1 /* 2 * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit) 3 * 4 * Copyright (C) 2014 Samsung Electronics 5 * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> 6 * Lukasz Majewski <l.majewski@samsung.com> 7 * 8 * Copyright (C) 2011 Samsung Electronics 9 * Donggeun Kim <dg77.kim@samsung.com> 10 * Amit Daniel Kachhap <amit.kachhap@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 #include <linux/clk.h> 29 #include <linux/io.h> 30 #include <linux/interrupt.h> 31 #include <linux/module.h> 32 #include <linux/of.h> 33 #include <linux/of_address.h> 34 #include <linux/of_irq.h> 35 #include <linux/platform_device.h> 36 #include <linux/regulator/consumer.h> 37 38 #include "exynos_tmu.h" 39 #include "../thermal_core.h" 40 41 /* Exynos generic registers */ 42 #define EXYNOS_TMU_REG_TRIMINFO 0x0 43 #define EXYNOS_TMU_REG_CONTROL 0x20 44 #define EXYNOS_TMU_REG_STATUS 0x28 45 #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40 46 #define EXYNOS_TMU_REG_INTEN 0x70 47 #define EXYNOS_TMU_REG_INTSTAT 0x74 48 #define EXYNOS_TMU_REG_INTCLEAR 0x78 49 50 #define EXYNOS_TMU_TEMP_MASK 0xff 51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24 52 #define EXYNOS_TMU_REF_VOLTAGE_MASK 0x1f 53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK 0xf 54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT 8 55 #define EXYNOS_TMU_CORE_EN_SHIFT 0 56 57 /* Exynos3250 specific registers */ 58 #define EXYNOS_TMU_TRIMINFO_CON1 0x10 59 60 /* Exynos4210 specific registers */ 61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44 62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50 63 64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */ 65 #define EXYNOS_TMU_TRIMINFO_CON2 0x14 66 #define EXYNOS_THD_TEMP_RISE 0x50 67 #define EXYNOS_THD_TEMP_FALL 0x54 68 #define EXYNOS_EMUL_CON 0x80 69 70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE 1 71 #define EXYNOS_TRIMINFO_25_SHIFT 0 72 #define EXYNOS_TRIMINFO_85_SHIFT 8 73 #define EXYNOS_TMU_TRIP_MODE_SHIFT 13 74 #define EXYNOS_TMU_TRIP_MODE_MASK 0x7 75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT 12 76 77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT 0 78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT 4 79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT 8 80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT 12 81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT 16 82 83 #define EXYNOS_EMUL_TIME 0x57F0 84 #define EXYNOS_EMUL_TIME_MASK 0xffff 85 #define EXYNOS_EMUL_TIME_SHIFT 16 86 #define EXYNOS_EMUL_DATA_SHIFT 8 87 #define EXYNOS_EMUL_DATA_MASK 0xFF 88 #define EXYNOS_EMUL_ENABLE 0x1 89 90 /* Exynos5260 specific */ 91 #define EXYNOS5260_TMU_REG_INTEN 0xC0 92 #define EXYNOS5260_TMU_REG_INTSTAT 0xC4 93 #define EXYNOS5260_TMU_REG_INTCLEAR 0xC8 94 #define EXYNOS5260_EMUL_CON 0x100 95 96 /* Exynos4412 specific */ 97 #define EXYNOS4412_MUX_ADDR_VALUE 6 98 #define EXYNOS4412_MUX_ADDR_SHIFT 20 99 100 /* Exynos5433 specific registers */ 101 #define EXYNOS5433_TMU_REG_CONTROL1 0x024 102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL 0x02c 103 #define EXYNOS5433_TMU_COUNTER_VALUE0 0x030 104 #define EXYNOS5433_TMU_COUNTER_VALUE1 0x034 105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1 0x044 106 #define EXYNOS5433_THD_TEMP_RISE3_0 0x050 107 #define EXYNOS5433_THD_TEMP_RISE7_4 0x054 108 #define EXYNOS5433_THD_TEMP_FALL3_0 0x060 109 #define EXYNOS5433_THD_TEMP_FALL7_4 0x064 110 #define EXYNOS5433_TMU_REG_INTEN 0x0c0 111 #define EXYNOS5433_TMU_REG_INTPEND 0x0c8 112 #define EXYNOS5433_TMU_EMUL_CON 0x110 113 #define EXYNOS5433_TMU_PD_DET_EN 0x130 114 115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT 16 116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT 23 117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK \ 118 (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT) 119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK BIT(23) 120 121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING 0 122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING 1 123 124 #define EXYNOS5433_PD_DET_EN 1 125 126 /*exynos5440 specific registers*/ 127 #define EXYNOS5440_TMU_S0_7_TRIM 0x000 128 #define EXYNOS5440_TMU_S0_7_CTRL 0x020 129 #define EXYNOS5440_TMU_S0_7_DEBUG 0x040 130 #define EXYNOS5440_TMU_S0_7_TEMP 0x0f0 131 #define EXYNOS5440_TMU_S0_7_TH0 0x110 132 #define EXYNOS5440_TMU_S0_7_TH1 0x130 133 #define EXYNOS5440_TMU_S0_7_TH2 0x150 134 #define EXYNOS5440_TMU_S0_7_IRQEN 0x210 135 #define EXYNOS5440_TMU_S0_7_IRQ 0x230 136 /* exynos5440 common registers */ 137 #define EXYNOS5440_TMU_IRQ_STATUS 0x000 138 #define EXYNOS5440_TMU_PMIN 0x004 139 140 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT 0 141 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT 1 142 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT 2 143 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT 3 144 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT 4 145 #define EXYNOS5440_TMU_TH_RISE4_SHIFT 24 146 #define EXYNOS5440_EFUSE_SWAP_OFFSET 8 147 148 /* Exynos7 specific registers */ 149 #define EXYNOS7_THD_TEMP_RISE7_6 0x50 150 #define EXYNOS7_THD_TEMP_FALL7_6 0x60 151 #define EXYNOS7_TMU_REG_INTEN 0x110 152 #define EXYNOS7_TMU_REG_INTPEND 0x118 153 #define EXYNOS7_TMU_REG_EMUL_CON 0x160 154 155 #define EXYNOS7_TMU_TEMP_MASK 0x1ff 156 #define EXYNOS7_PD_DET_EN_SHIFT 23 157 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT 0 158 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT 1 159 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT 2 160 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT 3 161 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT 4 162 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT 5 163 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT 6 164 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT 7 165 #define EXYNOS7_EMUL_DATA_SHIFT 7 166 #define EXYNOS7_EMUL_DATA_MASK 0x1ff 167 168 #define MCELSIUS 1000 169 /** 170 * struct exynos_tmu_data : A structure to hold the private data of the TMU 171 driver 172 * @id: identifier of the one instance of the TMU controller. 