1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2014 Samsung Electronics
5  *  Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
6  *  Lukasz Majewski <l.majewski@samsung.com>
7  *
8  *  Copyright (C) 2011 Samsung Electronics
9  *  Donggeun Kim <dg77.kim@samsung.com>
10  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/io.h>
30 #include <linux/interrupt.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/regulator/consumer.h>
37 
38 #include "exynos_tmu.h"
39 #include "../thermal_core.h"
40 
41 /* Exynos generic registers */
42 #define EXYNOS_TMU_REG_TRIMINFO		0x0
43 #define EXYNOS_TMU_REG_CONTROL		0x20
44 #define EXYNOS_TMU_REG_STATUS		0x28
45 #define EXYNOS_TMU_REG_CURRENT_TEMP	0x40
46 #define EXYNOS_TMU_REG_INTEN		0x70
47 #define EXYNOS_TMU_REG_INTSTAT		0x74
48 #define EXYNOS_TMU_REG_INTCLEAR		0x78
49 
50 #define EXYNOS_TMU_TEMP_MASK		0xff
51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT	24
52 #define EXYNOS_TMU_REF_VOLTAGE_MASK	0x1f
53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK	0xf
54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT	8
55 #define EXYNOS_TMU_CORE_EN_SHIFT	0
56 
57 /* Exynos3250 specific registers */
58 #define EXYNOS_TMU_TRIMINFO_CON1	0x10
59 
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP	0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0	0x50
63 
64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */
65 #define EXYNOS_TMU_TRIMINFO_CON2	0x14
66 #define EXYNOS_THD_TEMP_RISE		0x50
67 #define EXYNOS_THD_TEMP_FALL		0x54
68 #define EXYNOS_EMUL_CON		0x80
69 
70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE	1
71 #define EXYNOS_TRIMINFO_25_SHIFT	0
72 #define EXYNOS_TRIMINFO_85_SHIFT	8
73 #define EXYNOS_TMU_TRIP_MODE_SHIFT	13
74 #define EXYNOS_TMU_TRIP_MODE_MASK	0x7
75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT	12
76 
77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT	0
78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT	4
79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT	8
80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT	12
81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT	16
82 
83 #define EXYNOS_EMUL_TIME	0x57F0
84 #define EXYNOS_EMUL_TIME_MASK	0xffff
85 #define EXYNOS_EMUL_TIME_SHIFT	16
86 #define EXYNOS_EMUL_DATA_SHIFT	8
87 #define EXYNOS_EMUL_DATA_MASK	0xFF
88 #define EXYNOS_EMUL_ENABLE	0x1
89 
90 /* Exynos5260 specific */
91 #define EXYNOS5260_TMU_REG_INTEN		0xC0
92 #define EXYNOS5260_TMU_REG_INTSTAT		0xC4
93 #define EXYNOS5260_TMU_REG_INTCLEAR		0xC8
94 #define EXYNOS5260_EMUL_CON			0x100
95 
96 /* Exynos4412 specific */
97 #define EXYNOS4412_MUX_ADDR_VALUE          6
98 #define EXYNOS4412_MUX_ADDR_SHIFT          20
99 
100 /*exynos5440 specific registers*/
101 #define EXYNOS5440_TMU_S0_7_TRIM		0x000
102 #define EXYNOS5440_TMU_S0_7_CTRL		0x020
103 #define EXYNOS5440_TMU_S0_7_DEBUG		0x040
104 #define EXYNOS5440_TMU_S0_7_TEMP		0x0f0
105 #define EXYNOS5440_TMU_S0_7_TH0			0x110
106 #define EXYNOS5440_TMU_S0_7_TH1			0x130
107 #define EXYNOS5440_TMU_S0_7_TH2			0x150
108 #define EXYNOS5440_TMU_S0_7_IRQEN		0x210
109 #define EXYNOS5440_TMU_S0_7_IRQ			0x230
110 /* exynos5440 common registers */
111 #define EXYNOS5440_TMU_IRQ_STATUS		0x000
112 #define EXYNOS5440_TMU_PMIN			0x004
113 
114 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT	0
115 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT	1
116 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT	2
117 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT	3
118 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT	4
119 #define EXYNOS5440_TMU_TH_RISE4_SHIFT		24
120 #define EXYNOS5440_EFUSE_SWAP_OFFSET		8
121 
122 /* Exynos7 specific registers */
123 #define EXYNOS7_THD_TEMP_RISE7_6		0x50
124 #define EXYNOS7_THD_TEMP_FALL7_6		0x60
125 #define EXYNOS7_TMU_REG_INTEN			0x110
126 #define EXYNOS7_TMU_REG_INTPEND			0x118
127 #define EXYNOS7_TMU_REG_EMUL_CON		0x160
128 
129 #define EXYNOS7_TMU_TEMP_MASK			0x1ff
130 #define EXYNOS7_PD_DET_EN_SHIFT			23
131 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT		0
132 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT		1
133 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT		2
134 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT		3
135 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT		4
136 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT		5
137 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT		6
138 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT		7
139 #define EXYNOS7_EMUL_DATA_SHIFT			7
140 #define EXYNOS7_EMUL_DATA_MASK			0x1ff
141 
142 #define MCELSIUS	1000
143 /**
144  * struct exynos_tmu_data : A structure to hold the private data of the TMU
145 	driver
146  * @id: identifier of the one instance of the TMU controller.
