = clk_rate; 930 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 931 clk_prepare_enable(bgp->fclock); 932 933 934 spin_lock_init(&bgp->lock); 935 bgp->dev = &pdev->dev; 936 platform_set_drvdata(pdev, bgp); 937 938 ti_bandgap_power(bgp, true); 939 940 /* Set default counter to 1 for now */ 941 if (TI_BANDGAP_HAS(bgp, COUNTER)) 942 for (i = 0; i < bgp->conf->sensor_count; i++) 943 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1); 944 945 /* Set default thresholds for alert and shutdown */ 946 for (i = 0; i < bgp->conf->sensor_count; i++) { 947 struct temp_sensor_data *ts_data; 948 949 ts_data = bgp->conf->sensors[i].ts_data; 950 951 if (TI_BANDGAP_HAS(bgp, TALERT)) { 952 /* Set initial Talert thresholds */ 953 RMW_BITS(bgp, i, bgap_threshold, 954 threshold_tcold_mask, ts_data->t_cold); 955 RMW_BITS(bgp, i, bgap_threshold, 956 threshold_thot_mask, ts_data->t_hot); 957 /* Enable the alert events */ 958 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1); 959 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1); 960 } 961 962 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) { 963 /* Set initial Tshut thresholds */ 964 RMW_BITS(bgp, i, tshut_threshold, 965 tshut_hot_mask, ts_data->tshut_hot); 966 RMW_BITS(bgp, i, tshut_threshold, 967 tshut_cold_mask, ts_data->tshut_cold); 968 } 969 } 970 971 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 972 ti_bandgap_set_continuous_mode(bgp); 973 974 /* Set .250 seconds time as default counter */ 975 if (TI_BANDGAP_HAS(bgp, COUNTER)) 976 for (i = 0; i < bgp->conf->sensor_count; i++) 977 RMW_BITS(bgp, i, bgap_counter, counter_mask, 978 bgp->clk_rate / 4); 979 980 /* Every thing is good? Then expose the sensors */ 981 for (i = 0; i < bgp->conf->sensor_count; i++) { 982 char *domain; 983 984 if (bgp->conf->sensors[i].register_cooling) { 985 ret = bgp->conf->sensors[i].register_cooling(bgp, i); 986 if (ret) 987 goto remove_sensors; 988 } 989 990 if (bgp->conf->expose_sensor) { 991 domain = bgp->conf->sensors[i].domain; 992 ret = bgp->conf->expose_sensor(bgp, i, domain); 993 if (ret) 994 goto remove_last_cooling; 995 } 996 } 997 998 /* 999 * Enable the Interrupts once everything is set. Otherwise irq handler 1000 * might be called as soon as it is enabled where as rest of framework 1001 * is still getting initialised. 1002 */ 1003 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1004 ret = ti_bandgap_talert_init(bgp, pdev); 1005 if (ret) { 1006 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n"); 1007 i = bgp->conf->sensor_count; 1008 goto disable_clk; 1009 } 1010 } 1011 1012 return 0; 1013 1014 remove_last_cooling: 1015 if (bgp->conf->sensors[i].unregister_cooling) 1016 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1017 remove_sensors: 1018 for (i--; i >= 0; i--) { 1019 if (bgp->conf->sensors[i].unregister_cooling) 1020 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1021 if (bgp->conf->remove_sensor) 1022 bgp->conf->remove_sensor(bgp, i); 1023 } 1024 ti_bandgap_power(bgp, false); 1025 disable_clk: 1026 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1027 clk_disable_unprepare(bgp->fclock); 1028 put_clks: 1029 clk_put(bgp->div_clk); 1030 put_fclock: 1031 clk_put(bgp->fclock); 1032 free_irqs: 1033 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1034 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1035 1036 return ret; 1037 } 1038 1039 static 1040 int ti_bandgap_remove(struct platform_device *pdev) 1041 { 1042 struct ti_bandgap *bgp = platform_get_drvdata(pdev); 1043 int i; 1044 1045 /* First thing is to remove sensor interfaces */ 1046 for (i = 0; i < bgp->conf->sensor_count; i++) { 1047 if (bgp->conf->sensors[i].unregister_cooling) 1048 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1049 1050 if (bgp->conf->remove_sensor) 1051 bgp->conf->remove_sensor(bgp, i); 1052 } 1053 1054 ti_bandgap_power(bgp, false); 1055 1056 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1057 clk_disable_unprepare(bgp->fclock); 1058 clk_put(bgp->fclock); 1059 clk_put(bgp->div_clk); 1060 1061 if (TI_BANDGAP_HAS(bgp, TALERT)) 1062 free_irq(bgp->irq, bgp); 1063 1064 if (TI_BANDGAP_HAS(bgp, TSHUT)) 1065 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL); 1066 1067 return 0; 1068 } 1069 1070 #ifdef CONFIG_PM_SLEEP 1071 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp) 1072 { 1073 int i; 1074 1075 for (i = 0; i < bgp->conf->sensor_count; i++) { 1076 struct