173 * @pdata: pointer to the tmu platform/configuration data 174 * @base: base address of the single instance of the TMU controller. 175 * @base_second: base address of the common registers of the TMU controller. 176 * @irq: irq number of the TMU controller. 177 * @soc: id of the SOC type. 178 * @irq_work: pointer to the irq work structure. 179 * @lock: lock to implement synchronization. 180 * @clk: pointer to the clock structure. 181 * @clk_sec: pointer to the clock structure for accessing the base_second. 182 * @sclk: pointer to the clock structure for accessing the tmu special clk. 183 * @temp_error1: fused value of the first point trim. 184 * @temp_error2: fused value of the second point trim. 185 * @regulator: pointer to the TMU regulator structure. 186 * @reg_conf: pointer to structure to register with core thermal. 187 * @ntrip: number of supported trip points. 188 * @tmu_initialize: SoC specific TMU initialization method 189 * @tmu_control: SoC specific TMU control method 190 * @tmu_read: SoC specific TMU temperature read method 191 * @tmu_set_emulation: SoC specific TMU emulation setting method 192 * @tmu_clear_irqs: SoC specific TMU interrupts clearing method 193 */ 194 struct exynos_tmu_data { 195 int id; 196 struct exynos_tmu_platform_data *pdata; 197 void __iomem *base; 198 void __iomem *base_second; 199 int irq; 200 enum soc_type soc; 201 struct work_struct irq_work; 202 struct mutex lock; 203 struct clk *clk, *clk_sec, *sclk; 204 u16 temp_error1, temp_error2; 205 struct regulator *regulator; 206 struct thermal_zone_device *tzd; 207 unsigned int ntrip; 208 209 int (*tmu_initialize)(struct platform_device *pdev); 210 void (*tmu_control)(struct platform_device *pdev, bool on); 211 int (*tmu_read)(struct exynos_tmu_data *data); 212 void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp); 213 void (*tmu_clear_irqs)(struct exynos_tmu_data *data); 214 }; 215 216 static void exynos_report_trigger(struct exynos_tmu_data *p) 217 { 218 char data[10], *envp[] = { data, NULL }; 219 struct thermal_zone_device *tz = p->tzd; 220 int temp; 221 unsigned int i; 222 223 if (!tz) { 224 pr_err("No thermal zone device defined\n"); 225 return; 226 } 227 228 thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); 229 230 mutex_lock(&tz->lock); 231 /* Find the level for which trip happened */ 232 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 233 tz->ops->get_trip_temp(tz, i, &temp); 234 if (tz->last_temperature < temp) 235 break; 236 } 237 238 snprintf(data, sizeof(data), "%u", i); 239 kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp); 240 mutex_unlock(&tz->lock); 241 } 242 243 /* 244 * TMU treats temperature as a mapped temperature code. 245 * The temperature is converted differently depending on the calibration type. 246 */ 247 static int temp_to_code(struct exynos_tmu_data *data, u8 temp) 248 { 249 struct exynos_tmu_platform_data *pdata = data->pdata; 250 int temp_code; 251 252 switch (pdata->cal_type) { 253 case TYPE_TWO_POINT_TRIMMING: 254 temp_code = (temp - pdata->first_point_trim) * 255 (data->temp_error2 - data->temp_error1) / 256 (pdata->second_point_trim - pdata->first_point_trim) + 257 data->temp_error1; 258 break; 259 case TYPE_ONE_POINT_TRIMMING: 260 temp_code = temp + data->temp_error1 - pdata->first_point_trim; 261 break; 262 default: 263 temp_code = temp + pdata->default_temp_offset; 264 break; 265 } 266 267 return temp_code; 268 } 269 270 /* 271 * Calculate a temperature value from a temperature code. 272 * The unit of the temperature is degree Celsius. 273 */ 274 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code) 275 { 276 struct exynos_tmu_platform_data *pdata = data->pdata; 277 int temp; 278 279 switch (pdata->cal_type) { 280 case TYPE_TWO_POINT_TRIMMING: 281 temp = (temp_code - data->temp_error1) * 282 (pdata->second_point_trim - pdata->first_point_trim) / 283 (data->temp_error2 - data->temp_error1) + 284 pdata->first_point_trim; 285 break; 286 case TYPE_ONE_POINT_TRIMMING: 287 temp = temp_code - data->temp_error1 + pdata->first_point_trim; 288 break; 289 default: 290 temp = temp_code - pdata->default_temp_offset; 291 break; 292 } 293 294 return temp; 295 } 296 297 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info) 298 { 299 struct exynos_tmu_platform_data *pdata = data->pdata; 300 301 data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK; 302 data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) & 303 EXYNOS_TMU_TEMP_MASK); 304 305 if (!data->temp_error1 || 306 (pdata->min_efuse_value > data->temp_error1) || 307 (data->temp_error1 > pdata->max_efuse_value)) 308 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK; 309 310 if (!data->temp_error2) 311 data->temp_error2 = 312 (pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) & 313 EXYNOS_TMU_TEMP_MASK; 314 } 315 316 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling) 317 { 318 struct thermal_zone_device *tz = data->tzd; 319 const struct thermal_trip * const trips = 320 of_thermal_get_trip_points(tz); 321 unsigned long temp; 322 int i; 323 324 if (!trips) { 325 pr_err("%s: Cannot get trip points from of-thermal.c!\n", 326 __func__); 327 return 0; 328 } 329 330 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 331 if (trips[i].type == THERMAL_TRIP_CRITICAL) 332 continue; 333 334 temp = trips[i].temperature / MCELSIUS; 335 if (falling) 336 temp -= (trips[i].hysteresis / MCELSIUS); 337 else 338 threshold &= ~(0xff << 8 * i); 339 340 threshold |= temp_to_code(data, temp) << 8 * i; 341 } 342 343 return threshold; 344 } 345 346 static int exynos_tmu_initialize(struct platform_device *pdev) 347 { 348 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 349 int ret; 350 351 if (of_thermal_get_ntrips(data->tzd) > data->ntrip) { 352 dev_info(&pdev->dev, 353 "More trip points than supported by this TMU.\n"); 354 dev_info(&pdev->dev, 355 "%d trip points should be configured in polling mode.