147  * @pdata: pointer to the tmu platform/configuration data
148  * @base: base address of the single instance of the TMU controller.
149  * @base_second: base address of the common registers of the TMU controller.
150  * @irq: irq number of the TMU controller.
151  * @soc: id of the SOC type.
152  * @irq_work: pointer to the irq work structure.
153  * @lock: lock to implement synchronization.
154  * @clk: pointer to the clock structure.
155  * @clk_sec: pointer to the clock structure for accessing the base_second.
156  * @sclk: pointer to the clock structure for accessing the tmu special clk.
157  * @temp_error1: fused value of the first point trim.
158  * @temp_error2: fused value of the second point trim.
159  * @regulator: pointer to the TMU regulator structure.
160  * @reg_conf: pointer to structure to register with core thermal.
161  * @tmu_initialize: SoC specific TMU initialization method
162  * @tmu_control: SoC specific TMU control method
163  * @tmu_read: SoC specific TMU temperature read method
164  * @tmu_set_emulation: SoC specific TMU emulation setting method
165  * @tmu_clear_irqs: SoC specific TMU interrupts clearing method
166  */
167 struct exynos_tmu_data {
168 	int id;
169 	struct exynos_tmu_platform_data *pdata;
170 	void __iomem *base;
171 	void __iomem *base_second;
172 	int irq;
173 	enum soc_type soc;
174 	struct work_struct irq_work;
175 	struct mutex lock;
176 	struct clk *clk, *clk_sec, *sclk;
177 	u16 temp_error1, temp_error2;
178 	struct regulator *regulator;
179 	struct thermal_zone_device *tzd;
180 
181 	int (*tmu_initialize)(struct platform_device *pdev);
182 	void (*tmu_control)(struct platform_device *pdev, bool on);
183 	int (*tmu_read)(struct exynos_tmu_data *data);
184 	void (*tmu_set_emulation)(struct exynos_tmu_data *data,
185 				  unsigned long temp);
186 	void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
187 };
188 
189 static void exynos_report_trigger(struct exynos_tmu_data *p)
190 {
191 	char data[10], *envp[] = { data, NULL };
192 	struct thermal_zone_device *tz = p->tzd;
193 	unsigned long temp;
194 	unsigned int i;
195 
196 	if (!tz) {
197 		pr_err("No thermal zone device defined\n");
198 		return;
199 	}
200 
201 	thermal_zone_device_update(tz);
202 
203 	mutex_lock(&tz->lock);
204 	/* Find the level for which trip happened */
205 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
206 		tz->ops->get_trip_temp(tz, i, &temp);
207 		if (tz->last_temperature < temp)
208 			break;
209 	}
210 
211 	snprintf(data, sizeof(data), "%u", i);
212 	kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
213 	mutex_unlock(&tz->lock);
214 }
215 
216 /*
217  * TMU treats temperature as a mapped temperature code.
218  * The temperature is converted differently depending on the calibration type.
219  */
220 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
221 {
222 	struct exynos_tmu_platform_data *pdata = data->pdata;
223 	int temp_code;
224 
225 	switch (pdata->cal_type) {
226 	case TYPE_TWO_POINT_TRIMMING:
227 		temp_code = (temp - pdata->first_point_trim) *
228 			(data->temp_error2 - data->temp_error1) /
229 			(pdata->second_point_trim - pdata->first_point_trim) +
230 			data->temp_error1;
231 		break;
232 	case TYPE_ONE_POINT_TRIMMING:
233 		temp_code = temp + data->temp_error1 - pdata->first_point_trim;
234 		break;
235 	default:
236 		temp_code = temp + pdata->default_temp_offset;
237 		break;
238 	}
239 
240 	return temp_code;
241 }
242 
243 /*
244  * Calculate a temperature value from a temperature code.
245  * The unit of the temperature is degree Celsius.