temp_sensor_registers *tsr; 1077 struct temp_sensor_regval *rval; 1078 1079 rval = &bgp->regval[i]; 1080 tsr = bgp->conf->sensors[i].registers; 1081 1082 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1083 rval->bg_mode_ctrl = ti_bandgap_readl(bgp, 1084 tsr->bgap_mode_ctrl); 1085 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1086 rval->bg_counter = ti_bandgap_readl(bgp, 1087 tsr->bgap_counter); 1088 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1089 rval->bg_threshold = ti_bandgap_readl(bgp, 1090 tsr->bgap_threshold); 1091 rval->bg_ctrl = ti_bandgap_readl(bgp, 1092 tsr->bgap_mask_ctrl); 1093 } 1094 1095 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1096 rval->tshut_threshold = ti_bandgap_readl(bgp, 1097 tsr->tshut_threshold); 1098 } 1099 1100 return 0; 1101 } 1102 1103 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp) 1104 { 1105 int i; 1106 1107 for (i = 0; i < bgp->conf->sensor_count; i++) { 1108 struct temp_sensor_registers *tsr; 1109 struct temp_sensor_regval *rval; 1110 u32 val = 0; 1111 1112 rval = &bgp->regval[i]; 1113 tsr = bgp->conf->sensors[i].registers; 1114 1115 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1116 val = ti_bandgap_readl(bgp, tsr->bgap_counter); 1117 1118 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1119 ti_bandgap_writel(bgp, rval->tshut_threshold, 1120 tsr->tshut_threshold); 1121 /* Force immediate temperature measurement and update 1122 * of the DTEMP field 1123 */ 1124 ti_bandgap_force_single_read(bgp, i); 1125 1126 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1127 ti_bandgap_writel(bgp, rval->bg_counter, 1128 tsr->bgap_counter); 1129 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1130 ti_bandgap_writel(bgp, rval->bg_mode_ctrl, 1131 tsr->bgap_mode_ctrl); 1132 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1133 ti_bandgap_writel(bgp, rval->bg_threshold, 1134 tsr->bgap_threshold); 1135 ti_bandgap_writel(bgp, rval->bg_ctrl, 1136 tsr->bgap_mask_ctrl); 1137 } 1138 } 1139 1140 return 0; 1141 } 1142 1143 static int ti_bandgap_suspend(struct device *dev) 1144 { 1145 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1146 int err; 1147 1148 err = ti_bandgap_save_ctxt(bgp); 1149 ti_bandgap_power(bgp, false); 1150 1151 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1152 clk_disable_unprepare(bgp->fclock); 1153 1154 return err; 1155 } 1156 1157 static int ti_bandgap_resume(struct device *dev) 1158 { 1159 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1160 1161 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1162 clk_prepare_enable(bgp->fclock); 1163 1164 ti_bandgap_power(bgp, true); 1165 1166 return ti_bandgap_restore_ctxt(bgp); 1167 } 1168 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend, 1169 ti_bandgap_resume); 1170 1171 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops) 1172 #else 1173 #define DEV_PM_OPS NULL 1174 #endif 1175 1176 static const struct of_device_id of_ti_bandgap_match[] = { 1177 #ifdef CONFIG_OMAP3_THERMAL 1178 { 1179 .compatible = "ti,omap34xx-bandgap", 1180 .data = (void *)&omap34xx_data, 1181 }, 1182 { 1183 .compatible = "ti,omap36xx-bandgap", 1184 .data = (void *)&omap36xx_data, 1185 }, 1186 #endif 1187 #ifdef CONFIG_OMAP4_THERMAL 1188 { 1189 .compatible = "ti,omap4430-bandgap", 1190 .data = (void *)&omap4430_data, 1191 }, 1192 { 1193 .compatible = "ti,omap4460-bandgap", 1194 .data = (void *)&omap4460_data, 1195 }, 1196 { 1197 .compatible = "ti,omap4470-bandgap", 1198 .data = (void *)&omap4470_data, 1199 }, 1200 #endif 1201 #ifdef CONFIG_OMAP5_THERMAL 1202 { 1203 .compatible = "ti,omap5430-bandgap", 1204 .data = (void *)&omap5430_data, 1205 }, 1206 #endif 1207 #ifdef CONFIG_DRA752_THERMAL 1208 { 1209 .compatible = "ti,dra752-bandgap", 1210 .data = (void *)&dra752_data, 1211 }, 1212 #endif 1213 /* Sentinel */ 1214 { }, 1215 }; 1216 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match); 1217 1218 static struct platform_driver ti_bandgap_sensor_driver = { 1219 .probe = ti_bandgap_probe, 1220 .remove = ti_bandgap_remove, 1221 .driver = { 1222 .name = "ti-soc-thermal", 1223 .pm = DEV_PM_OPS, 1224 .of_match_table = of_ti_bandgap_match, 1225 }, 1226 }; 1227 1228 module_platform_driver(ti_bandgap_sensor_driver); 1229 1230 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver"); 1231 MODULE_LICENSE("GPL v2"); 1232 MODULE_ALIAS("platform:ti-soc-thermal"); 1233 MODULE_AUTHOR("Texas Instrument Inc."); 1234