\n", 356 (of_thermal_get_ntrips(data->tzd) - data->ntrip)); 357 } 358 359 mutex_lock(&data->lock); 360 clk_enable(data->clk); 361 if (!IS_ERR(data->clk_sec)) 362 clk_enable(data->clk_sec); 363 ret = data->tmu_initialize(pdev); 364 clk_disable(data->clk); 365 mutex_unlock(&data->lock); 366 if (!IS_ERR(data->clk_sec)) 367 clk_disable(data->clk_sec); 368 369 return ret; 370 } 371 372 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con) 373 { 374 struct exynos_tmu_platform_data *pdata = data->pdata; 375 376 if (data->soc == SOC_ARCH_EXYNOS4412 || 377 data->soc == SOC_ARCH_EXYNOS3250) 378 con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT); 379 380 con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT); 381 con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT; 382 383 con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); 384 con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); 385 386 if (pdata->noise_cancel_mode) { 387 con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT); 388 con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT); 389 } 390 391 return con; 392 } 393 394 static void exynos_tmu_control(struct platform_device *pdev, bool on) 395 { 396 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 397 398 mutex_lock(&data->lock); 399 clk_enable(data->clk); 400 data->tmu_control(pdev, on); 401 clk_disable(data->clk); 402 mutex_unlock(&data->lock); 403 } 404 405 static int exynos4210_tmu_initialize(struct platform_device *pdev) 406 { 407 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 408 struct thermal_zone_device *tz = data->tzd; 409 const struct thermal_trip * const trips = 410 of_thermal_get_trip_points(tz); 411 int ret = 0, threshold_code, i; 412 unsigned long reference, temp; 413 unsigned int status; 414 415 if (!trips) { 416 pr_err("%s: Cannot get trip points from of-thermal.c!\n", 417 __func__); 418 ret = -ENODEV; 419 goto out; 420 } 421 422 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 423 if (!status) { 424 ret = -EBUSY; 425 goto out; 426 } 427 428 sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO)); 429 430 /* Write temperature code for threshold */ 431 reference = trips[0].temperature / MCELSIUS; 432 threshold_code = temp_to_code(data, reference); 433 if (threshold_code < 0) { 434 ret = threshold_code; 435 goto out; 436 } 437 writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP); 438 439 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 440 temp = trips[i].temperature / MCELSIUS; 441 writeb(temp - reference, data->base + 442 EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4); 443 } 444 445 data->tmu_clear_irqs(data); 446 out: 447 return ret; 448 } 449 450 static int exynos4412_tmu_initialize(struct platform_device *pdev) 451 { 452 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 453 const struct thermal_trip * const trips = 454 of_thermal_get_trip_points(data->tzd); 455 unsigned int status, trim_info, con, ctrl, rising_threshold; 456 int ret = 0, threshold_code, i; 457 unsigned long crit_temp = 0; 458 459 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 460 if (!status) { 461 ret = -EBUSY; 462 goto out; 463 } 464 465 if (data->soc == SOC_ARCH_EXYNOS3250 || 466 data->soc == SOC_ARCH_EXYNOS4412 || 467 data->soc == SOC_ARCH_EXYNOS5250) { 468 if (data->soc == SOC_ARCH_EXYNOS3250) { 469 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1); 470 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; 471 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1); 472 } 473 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2); 474 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; 475 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2); 476 } 477 478 /* On exynos5420 the triminfo register is in the shared space */ 479 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) 480 trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO); 481 else 482 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 483 484 sanitize_temp_error(data, trim_info); 485 486 /* Write temperature code for rising and falling threshold */ 487 rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE); 488 rising_threshold = get_th_reg(data, rising_threshold, false); 489 writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); 490 writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL); 491 492 data->tmu_clear_irqs(data); 493 494 /* if last threshold limit is also present */ 495 for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) { 496 if (trips[i].type == THERMAL_TRIP_CRITICAL) { 497 crit_temp = trips[i].temperature; 498 break; 499 } 500 } 501 502 if (i == of_thermal_get_ntrips(data->tzd)) { 503 pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n", 504 __func__); 505 ret = -EINVAL; 506 goto out; 507 } 508 509 threshold_code = temp_to_code(data, crit_temp / MCELSIUS); 510 /* 1-4 level to be assigned in th0 reg */ 511 rising_threshold &= ~(0xff << 8 * i); 512 rising_threshold |= threshold_code << 8 * i; 513 writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); 514 con = readl(data->base + EXYNOS_TMU_REG_CONTROL); 515 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT); 516 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 517 518 out: 519 return ret; 520 } 521 522 static int exynos5433_tmu_initialize(struct platform_device *pdev) 523 { 524 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 525 struct exynos_tmu_platform_data *pdata = data->pdata; 526 struct thermal_zone_device *tz = data->tzd; 527 unsigned int status, trim_info; 528 unsigned int rising_threshold = 0, falling_threshold = 0; 529 int temp, temp_hist; 530 int ret = 0, threshold_code, i, sensor_id, cal_type; 531 532 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 533 if (!status) { 534 ret = -EBUSY; 535 goto out; 536 } 537 538 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 539 sanitize_temp_error(data, trim_info); 540 541 /* Read the temperature sensor id */ 542 sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK) 543 >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT; 544 dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id); 545 546 /* Read the calibration mode */ 547 writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO); 548 cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK) 549 >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT; 550 551 switch (cal_type) { 552 case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING: 553 pdata->cal_type = TYPE_ONE_POINT_TRIMMING; 554 break; 555 case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING: 556 pdata->cal_type = TYPE_TWO_POINT_TRIMMING; 557 break; 558 default: 559 pdata->cal_type = TYPE_ONE_POINT_TRIMMING; 560 break; 561 } 562 563 dev_info(&pdev->dev, "Calibration type is %d-point calibration\n", 564 cal_type ? 