246  */
247 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
248 {
249 	struct exynos_tmu_platform_data *pdata = data->pdata;
250 	int temp;
251 
252 	switch (pdata->cal_type) {
253 	case TYPE_TWO_POINT_TRIMMING:
254 		temp = (temp_code - data->temp_error1) *
255 			(pdata->second_point_trim - pdata->first_point_trim) /
256 			(data->temp_error2 - data->temp_error1) +
257 			pdata->first_point_trim;
258 		break;
259 	case TYPE_ONE_POINT_TRIMMING:
260 		temp = temp_code - data->temp_error1 + pdata->first_point_trim;
261 		break;
262 	default:
263 		temp = temp_code - pdata->default_temp_offset;
264 		break;
265 	}
266 
267 	return temp;
268 }
269 
270 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
271 {
272 	struct exynos_tmu_platform_data *pdata = data->pdata;
273 
274 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
275 	data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
276 				EXYNOS_TMU_TEMP_MASK);
277 
278 	if (!data->temp_error1 ||
279 		(pdata->min_efuse_value > data->temp_error1) ||
280 		(data->temp_error1 > pdata->max_efuse_value))
281 		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
282 
283 	if (!data->temp_error2)
284 		data->temp_error2 =
285 			(pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
286 			EXYNOS_TMU_TEMP_MASK;
287 }
288 
289 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
290 {
291 	struct thermal_zone_device *tz = data->tzd;
292 	const struct thermal_trip * const trips =
293 		of_thermal_get_trip_points(tz);
294 	unsigned long temp;
295 	int i;
296 
297 	if (!trips) {
298 		pr_err("%s: Cannot get trip points from of-thermal.c!\n",
299 		       __func__);
300 		return 0;
301 	}
302 
303 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
304 		if (trips[i].type == THERMAL_TRIP_CRITICAL)
305 			continue;
306 
307 		temp = trips[i].temperature / MCELSIUS;
308 		if (falling)
309 			temp -= (trips[i].hysteresis / MCELSIUS);
310 		else
311 			threshold &= ~(0xff << 8 * i);
312 
313 		threshold |= temp_to_code(data, temp) << 8 * i;
314 	}
315 
316 	return threshold;
317 }
318 
319 static int exynos_tmu_initialize(struct platform_device *pdev)
320 {
321 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
322 	int ret;
323 
324 	mutex_lock(&data->lock);
325 	clk_enable(data->clk);
326 	if (!IS_ERR(data->clk_sec))
327 		clk_enable(data->clk_sec);
328 	ret = data->tmu_initialize(pdev);
329 	clk_disable(data->clk);
330 	mutex_unlock(&data->lock);
331 	if (!IS_ERR(data->clk_sec))
332 		clk_disable(data->clk_sec);
333 
334 	return ret;
335 }
336 
337 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
338 {
339 	struct exynos_tmu_platform_data *pdata = data->pdata;
340 
341 	if (data->soc == SOC_ARCH_EXYNOS4412 ||
342 	    data->soc == SOC_ARCH_EXYNOS3250)
343 		con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
344 
345 	con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
346 	con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
347 
348 	con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
349 	con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
350 
351 	if (pdata->noise_cancel_mode) {
352 		con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
353 		con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT);
354 	}
355 
356 	return con;
357 }
358 
359 static void exynos_tmu_control(struct platform_device *pdev, bool on)
360 {
361 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
362 
363 	mutex_lock(&data->lock);
364 	clk_enable(data->clk);
365 	data->tmu_control(pdev, on);
366 	clk_disable(data->clk);
367 	mutex_unlock(&data->lock);
368 }
369 
370 static int exynos4210_tmu_initialize(struct platform_device *pdev)
371 {
372 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
373 	struct thermal_zone_device *tz = data->tzd;
374 	const struct thermal_trip * const trips =
375 		of_thermal_get_trip_points(tz);
376 	int ret = 0, threshold_code, i;
377 	unsigned long reference, temp;
378 	unsigned int status;
379 
380 	if (!trips) {
381 		pr_err("%s: Cannot get trip points from of-thermal.c!\n",
382 		       __func__);
383 		ret = -ENODEV;
384 		goto out;
385 	}
386 
387 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
388 	if (!status) {
389 		ret = -EBUSY;
390 		goto out;
391 	}
392 
393 	sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
394 
395 	/* Write temperature code for threshold */
396 	reference = trips[0].temperature / MCELSIUS;
397 	threshold_code = temp_to_code(data, reference);
398 	if (threshold_code < 0) {
399 		ret = threshold_code;
400 		goto out;
401 	}
402 	writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
403 
404 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
405 		temp = trips[i].temperature / MCELSIUS;
406 		writeb(temp - reference, data->base +
407 		       EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
408 	}
409 
410 	data->tmu_clear_irqs(data);
411 out:
412 	return ret;
413 }
414 
415 static int exynos4412_tmu_initialize(struct platform_device *pdev)
416 {
417 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
418 	const struct thermal_trip * const trips =
419 		of_thermal_get_trip_points(data->tzd);
420 	unsigned int status, trim_info, con, ctrl, rising_threshold;
421 	int ret = 0, threshold_code, i;
422 	unsigned long crit_temp = 0;
423 
424 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
425 	if (!status) {
426 		ret = -EBUSY;
427 		goto out;
428 	}
429 
430 	if (data->soc == SOC_ARCH_EXYNOS3250 ||
431 	    data->soc == SOC_ARCH_EXYNOS4412 ||
432 	    data->soc == SOC_ARCH_EXYNOS5250) {
433 		if (data->soc == SOC_ARCH_EXYNOS3250) {
434 			ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
435 			ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
436 			writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
437 		}
438 		ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
439 		ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
440 		writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
441 	}
442 
443 	/* On exynos5420 the triminfo register is in the shared space */
444 	if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
445 		trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
446 	else
447 		trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
448 
449 	sanitize_temp_error(data, trim_info);
450 
451 	/* Write temperature code for rising and falling threshold */
452 	rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
453 	rising_threshold = get_th_reg(data, rising_threshold, false);
454 	writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
455 	writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
456 
457 	data->tmu_clear_irqs(data);
458 
459 	/* if last threshold limit is also present */
460 	for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
461 		if (trips[i].type == THERMAL_TRIP_CRITICAL) {
462 			crit_temp = trips[i].temperature;
463 			break;
464 		}
465 	}
466 
467 	if (i == of_thermal_get_ntrips(data->tzd)) {
468 		pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
469 		       __func__);
470 		ret = -EINVAL;
471 		goto out;
472 	}
473 
474 	threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
475 	/* 1-4 level to be assigned in th0 reg */
476 	rising_threshold &= ~(0xff << 8 * i);
477 	rising_threshold |= threshold_code << 8 * i;
478 	writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
479 	con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
480 	con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
481 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
482 
483 out:
484 	return ret;
485 }
486 
487 static int exynos5440_tmu_initialize(struct platform_device *pdev)
488 {
489 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
490 	unsigned int trim_info = 0, con, rising_threshold;
491 	int ret = 0, threshold_code;
492 	unsigned long crit_temp = 0;
493 
494 	/*
495 	 * For exynos5440 soc triminfo value is swapped between TMU0 and
496 	 * TMU2, so the below logic is needed.