2 : 1); 565 566 /* Write temperature code for rising and falling threshold */ 567 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 568 int rising_reg_offset, falling_reg_offset; 569 int j = 0; 570 571 switch (i) { 572 case 0: 573 case 1: 574 case 2: 575 case 3: 576 rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0; 577 falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0; 578 j = i; 579 break; 580 case 4: 581 case 5: 582 case 6: 583 case 7: 584 rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4; 585 falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4; 586 j = i - 4; 587 break; 588 default: 589 continue; 590 } 591 592 /* Write temperature code for rising threshold */ 593 tz->ops->get_trip_temp(tz, i, &temp); 594 temp /= MCELSIUS; 595 threshold_code = temp_to_code(data, temp); 596 597 rising_threshold = readl(data->base + rising_reg_offset); 598 rising_threshold |= (threshold_code << j * 8); 599 writel(rising_threshold, data->base + rising_reg_offset); 600 601 /* Write temperature code for falling threshold */ 602 tz->ops->get_trip_hyst(tz, i, &temp_hist); 603 temp_hist = temp - (temp_hist / MCELSIUS); 604 threshold_code = temp_to_code(data, temp_hist); 605 606 falling_threshold = readl(data->base + falling_reg_offset); 607 falling_threshold &= ~(0xff << j * 8); 608 falling_threshold |= (threshold_code << j * 8); 609 writel(falling_threshold, data->base + falling_reg_offset); 610 } 611 612 data->tmu_clear_irqs(data); 613 out: 614 return ret; 615 } 616 617 static int exynos5440_tmu_initialize(struct platform_device *pdev) 618 { 619 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 620 unsigned int trim_info = 0, con, rising_threshold; 621 int threshold_code; 622 int crit_temp = 0; 623 624 /* 625 * For exynos5440 soc triminfo value is swapped between TMU0 and 626 * TMU2, so the below logic is needed. 627 */ 628 switch (data->id) { 629 case 0: 630 trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET + 631 EXYNOS5440_TMU_S0_7_TRIM); 632 break; 633 case 1: 634 trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM); 635 break; 636 case 2: 637 trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET + 638 EXYNOS5440_TMU_S0_7_TRIM); 639 } 640 sanitize_temp_error(data, trim_info); 641 642 /* Write temperature code for rising and falling threshold */ 643 rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0); 644 rising_threshold = get_th_reg(data, rising_threshold, false); 645 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0); 646 writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1); 647 648 data->tmu_clear_irqs(data); 649 650 /* if last threshold limit is also present */ 651 if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) { 652 threshold_code = temp_to_code(data, crit_temp / MCELSIUS); 653 /* 5th level to be assigned in th2 reg */ 654 rising_threshold = 655 threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT; 656 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2); 657 con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL); 658 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT); 659 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL); 660 } 661 /* Clear the PMIN in the common TMU register */ 662 if (!data->id) 663 writel(0, data->base_second + EXYNOS5440_TMU_PMIN); 664 665 return 0; 666 } 667 668 static int exynos7_tmu_initialize(struct platform_device *pdev) 669 { 670 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 671 struct thermal_zone_device *tz = data->tzd; 672 struct exynos_tmu_platform_data *pdata = data->pdata; 673 unsigned int status, trim_info; 674 unsigned int rising_threshold = 0, falling_threshold = 0; 675 int ret = 0, threshold_code, i; 676 int temp, temp_hist; 677 unsigned int reg_off, bit_off; 678 679 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 680 if (!status) { 681 ret = -EBUSY; 682 goto out; 683 } 684 685 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 686 687 data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK; 688 if (!data->temp_error1 || 689 (pdata->min_efuse_value > data->temp_error1) || 690 (data->temp_error1 > pdata->max_efuse_value)) 691 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK; 692 693 /* Write temperature code for rising and falling threshold */ 694 for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) { 695 /* 696 * On exynos7 there are 4 rising and 4 falling threshold 697 * registers (0x50-0x5c and 0x60-0x6c respectively). Each 698 * register holds the value of two threshold levels (at bit 699 * offsets 0 and 16). Based on the fact that there are atmost 700 * eight possible trigger levels, calculate the register and 701 * bit offsets where the threshold levels are to be written. 702 * 703 * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50) 704 * [24:16] - Threshold level 7 705 * [8:0] - Threshold level 6 706 * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54) 707 * [24:16] - Threshold level 5 708 * [8:0] - Threshold level 4 709 * 710 * and similarly for falling thresholds. 