497 	 */
498 	switch (data->id) {
499 	case 0:
500 		trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
501 				 EXYNOS5440_TMU_S0_7_TRIM);
502 		break;
503 	case 1:
504 		trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
505 		break;
506 	case 2:
507 		trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
508 				  EXYNOS5440_TMU_S0_7_TRIM);
509 	}
510 	sanitize_temp_error(data, trim_info);
511 
512 	/* Write temperature code for rising and falling threshold */
513 	rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
514 	rising_threshold = get_th_reg(data, rising_threshold, false);
515 	writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
516 	writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
517 
518 	data->tmu_clear_irqs(data);
519 
520 	/* if last threshold limit is also present */
521 	if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
522 		threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
523 		/* 5th level to be assigned in th2 reg */
524 		rising_threshold =
525 			threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
526 		writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
527 		con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
528 		con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
529 		writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
530 	}
531 	/* Clear the PMIN in the common TMU register */
532 	if (!data->id)
533 		writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
534 	return ret;
535 }
536 
537 static int exynos7_tmu_initialize(struct platform_device *pdev)
538 {
539 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
540 	struct thermal_zone_device *tz = data->tzd;
541 	struct exynos_tmu_platform_data *pdata = data->pdata;
542 	unsigned int status, trim_info;
543 	unsigned int rising_threshold = 0, falling_threshold = 0;
544 	int ret = 0, threshold_code, i;
545 	unsigned long temp, temp_hist;
546 	unsigned int reg_off, bit_off;
547 
548 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
549 	if (!status) {
550 		ret = -EBUSY;
551 		goto out;
552 	}
553 
554 	trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
555 
556 	data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
557 	if (!data->temp_error1 ||
558 	    (pdata->min_efuse_value > data->temp_error1) ||
559 	    (data->temp_error1 > pdata->max_efuse_value))
560 		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
561 
562 	/* Write temperature code for rising and falling threshold */
563 	for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
564 		/*
565 		 * On exynos7 there are 4 rising and 4 falling threshold
566 		 * registers (0x50-0x5c and 0x60-0x6c respectively). Each
567 		 * register holds the value of two threshold levels (at bit
568 		 * offsets 0 and 16). Based on the fact that there are atmost
569 		 * eight possible trigger levels, calculate the register and
570 		 * bit offsets where the threshold levels are to be written.
571 		 *
572 		 * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
573 		 * [24:16] - Threshold level 7
574 		 * [8:0] - Threshold level 6
575 		 * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
576 		 * [24:16] - Threshold level 5
577 		 * [8:0] - Threshold level 4
578 		 *
579 		 * and similarly for falling thresholds.
580 		 *
581 		 * Based on the above, calculate the register and bit offsets
582 		 * for rising/falling threshold levels and populate them.
583 		 */
584 		reg_off = ((7 - i) / 2) * 4;
585 		bit_off = ((8 - i) % 2);
586 
587 		tz->ops->get_trip_temp(tz, i, &temp);
588 		temp /= MCELSIUS;
589 
590 		tz->ops->get_trip_hyst(tz, i, &temp_hist);
591 		temp_hist = temp - (temp_hist / MCELSIUS);
592 
593 		/* Set 9-bit temperature code for rising threshold levels */
594 		threshold_code = temp_to_code(data, temp);
595 		rising_threshold = readl(data->base +
596 			EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
597 		rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
598 		rising_threshold |= threshold_code << (16 * bit_off);
599 		writel(rising_threshold,
600 		       data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
601 
602 		/* Set 9-bit temperature code for falling threshold levels */
603 		threshold_code = temp_to_code(data, temp_hist);
604 		falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
605 		falling_threshold |= threshold_code << (16 * bit_off);
606 		writel(falling_threshold,
607 		       data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
608 	}
609 
610 	data->tmu_clear_irqs(data);
611 out:
612 	return ret;
613 }
614 
615 static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
616 {
617 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
618 	struct thermal_zone_device *tz = data->tzd;
619 	unsigned int con, interrupt_en;
620 
621 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
622 
623 	if (on) {
624 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
625 		interrupt_en =
626 			(of_thermal_is_trip_valid(tz, 3)
627 			 << EXYNOS_TMU_INTEN_RISE3_SHIFT) |
628 			(of_thermal_is_trip_valid(tz, 2)
629 			 << EXYNOS_TMU_INTEN_RISE2_SHIFT) |
630 			(of_thermal_is_trip_valid(tz, 1)
631 			 << EXYNOS_TMU_INTEN_RISE1_SHIFT) |
632 			(of_thermal_is_trip_valid(tz, 0)
633 			 << EXYNOS_TMU_INTEN_RISE0_SHIFT);
634 
635 		if (data->soc != SOC_ARCH_EXYNOS4210)
636 			interrupt_en |=
637 				interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
638 	} else {
639 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
640 		interrupt_en = 0; /* Disable all interrupts */
641 	}
642 	writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
643 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
644 }
645 
646 static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
647 {
648 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
649 	struct thermal_zone_device *tz = data->tzd;
650 	unsigned int con, interrupt_en;
651 
652 	con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
653 
654 	if (on) {
655 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
656 		interrupt_en =
657 			(of_thermal_is_trip_valid(tz, 3)
658 			 << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
659 			(of_thermal_is_trip_valid(tz, 2)
660 			 << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
661 			(of_thermal_is_trip_valid(tz, 1)
662 			 << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
663 			(of_thermal_is_trip_valid(tz, 0)
664 			 << EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
665 		interrupt_en |=
666 			interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
667 	} else {
668 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
669 		interrupt_en = 0; /* Disable all interrupts */
670 	}
671 	writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
672 	writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
673 }
674 
675 static void exynos7_tmu_control(struct platform_device *pdev, bool on)
676 {
677 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
678 	struct thermal_zone_device *tz = data->tzd;
679 	unsigned int con, interrupt_en;
680 
681 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
682 
683 	if (on) {
684 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
685 		interrupt_en =
686 			(of_thermal_is_trip_valid(tz, 7)
687 			<< EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
688 			(of_thermal_is_trip_valid(tz, 6)
689 			<< EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
690 			(of_thermal_is_trip_valid(tz, 5)
691 			<< EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
692 			(of_thermal_is_trip_valid(tz, 4)
693 			<< EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
694 			(of_thermal_is_trip_valid(tz, 3)
695 			<< EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
696 			(of_thermal_is_trip_valid(tz, 2)
697 			<< EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
698 			(of_thermal_is_trip_valid(tz, 1)
699 			<< EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
700 			(of_thermal_is_trip_valid(tz, 0)
701 			<< EXYNOS7_TMU_INTEN_RISE0_SHIFT);
702 
703 		interrupt_en |=
704 			interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
705 	} else {
706 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
707 		interrupt_en = 0; /* Disable all interrupts */
708 	}
709 	con |= 1 << EXYNOS7_PD_DET_EN_SHIFT;
710 
711 	writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
712 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
713 }
714 
715 static int exynos_get_temp(void *p, long *temp)
716 {
717 	struct exynos_tmu_data *data = p;
718 
719 	if (!data || !data->tmu_read)
720 		return -EINVAL;
721 
722 	mutex_lock(&data->lock);
723 	clk_enable(data->clk);
724 
725 	*temp = code_to_temp(data, data->tmu_read(data)) * MCELSIUS;
726 
727 	clk_disable(data->clk);
728 	mutex_unlock(&data->lock);
729 
730 	return 0;
731 }
732 
733 #ifdef CONFIG_THERMAL_EMULATION
734 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
735 			    unsigned long temp)
736 {
737 	if (temp) {
738 		temp /= MCELSIUS;
739 
740 		if (data->soc != SOC_ARCH_EXYNOS5440) {
741 			val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
742 			val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
743 		}
744 		if (data->soc == SOC_ARCH_EXYNOS7) {
745 			val &= ~(EXYNOS7_EMUL_DATA_MASK <<
746 				EXYNOS7_EMUL_DATA_SHIFT);
747 			val |= (temp_to_code(data, temp) <<
748 				EXYNOS7_EMUL_DATA_SHIFT) |
749 				EXYNOS_EMUL_ENABLE;
750 		} else {
751 			val &= ~(EXYNOS_EMUL_DATA_MASK <<
752 				EXYNOS_EMUL_DATA_SHIFT);
753 			val |= (temp_to_code(data, temp) <<
754 				EXYNOS_EMUL_DATA_SHIFT) |
755 				EXYNOS_EMUL_ENABLE;
756 		}
757 	} else {
758 		val &= ~EXYNOS_EMUL_ENABLE;
759 	}
760 
761 	return val;
762 }
763 
764 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
765 					 unsigned long temp)
766 {
767 	unsigned int val;
768 	u32 emul_con;
769 
770 	if (data->soc == SOC_ARCH_EXYNOS5260)
771 		emul_con = EXYNOS5260_EMUL_CON;
772 	else if (data->soc == SOC_ARCH_EXYNOS7)
773 		emul_con = EXYNOS7_TMU_REG_EMUL_CON;
774 	else
775 		emul_con = EXYNOS_EMUL_CON;
776 
777 	val = readl(data->base + emul_con);
778 	val = get_emul_con_reg(data, val, temp);
779 	writel(val, data->base + emul_con);
780 }
781 
782 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
783 					 unsigned long temp)
784 {
785 	unsigned int val;
786 
787 	val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
788 	val = get_emul_con_reg(data, val, temp);