711 * 712 * Based on the above, calculate the register and bit offsets 713 * for rising/falling threshold levels and populate them. 714 */ 715 reg_off = ((7 - i) / 2) * 4; 716 bit_off = ((8 - i) % 2); 717 718 tz->ops->get_trip_temp(tz, i, &temp); 719 temp /= MCELSIUS; 720 721 tz->ops->get_trip_hyst(tz, i, &temp_hist); 722 temp_hist = temp - (temp_hist / MCELSIUS); 723 724 /* Set 9-bit temperature code for rising threshold levels */ 725 threshold_code = temp_to_code(data, temp); 726 rising_threshold = readl(data->base + 727 EXYNOS7_THD_TEMP_RISE7_6 + reg_off); 728 rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off)); 729 rising_threshold |= threshold_code << (16 * bit_off); 730 writel(rising_threshold, 731 data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off); 732 733 /* Set 9-bit temperature code for falling threshold levels */ 734 threshold_code = temp_to_code(data, temp_hist); 735 falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off)); 736 falling_threshold |= threshold_code << (16 * bit_off); 737 writel(falling_threshold, 738 data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off); 739 } 740 741 data->tmu_clear_irqs(data); 742 out: 743 return ret; 744 } 745 746 static void exynos4210_tmu_control(struct platform_device *pdev, bool on) 747 { 748 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 749 struct thermal_zone_device *tz = data->tzd; 750 unsigned int con, interrupt_en; 751 752 con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); 753 754 if (on) { 755 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 756 interrupt_en = 757 (of_thermal_is_trip_valid(tz, 3) 758 << EXYNOS_TMU_INTEN_RISE3_SHIFT) | 759 (of_thermal_is_trip_valid(tz, 2) 760 << EXYNOS_TMU_INTEN_RISE2_SHIFT) | 761 (of_thermal_is_trip_valid(tz, 1) 762 << EXYNOS_TMU_INTEN_RISE1_SHIFT) | 763 (of_thermal_is_trip_valid(tz, 0) 764 << EXYNOS_TMU_INTEN_RISE0_SHIFT); 765 766 if (data->soc != SOC_ARCH_EXYNOS4210) 767 interrupt_en |= 768 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; 769 } else { 770 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 771 interrupt_en = 0; /* Disable all interrupts */ 772 } 773 writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN); 774 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 775 } 776 777 static void exynos5433_tmu_control(struct platform_device *pdev, bool on) 778 { 779 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 780 struct thermal_zone_device *tz = data->tzd; 781 unsigned int con, interrupt_en, pd_det_en; 782 783 con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); 784 785 if (on) { 786 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 787 interrupt_en = 788 (of_thermal_is_trip_valid(tz, 7) 789 << EXYNOS7_TMU_INTEN_RISE7_SHIFT) | 790 (of_thermal_is_trip_valid(tz, 6) 791 << EXYNOS7_TMU_INTEN_RISE6_SHIFT) | 792 (of_thermal_is_trip_valid(tz, 5) 793 << EXYNOS7_TMU_INTEN_RISE5_SHIFT) | 794 (of_thermal_is_trip_valid(tz, 4) 795 << EXYNOS7_TMU_INTEN_RISE4_SHIFT) | 796 (of_thermal_is_trip_valid(tz, 3) 797 << EXYNOS7_TMU_INTEN_RISE3_SHIFT) | 798 (of_thermal_is_trip_valid(tz, 2) 799 << EXYNOS7_TMU_INTEN_RISE2_SHIFT) | 800 (of_thermal_is_trip_valid(tz, 1) 801 << EXYNOS7_TMU_INTEN_RISE1_SHIFT) | 802 (of_thermal_is_trip_valid(tz, 0) 803 << EXYNOS7_TMU_INTEN_RISE0_SHIFT); 804 805 interrupt_en |= 806 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; 807 } else { 808 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 809 interrupt_en = 0; /* Disable all interrupts */ 810 } 811 812 pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0; 813 814 writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN); 815 writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN); 816 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 817 } 818 819 static void exynos5440_tmu_control(struct platform_device *pdev, bool on) 820 { 821 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 822 struct thermal_zone_device *tz = data->tzd; 823 unsigned int con, interrupt_en; 824 825 con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL)); 826 827 if (on) { 828 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 829 interrupt_en = 830 (of_thermal_is_trip_valid(tz, 3) 831 << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) | 832 (of_thermal_is_trip_valid(tz, 2) 833 << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) | 834 (of_thermal_is_trip_valid(tz, 1) 835 << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) | 836 (of_thermal_is_trip_valid(tz, 0) 837 << EXYNOS5440_TMU_INTEN_RISE0_SHIFT); 838 interrupt_en |= 839 interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT; 840 } else { 841 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 842 interrupt_en = 0; /* Disable all interrupts */ 843 } 844 writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN); 845 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL); 846 } 847 848 static void exynos7_tmu_control(struct platform_device *pdev, bool on) 849 { 850 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 851 struct thermal_zone_device *tz = data->tzd; 852 unsigned int con, interrupt_en; 853 854 con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); 855 856 if (on) { 857 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 858 con |= (1 << EXYNOS7_PD_DET_EN_SHIFT); 859 interrupt_en = 860 (of_thermal_is_trip_valid(tz, 7) 861 << EXYNOS7_TMU_INTEN_RISE7_SHIFT) | 862 (of_thermal_is_trip_valid(tz, 6) 863 << EXYNOS7_TMU_INTEN_RISE6_SHIFT) | 864 (of_thermal_is_trip_valid(tz, 5) 865 << EXYNOS7_TMU_INTEN_RISE5_SHIFT) | 866 (of_thermal_is_trip_valid(tz, 4) 867 << EXYNOS7_TMU_INTEN_RISE4_SHIFT) | 868 (of_thermal_is_trip_valid(tz, 3) 869 << EXYNOS7_TMU_INTEN_RISE3_SHIFT) | 870 (of_thermal_is_trip_valid(tz, 2) 871 << EXYNOS7_TMU_INTEN_RISE2_SHIFT) | 872 (of_thermal_is_trip_valid(tz, 1) 873 << EXYNOS7_TMU_INTEN_RISE1_SHIFT) | 874 (of_thermal_is_trip_valid(tz, 0) 875 << EXYNOS7_TMU_INTEN_RISE0_SHIFT); 876 877 interrupt_en |= 878 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; 879 } else { 880 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 881 con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT); 882 interrupt_en = 0; /* Disable all interrupts */ 883 } 884 885 writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN); 886 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 