789 	writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
790 }
791 
792 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
793 {
794 	struct exynos_tmu_data *data = drv_data;
795 	int ret = -EINVAL;
796 
797 	if (data->soc == SOC_ARCH_EXYNOS4210)
798 		goto out;
799 
800 	if (temp && temp < MCELSIUS)
801 		goto out;
802 
803 	mutex_lock(&data->lock);
804 	clk_enable(data->clk);
805 	data->tmu_set_emulation(data, temp);
806 	clk_disable(data->clk);
807 	mutex_unlock(&data->lock);
808 	return 0;
809 out:
810 	return ret;
811 }
812 #else
813 #define exynos4412_tmu_set_emulation NULL
814 #define exynos5440_tmu_set_emulation NULL
815 static int exynos_tmu_set_emulation(void *drv_data,	unsigned long temp)
816 	{ return -EINVAL; }
817 #endif /* CONFIG_THERMAL_EMULATION */
818 
819 static int exynos4210_tmu_read(struct exynos_tmu_data *data)
820 {
821 	int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
822 
823 	/* "temp_code" should range between 75 and 175 */
824 	return (ret < 75 || ret > 175) ? -ENODATA : ret;
825 }
826 
827 static int exynos4412_tmu_read(struct exynos_tmu_data *data)
828 {
829 	return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
830 }
831 
832 static int exynos5440_tmu_read(struct exynos_tmu_data *data)
833 {
834 	return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
835 }
836 
837 static int exynos7_tmu_read(struct exynos_tmu_data *data)
838 {
839 	return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
840 		EXYNOS7_TMU_TEMP_MASK;
841 }
842 
843 static void exynos_tmu_work(struct work_struct *work)
844 {
845 	struct exynos_tmu_data *data = container_of(work,
846 			struct exynos_tmu_data, irq_work);
847 	unsigned int val_type;
848 
849 	if (!IS_ERR(data->clk_sec))
850 		clk_enable(data->clk_sec);
851 	/* Find which sensor generated this interrupt */
852 	if (data->soc == SOC_ARCH_EXYNOS5440) {
853 		val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
854 		if (!((val_type >> data->id) & 0x1))
855 			goto out;
856 	}
857 	if (!IS_ERR(data->clk_sec))
858 		clk_disable(data->clk_sec);
859 
860 	exynos_report_trigger(data);
861 	mutex_lock(&data->lock);
862 	clk_enable(data->clk);
863 
864 	/* TODO: take action based on particular interrupt */
865 	data->tmu_clear_irqs(data);
866 
867 	clk_disable(data->clk);
868 	mutex_unlock(&data->lock);
869 out:
870 	enable_irq(data->irq);
871 }
872 
873 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
874 {
875 	unsigned int val_irq;
876 	u32 tmu_intstat, tmu_intclear;
877 
878 	if (data->soc == SOC_ARCH_EXYNOS5260) {
879 		tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
880 		tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
881 	} else if (data->soc == SOC_ARCH_EXYNOS7) {
882 		tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
883 		tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
884 	} else {
885 		tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
886 		tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
887 	}
888 
889 	val_irq = readl(data->base + tmu_intstat);
890 	/*
891 	 * Clear the interrupts.  Please note that the documentation for
892 	 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
893 	 * states that INTCLEAR register has a different placing of bits
894 	 * responsible for FALL IRQs than INTSTAT register.  Exynos5420
895 	 * and Exynos5440 documentation is correct (Exynos4210 doesn't
896 	 * support FALL IRQs at all).
897 	 */
898 	writel(val_irq, data->base + tmu_intclear);
899 }
900 
901 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
902 {
903 	unsigned int val_irq;
904 
905 	val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
906 	/* clear the interrupts */
907 	writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
908 }
909 
910 static irqreturn_t exynos_tmu_irq(int irq, void *id)
911 {
912 	struct exynos_tmu_data *data = id;
913 
914 	disable_irq_nosync(irq);
915 	schedule_work(&data->irq_work);
916 
917 	return IRQ_HANDLED;
918 }
919 
920 static const struct of_device_id exynos_tmu_match[] = {
921 	{
922 		.compatible = "samsung,exynos3250-tmu",
923 	},
924 	{
925 		.compatible = "samsung,exynos4210-tmu",
926 	},
927 	{
928 		.compatible = "samsung,exynos4412-tmu",
929 	},
930 	{
931 		.compatible = "samsung,exynos5250-tmu",
932 	},
933 	{
934 		.compatible = "samsung,exynos5260-tmu",
935 	},
936 	{
937 		.compatible = "samsung,exynos5420-tmu",
938 	},
939 	{
940 		.compatible = "samsung,exynos5420-tmu-ext-triminfo",
941 	},
942 	{
943 		.compatible = "samsung,exynos5440-tmu",
944 	},
945 	{
946 		.compatible = "samsung,exynos7-tmu",
947 	},
948 	{},
949 };
950 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
951 
952 static int exynos_of_get_soc_type(struct device_node *np)
953 {
954 	if (of_device_is_compatible(np, "samsung,exynos3250-tmu"))
955 		return SOC_ARCH_EXYNOS3250;
956 	else if (of_device_is_compatible(np, "samsung,exynos4210-tmu"))
957 		return SOC_ARCH_EXYNOS4210;
958 	else if (of_device_is_compatible(np, "samsung,exynos4412-tmu"))
959 		return SOC_ARCH_EXYNOS4412;
960 	else if (of_device_is_compatible(np, "samsung,exynos5250-tmu"))
961 		return SOC_ARCH_EXYNOS5250;
962 	else if (of_device_is_compatible(np, "samsung,exynos5260-tmu"))