887 } 888 889 static int exynos_get_temp(void *p, int *temp) 890 { 891 struct exynos_tmu_data *data = p; 892 893 if (!data || !data->tmu_read) 894 return -EINVAL; 895 896 mutex_lock(&data->lock); 897 clk_enable(data->clk); 898 899 *temp = code_to_temp(data, data->tmu_read(data)) * MCELSIUS; 900 901 clk_disable(data->clk); 902 mutex_unlock(&data->lock); 903 904 return 0; 905 } 906 907 #ifdef CONFIG_THERMAL_EMULATION 908 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val, 909 int temp) 910 { 911 if (temp) { 912 temp /= MCELSIUS; 913 914 if (data->soc != SOC_ARCH_EXYNOS5440) { 915 val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT); 916 val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT); 917 } 918 if (data->soc == SOC_ARCH_EXYNOS7) { 919 val &= ~(EXYNOS7_EMUL_DATA_MASK << 920 EXYNOS7_EMUL_DATA_SHIFT); 921 val |= (temp_to_code(data, temp) << 922 EXYNOS7_EMUL_DATA_SHIFT) | 923 EXYNOS_EMUL_ENABLE; 924 } else { 925 val &= ~(EXYNOS_EMUL_DATA_MASK << 926 EXYNOS_EMUL_DATA_SHIFT); 927 val |= (temp_to_code(data, temp) << 928 EXYNOS_EMUL_DATA_SHIFT) | 929 EXYNOS_EMUL_ENABLE; 930 } 931 } else { 932 val &= ~EXYNOS_EMUL_ENABLE; 933 } 934 935 return val; 936 } 937 938 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data, 939 int temp) 940 { 941 unsigned int val; 942 u32 emul_con; 943 944 if (data->soc == SOC_ARCH_EXYNOS5260) 945 emul_con = EXYNOS5260_EMUL_CON; 946 else if (data->soc == SOC_ARCH_EXYNOS5433) 947 emul_con = EXYNOS5433_TMU_EMUL_CON; 948 else if (data->soc == SOC_ARCH_EXYNOS7) 949 emul_con = EXYNOS7_TMU_REG_EMUL_CON; 950 else 951 emul_con = EXYNOS_EMUL_CON; 952 953 val = readl(data->base + emul_con); 954 val = get_emul_con_reg(data, val, temp); 955 writel(val, data->base + emul_con); 956 } 957 958 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data, 959 int temp) 960 { 961 unsigned int val; 962 963 val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG); 964 val = get_emul_con_reg(data, val, temp); 965 writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG); 966 } 967 968 static int exynos_tmu_set_emulation(void *drv_data, int temp) 969 { 970 struct exynos_tmu_data *data = drv_data; 971 int ret = -EINVAL; 972 973 if (data->soc == SOC_ARCH_EXYNOS4210) 974 goto out; 975 976 if (temp && temp < MCELSIUS) 977 goto out; 978 979 mutex_lock(&data->lock); 980 clk_enable(data->clk); 981 data->tmu_set_emulation(data, temp); 982 clk_disable(data->clk); 983 mutex_unlock(&data->lock); 984 return 0; 985 out: 986 return ret; 987 } 988 #else 989 #define exynos4412_tmu_set_emulation NULL 990 #define exynos5440_tmu_set_emulation NULL 991 static int exynos_tmu_set_emulation(void *drv_data, int temp) 992 { return -EINVAL; } 993 #endif /* CONFIG_THERMAL_EMULATION */ 994 995 static int exynos4210_tmu_read(struct exynos_tmu_data *data) 996 { 997 int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); 998 999 /* "temp_code" should range between 75 and 175 */ 1000 return (ret < 75 || ret > 175) ? -ENODATA : ret; 1001 } 1002 1003 static int exynos4412_tmu_read(struct exynos_tmu_data *data) 1004 { 1005 return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); 1006 } 1007 1008 static int exynos5440_tmu_read(struct exynos_tmu_data *data) 1009 { 1010 return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP); 1011 } 1012 1013 static int exynos7_tmu_read(struct exynos_tmu_data *data) 1014 { 1015 return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) & 1016 EXYNOS7_TMU_TEMP_MASK; 1017 } 1018 1019 static void exynos_tmu_work(struct work_struct *work) 1020 { 1021 struct exynos_tmu_data *data = container_of(work, 1022 struct exynos_tmu_data, irq_work); 1023 unsigned int val_type; 1024 1025 if (!IS_ERR(data->clk_sec)) 1026 clk_enable(data->clk_sec); 1027 /* Find which sensor generated this interrupt */ 1028 if (data->soc == SOC_ARCH_EXYNOS5440) { 1029 val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS); 1030 if (!((val_type >> data->id) & 0x1)) 1031 goto out; 1032 } 1033 if (!IS_ERR(data->clk_sec)) 1034 clk_disable(data->clk_sec); 1035 1036 exynos_report_trigger(data); 1037 mutex_lock(&data->lock); 1038 clk_enable(data->clk); 1039 1040 /* TODO: take action based on particular interrupt */ 1041 data->tmu_clear_irqs(data); 1042 1043 clk_disable(data->clk); 1044 mutex_unlock(&data->lock); 1045 out: 1046 enable_irq(data->irq); 1047 } 1048 1049 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data) 1050 { 1051 unsigned int val_irq; 1052 u32 tmu_intstat, tmu_intclear; 1053 1054 if (data->soc == SOC_ARCH_EXYNOS5260) { 1055 tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT; 1056 tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR; 1057 } else if (data->soc == SOC_ARCH_EXYNOS7) { 1058 tmu_intstat = EXYNOS7_TMU_REG_INTPEND; 1059 tmu_intclear = EXYNOS7_TMU_REG_INTPEND; 1060 } else if (data->soc == SOC_ARCH_EXYNOS5433) { 1061 tmu_intstat = EXYNOS5433_TMU_REG_INTPEND; 1062 tmu_intclear = EXYNOS5433_TMU_REG_INTPEND; 1063 } else { 1064 tmu_intstat = EXYNOS_TMU_REG_INTSTAT; 1065 tmu_intclear = EXYNOS_TMU_REG_INTCLEAR; 1066 } 1067 1068 val_irq = readl(data->base + tmu_intstat); 1069 /* 1070 * Clear the interrupts. Please note that the documentation for 1071 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly 1072 * states that INTCLEAR register has a different placing of bits 1073 * responsible for FALL IRQs than INTSTAT register. Exynos5420 1074 * and Exynos5440 documentation is correct (Exynos4210 doesn't 1075 * support FALL IRQs at all). 1076 */ 1077 writel(val_irq, data->base + tmu_intclear); 1078 } 1079 1080 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data) 1081 { 1082 unsigned int val_irq; 1083 1084 val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ); 1085 /* clear the interrupts */ 1086 writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ); 1087 } 1088 1089 static irqreturn_t exynos_tmu_irq(int irq, void *id) 1090 { 1091 struct exynos_tmu_data *data = id; 1092 1093 disable_irq_nosync(irq); 1094 schedule_work(&data->irq_work); 1095 1096 return IRQ_HANDLED; 1097 } 1098 1099 static const struct of_device_id exynos_tmu_match[] = { 1100 { .compatible = "samsung,exynos3250-tmu", }, 1101 { .compatible = "samsung,exynos4210-tmu", }, 1102 { .compatible = "samsung,exynos4412-tmu", }, 1103 { .compatible = "samsung,exynos5250-tmu", }, 1104 { .compatible = "samsung,exynos5260-tmu", }, 1105 { .compatible = "samsung,exynos5420-tmu", }, 1106 { .compatible = "samsung,exynos5420-tmu-ext-triminfo", }, 1107 { .compatible = "samsung,exynos5433-tmu", }, 1108 { .compatible = "samsung,exynos5440-tmu", }, 1109 { .compatible = "samsung,exynos7-tmu", }, 1110 { /* sentinel */ }, 1111 }; 1112 MODULE_DEVICE_TABLE(of, exynos_tmu_match); 1113 1114 static int exynos_of_get_soc_type(struct device_node *np) 1115 { 1116 if (of_device_is_compatible(np, "samsung,exynos3250-tmu")) 1117 return SOC_ARCH_EXYNOS3250; 1118 else if (of_device_is_compatible(np, "samsung,exynos4210-tmu")) 1119 return SOC_ARCH_EXYNOS4210; 1120 else if (of_device_is_compatible(np, "samsung,exynos4412-tmu")) 1121 return SOC_ARCH_EXYNOS4412; 1122 else if (of_device_is_compatible(np, "samsung,exynos5250-tmu")) 1123 return SOC_ARCH_EXYNOS5250; 1124 else if (of_device_is_compatible(np, "samsung,exynos5260-tmu")) 1125 return SOC_ARCH_EXYNOS5260; 1126 else if (of_device_is_compatible(np, "samsung,exynos5420-tmu")) 1127 return SOC_ARCH_EXYNOS5420; 1128 else if (of_device_is_compatible(np, 1129 "samsung,exynos5420-tmu-ext-triminfo")) 1130 return SOC_ARCH_EXYNOS5420_TRIMINFO; 1131 else if (of_device_is_compatible(np, "samsung,exynos5433-tmu")) 1132 return SOC_ARCH_EXYNOS5433; 1133 else if (of_device_is_compatible(np, "samsung,exynos5440-tmu")) 1134 return SOC_ARCH_EXYNOS5440; 1135 else if (of_device_is_compatible(np, "samsung,exynos7-tmu")) 1136 return SOC_ARCH_EXYNOS7; 1137 1138 return -EINVAL; 1139 } 1140 1141 static int exynos_of_sensor_conf(struct device_node *np, 1142 struct exynos_tmu_platform_data *pdata) 1143 { 1144 u32 value; 1145 int ret; 1146 1147 of_node_get(np); 1148 1149 ret = of_property_read_u32(np, "samsung,tmu_gain", &value); 1150 pdata->gain = (u8)value; 1151 of_property_read_u32(np, "samsung,tmu_reference_voltage", &value); 1152 pdata->reference_voltage = (u8)value; 1153 of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value); 1154 pdata->noise_cancel_mode = (u8)value; 1155 1156 of_property_read_u32(np, "samsung,tmu_efuse_value", 1157 &pdata->efuse_value); 1158 of_property_read_u32(np, "samsung,tmu_min_efuse_value", 1159 &pdata->min_efuse_value); 1160 of_property_read_u32(np, "samsung,tmu_max_efuse_value", 1161 &pdata->max_efuse_value); 1162 1163 of_property_read_u32(np, "samsung,tmu_first_point_trim", &value); 1164 pdata->first_point_trim = (u8)value; 1165 of_property_read_u32(np, "samsung,tmu_second_point_trim", &value); 1166 pdata->second_point_trim = (u8)value; 1167 of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value); 1168 pdata->default_temp_offset = (u8)value; 1169 1170 of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type); 1171 1172 of_node_put(np); 1173 return 0; 1174 } 1175 1176 static int exynos_map_dt_data(struct platform_device *pdev) 1177 { 1178 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 1179 struct exynos_tmu_platform_data *pdata; 1180 struct resource res; 1181 1182 if (!data || !pdev->dev.of_node) 1183 return -ENODEV; 1184 1185 data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl"); 1186 if (data->id < 0) 1187 data->id = 0; 1188 1189 data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1190 if (data->irq <= 0) { 1191 dev_err(&pdev->dev, "failed to get IRQ\n"); 1192 return -ENODEV; 1193 } 1194 1195 if (of_address_to_resource(pdev->dev.of_node, 0, &res)) { 1196 dev_err(&pdev->dev, "failed to get Resource 0\n"); 1197 return -ENODEV; 1198 } 1199 1200 data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); 1201 if (!data->base) { 1202 dev_err(&pdev->dev, "Failed to ioremap memory\n"); 1203 return -EADDRNOTAVAIL; 1204 } 1205 1206 pdata = devm_kzalloc(&pdev->dev, 1207 sizeof(struct exynos_tmu_platform_data), 1208 GFP_KERNEL); 1209 if (!pdata) 1210 return -ENOMEM; 1211 1212 exynos_of_sensor_conf(pdev->dev.of_node, pdata); 1213 data->pdata = pdata; 1214 data->soc = exynos_of_get_soc_type(pdev->dev.of_node); 1215 1216 switch (data->soc) { 1217 case SOC_ARCH_EXYNOS4210: 1218 data->tmu_initialize = exynos4210_tmu_initialize; 1219 data->tmu_control = exynos4210_tmu_control; 1220 data->tmu_read = exynos4210_tmu_read; 1221 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1222 data->ntrip = 4; 1223 break; 1224 case SOC_ARCH_EXYNOS3250: 1225 case SOC_ARCH_EXYNOS4412: 1226 case SOC_ARCH_EXYNOS5250: 1227 case SOC_ARCH_EXYNOS5260: 1228 case SOC_ARCH_EXYNOS5420: 1229 case SOC_ARCH_EXYNOS5420_TRIMINFO: 1230 data->tmu_initialize = exynos4412_tmu_initialize; 1231 data->tmu_control = exynos4210_tmu_control; 1232 data->tmu_read = exynos4412_tmu_read; 1233 data->tmu_set_emulation = exynos4412_tmu_set_emulation; 1234 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1235 data->ntrip = 4; 1236 break; 1237 case SOC_ARCH_EXYNOS5433: 1238 data->tmu_initialize = exynos5433_tmu_initialize; 1239 data->tmu_control = exynos5433_tmu_control; 1240 data->tmu_read = exynos4412_tmu_read; 1241 data->tmu_set_emulation = exynos4412_tmu_set_emulation; 1242 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1243 data->ntrip = 8; 1244 break; 1245 case SOC_ARCH_EXYNOS5440: 1246 data->tmu_initialize = exynos5440_tmu_initialize; 1247 data->tmu_control = exynos5440_tmu_control; 1248 data->tmu_read = exynos5440_tmu_read; 1249 data->tmu_set_emulation = exynos5440_tmu_set_emulation; 1250 data->tmu_clear_irqs = exynos5440_tmu_clear_irqs; 1251 data->ntrip = 4; 1252 break; 1253 case SOC_ARCH_EXYNOS7: 1254 data->tmu_initialize = exynos7_tmu_initialize; 1255 data->tmu_control = exynos7_tmu_control; 1256 data->tmu_read = exynos7_tmu_read; 1257 data->tmu_set_emulation = exynos4412_tmu_set_emulation; 1258 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1259 data->ntrip = 8; 1260 break; 1261 default: 1262 dev_err(&pdev->dev, "Platform not supported\n"); 1263 return -EINVAL; 1264 } 1265 1266 /* 1267 * Check if the TMU shares some registers and then try to map the 1268 * memory of common registers. 