963 		return SOC_ARCH_EXYNOS5260;
964 	else if (of_device_is_compatible(np, "samsung,exynos5420-tmu"))
965 		return SOC_ARCH_EXYNOS5420;
966 	else if (of_device_is_compatible(np,
967 					 "samsung,exynos5420-tmu-ext-triminfo"))
968 		return SOC_ARCH_EXYNOS5420_TRIMINFO;
969 	else if (of_device_is_compatible(np, "samsung,exynos5440-tmu"))
970 		return SOC_ARCH_EXYNOS5440;
971 	else if (of_device_is_compatible(np, "samsung,exynos7-tmu"))
972 		return SOC_ARCH_EXYNOS7;
973 
974 	return -EINVAL;
975 }
976 
977 static int exynos_of_sensor_conf(struct device_node *np,
978 				 struct exynos_tmu_platform_data *pdata)
979 {
980 	u32 value;
981 	int ret;
982 
983 	of_node_get(np);
984 
985 	ret = of_property_read_u32(np, "samsung,tmu_gain", &value);
986 	pdata->gain = (u8)value;
987 	of_property_read_u32(np, "samsung,tmu_reference_voltage", &value);
988 	pdata->reference_voltage = (u8)value;
989 	of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value);
990 	pdata->noise_cancel_mode = (u8)value;
991 
992 	of_property_read_u32(np, "samsung,tmu_efuse_value",
993 			     &pdata->efuse_value);
994 	of_property_read_u32(np, "samsung,tmu_min_efuse_value",
995 			     &pdata->min_efuse_value);
996 	of_property_read_u32(np, "samsung,tmu_max_efuse_value",
997 			     &pdata->max_efuse_value);
998 
999 	of_property_read_u32(np, "samsung,tmu_first_point_trim", &value);
1000 	pdata->first_point_trim = (u8)value;
1001 	of_property_read_u32(np, "samsung,tmu_second_point_trim", &value);
1002 	pdata->second_point_trim = (u8)value;
1003 	of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value);
1004 	pdata->default_temp_offset = (u8)value;
1005 
1006 	of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
1007 	of_property_read_u32(np, "samsung,tmu_cal_mode", &pdata->cal_mode);
1008 
1009 	of_node_put(np);
1010 	return 0;
1011 }
1012 
1013 static int exynos_map_dt_data(struct platform_device *pdev)
1014 {
1015 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1016 	struct exynos_tmu_platform_data *pdata;
1017 	struct resource res;
1018 	int ret;
1019 
1020 	if (!data || !pdev->dev.of_node)
1021 		return -ENODEV;
1022 
1023 	/*
1024 	 * Try enabling the regulator if found
1025 	 * TODO: Add regulator as an SOC feature, so that regulator enable
1026 	 * is a compulsory call.
1027 	 */
1028 	data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
1029 	if (!IS_ERR(data->regulator)) {
1030 		ret = regulator_enable(data->regulator);
1031 		if (ret) {
1032 			dev_err(&pdev->dev, "failed to enable vtmu\n");
1033 			return ret;
1034 		}
1035 	} else {
1036 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
1037 	}
1038 
1039 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
1040 	if (data->id < 0)
1041 		data->id = 0;
1042 
1043 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1044 	if (data->irq <= 0) {
1045 		dev_err(&pdev->dev, "failed to get IRQ\n");
1046 		return -ENODEV;
1047 	}
1048 
1049 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
1050 		dev_err(&pdev->dev, "failed to get Resource 0\n");
1051 		return -ENODEV;
1052 	}
1053 
1054 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1055 	if (!data->base) {
1056 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
1057 		return -EADDRNOTAVAIL;
1058 	}
1059 
1060 	pdata = devm_kzalloc(&pdev->dev,
1061 			     sizeof(struct exynos_tmu_platform_data),
1062 			     GFP_KERNEL);
1063 	if (!pdata)
1064 		return -ENOMEM;
1065 
1066 	exynos_of_sensor_conf(pdev->dev.of_node, pdata);
1067 	data->pdata = pdata;
1068 	data->soc = exynos_of_get_soc_type(pdev->dev.of_node);
1069 
1070 	switch (data->soc) {
1071 	case SOC_ARCH_EXYNOS4210:
1072 		data->tmu_initialize = exynos4210_tmu_initialize;
1073 		data->tmu_control = exynos4210_tmu_control;
1074 		data->tmu_read = exynos4210_tmu_read;
1075 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1076 		break;
1077 	case SOC_ARCH_EXYNOS3250:
1078 	case SOC_ARCH_EXYNOS4412:
1079 	case SOC_ARCH_EXYNOS5250:
1080 	case SOC_ARCH_EXYNOS5260:
1081 	case SOC_ARCH_EXYNOS5420:
1082 	case SOC_ARCH_EXYNOS5420_TRIMINFO:
1083 		data->tmu_initialize = exynos4412_tmu_initialize;
1084 		data->tmu_control = exynos4210_tmu_control;
1085 		data->tmu_read = exynos4412_tmu_read;
1086 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1087 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1088 		break;
1089 	case SOC_ARCH_EXYNOS5440:
1090 		data->tmu_initialize = exynos5440_tmu_initialize;
1091 		data->tmu_control = exynos5440_tmu_control;
1092 		data->tmu_read = exynos5440_tmu_read;
1093 		data->tmu_set_emulation = exynos5440_tmu_set_emulation;
1094 		data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
1095 		break;
1096 	case SOC_ARCH_EXYNOS7:
1097 		data->tmu_initialize = exynos7_tmu_initialize;
1098 		data->tmu_control = exynos7_tmu_control;
1099 		data->tmu_read = exynos7_tmu_read;
1100 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1101 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1102 		break;
1103 	default:
1104 		dev_err(&pdev->dev, "Platform not supported\n");
1105 		return -EINVAL;
1106 	}
1107 
1108 	/*
1109 	 * Check if the TMU shares some registers and then try to map the
1110 	 * memory of common registers.