1269 */ 1270 if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO && 1271 data->soc != SOC_ARCH_EXYNOS5440) 1272 return 0; 1273 1274 if (of_address_to_resource(pdev->dev.of_node, 1, &res)) { 1275 dev_err(&pdev->dev, "failed to get Resource 1\n"); 1276 return -ENODEV; 1277 } 1278 1279 data->base_second = devm_ioremap(&pdev->dev, res.start, 1280 resource_size(&res)); 1281 if (!data->base_second) { 1282 dev_err(&pdev->dev, "Failed to ioremap memory\n"); 1283 return -ENOMEM; 1284 } 1285 1286 return 0; 1287 } 1288 1289 static const struct thermal_zone_of_device_ops exynos_sensor_ops = { 1290 .get_temp = exynos_get_temp, 1291 .set_emul_temp = exynos_tmu_set_emulation, 1292 }; 1293 1294 static int exynos_tmu_probe(struct platform_device *pdev) 1295 { 1296 struct exynos_tmu_data *data; 1297 int ret; 1298 1299 data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data), 1300 GFP_KERNEL); 1301 if (!data) 1302 return -ENOMEM; 1303 1304 platform_set_drvdata(pdev, data); 1305 mutex_init(&data->lock); 1306 1307 /* 1308 * Try enabling the regulator if found 1309 * TODO: Add regulator as an SOC feature, so that regulator enable 1310 * is a compulsory call. 1311 */ 1312 data->regulator = devm_regulator_get_optional(&pdev->dev, "vtmu"); 1313 if (!IS_ERR(data->regulator)) { 1314 ret = regulator_enable(data->regulator); 1315 if (ret) { 1316 dev_err(&pdev->dev, "failed to enable vtmu\n"); 1317 return ret; 1318 } 1319 } else { 1320 if (PTR_ERR(data->regulator) == -EPROBE_DEFER) 1321 return -EPROBE_DEFER; 1322 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n"); 1323 } 1324 1325 ret = exynos_map_dt_data(pdev); 1326 if (ret) 1327 goto err_sensor; 1328 1329 INIT_WORK(&data->irq_work, exynos_tmu_work); 1330 1331 data->clk = devm_clk_get(&pdev->dev, "tmu_apbif"); 1332 if (IS_ERR(data->clk)) { 1333 dev_err(&pdev->dev, "Failed to get clock\n"); 1334 ret = PTR_ERR(data->clk); 1335 goto err_sensor; 1336 } 1337 1338 data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif"); 1339 if (IS_ERR(data->clk_sec)) { 1340 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) { 1341 dev_err(&pdev->dev, "Failed to get triminfo clock\n"); 1342 ret = PTR_ERR(data->clk_sec); 1343 goto err_sensor; 1344 } 1345 } else { 1346 ret = clk_prepare(data->clk_sec); 1347 if (ret) { 1348 dev_err(&pdev->dev, "Failed to get clock\n"); 1349 goto err_sensor; 1350 } 1351 } 1352 1353 ret = clk_prepare(data->clk); 1354 if (ret) { 1355 dev_err(&pdev->dev, "Failed to get clock\n"); 1356 goto err_clk_sec; 1357 } 1358 1359 switch (data->soc) { 1360 case SOC_ARCH_EXYNOS5433: 1361 case SOC_ARCH_EXYNOS7: 1362 data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk"); 1363 if (IS_ERR(data->sclk)) { 1364 dev_err(&pdev->dev, "Failed to get sclk\n"); 1365 goto err_clk; 1366 } else { 1367 ret = clk_prepare_enable(data->sclk); 1368 if (ret) { 1369 dev_err(&pdev->dev, "Failed to enable sclk\n"); 1370 goto err_clk; 1371 } 1372 } 1373 break; 1374 default: 1375 break; 1376 } 1377 1378 /* 1379 * data->tzd must be registered before calling exynos_tmu_initialize(), 1380 * requesting irq and calling exynos_tmu_control(). 1381 */ 1382 data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data, 1383 &exynos_sensor_ops); 1384 if (IS_ERR(data->tzd)) { 1385 ret = PTR_ERR(data->tzd); 1386 dev_err(&pdev->dev, "Failed to register sensor: %d\n", ret); 1387 goto err_sclk; 1388 } 1389 1390 ret = exynos_tmu_initialize(pdev); 1391 if (ret) { 1392 dev_err(&pdev->dev, "Failed to initialize TMU\n"); 1393 goto err_thermal; 1394 } 1395 1396 ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq, 1397 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data); 1398 if (ret) { 1399 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); 1400 goto err_thermal; 1401 } 1402 1403 exynos_tmu_control(pdev, true); 1404 return 0; 1405 1406 err_thermal: 1407 thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd); 1408 err_sclk: 1409 clk_disable_unprepare(data->sclk); 1410 err_clk: 1411 clk_unprepare(data->clk); 1412 err_clk_sec: 1413 if (!IS_ERR(data->clk_sec)) 1414 clk_unprepare(data->clk_sec); 1415 err_sensor: 1416 if (!IS_ERR(data->regulator)) 1417 regulator_disable(data->regulator); 1418 1419 return ret; 1420 } 1421 1422 static int exynos_tmu_remove(struct platform_device *pdev) 1423 { 1424 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 1425 struct thermal_zone_device *tzd = data->tzd; 1426 1427 thermal_zone_of_sensor_unregister(&pdev->dev, tzd); 1428 exynos_tmu_control(pdev, false); 1429 1430 clk_disable_unprepare(data->sclk); 1431 clk_unprepare(data->clk); 1432 if (!IS_ERR(data->clk_sec)) 1433 clk_unprepare(data->clk_sec); 1434 1435 if (!IS_ERR(data->regulator)) 1436 regulator_disable(data->regulator); 1437 1438 return 0; 1439 } 1440 1441 #ifdef CONFIG_PM_SLEEP 1442 static int exynos_tmu_suspend(struct device *dev) 1443 { 1444 exynos_tmu_control(to_platform_device(dev), false); 1445 1446 return 0; 1447 } 1448 1449 static int exynos_tmu_resume(struct device *dev) 1450 { 1451 struct platform_device *pdev = to_platform_device(dev); 1452 1453 exynos_tmu_initialize(pdev); 1454 exynos_tmu_control(pdev, true); 1455 1456 return 0; 1457 } 1458 1459 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, 1460 exynos_tmu_suspend, exynos_tmu_resume); 1461 #define EXYNOS_TMU_PM (&exynos_tmu_pm) 1462 #else 1463 #define EXYNOS_TMU_PM NULL 1464 #endif 1465 1466 static struct platform_driver exynos_tmu_driver = { 1467 .driver = { 1468 .name = "exynos-tmu", 1469 .pm = EXYNOS_TMU_PM, 1470 .of_match_table = exynos_tmu_match, 1471 }, 1472 .probe = exynos_tmu_probe, 1473 .remove = exynos_tmu_remove, 1474 }; 1475 1476 module_platform_driver(exynos_tmu_driver); 1477 1478 MODULE_DESCRIPTION("EXYNOS TMU Driver"); 1479 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>"); 1480 MODULE_LICENSE("GPL"); 1481 MODULE_ALIAS("platform:exynos-tmu"); 1482