1111 	 */
1112 	if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
1113 	    data->soc != SOC_ARCH_EXYNOS5440)
1114 		return 0;
1115 
1116 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
1117 		dev_err(&pdev->dev, "failed to get Resource 1\n");
1118 		return -ENODEV;
1119 	}
1120 
1121 	data->base_second = devm_ioremap(&pdev->dev, res.start,
1122 					resource_size(&res));
1123 	if (!data->base_second) {
1124 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
1125 		return -ENOMEM;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static struct thermal_zone_of_device_ops exynos_sensor_ops = {
1132 	.get_temp = exynos_get_temp,
1133 	.set_emul_temp = exynos_tmu_set_emulation,
1134 };
1135 
1136 static int exynos_tmu_probe(struct platform_device *pdev)
1137 {
1138 	struct exynos_tmu_platform_data *pdata;
1139 	struct exynos_tmu_data *data;
1140 	int ret;
1141 
1142 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
1143 					GFP_KERNEL);
1144 	if (!data)
1145 		return -ENOMEM;
1146 
1147 	platform_set_drvdata(pdev, data);
1148 	mutex_init(&data->lock);
1149 
1150 	data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
1151 						    &exynos_sensor_ops);
1152 	if (IS_ERR(data->tzd)) {
1153 		pr_err("thermal: tz: %p ERROR\n", data->tzd);
1154 		return PTR_ERR(data->tzd);
1155 	}
1156 	ret = exynos_map_dt_data(pdev);
1157 	if (ret)
1158 		goto err_sensor;
1159 
1160 	pdata = data->pdata;
1161 
1162 	INIT_WORK(&data->irq_work, exynos_tmu_work);
1163 
1164 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
1165 	if (IS_ERR(data->clk)) {
1166 		dev_err(&pdev->dev, "Failed to get clock\n");
1167 		ret = PTR_ERR(data->clk);
1168 		goto err_sensor;
1169 	}
1170 
1171 	data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
1172 	if (IS_ERR(data->clk_sec)) {
1173 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
1174 			dev_err(&pdev->dev, "Failed to get triminfo clock\n");
1175 			ret = PTR_ERR(data->clk_sec);
1176 			goto err_sensor;
1177 		}
1178 	} else {
1179 		ret = clk_prepare(data->clk_sec);
1180 		if (ret) {
1181 			dev_err(&pdev->dev, "Failed to get clock\n");
1182 			goto err_sensor;
1183 		}
1184 	}
1185 
1186 	ret = clk_prepare(data->clk);
1187 	if (ret) {
1188 		dev_err(&pdev->dev, "Failed to get clock\n");
1189 		goto err_clk_sec;
1190 	}
1191 
1192 	if (data->soc == SOC_ARCH_EXYNOS7) {
1193 		data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
1194 		if (IS_ERR(data->sclk)) {
1195 			dev_err(&pdev->dev, "Failed to get sclk\n");
1196 			goto err_clk;
1197 		} else {
1198 			ret = clk_prepare_enable(data->sclk);
1199 			if (ret) {
1200 				dev_err(&pdev->dev, "Failed to enable sclk\n");
1201 				goto err_clk;
1202 			}
1203 		}
1204 	}
1205 
1206 	ret = exynos_tmu_initialize(pdev);
1207 	if (ret) {
1208 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
1209 		goto err_sclk;
1210 	}
1211 
1212 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
1213 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
1214 	if (ret) {
1215 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
1216 		goto err_sclk;
1217 	}
1218 
1219 	exynos_tmu_control(pdev, true);
1220 	return 0;
1221 err_sclk:
1222 	clk_disable_unprepare(data->sclk);
1223 err_clk:
1224 	clk_unprepare(data->clk);
1225 err_clk_sec:
1226 	if (!IS_ERR(data->clk_sec))
1227 		clk_unprepare(data->clk_sec);
1228 err_sensor:
1229 	thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
1230 
1231 	return ret;
1232 }
1233 
1234 static int exynos_tmu_remove(struct platform_device *pdev)
1235 {
1236 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1237 	struct thermal_zone_device *tzd = data->tzd;
1238 
1239 	thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
1240 	exynos_tmu_control(pdev, false);
1241 
1242 	clk_disable_unprepare(data->sclk);
1243 	clk_unprepare(data->clk);
1244 	if (!IS_ERR(data->clk_sec))
1245 		clk_unprepare(data->clk_sec);
1246 
1247 	if (!IS_ERR(data->regulator))
1248 		regulator_disable(data->regulator);
1249 
1250 	return 0;
1251 }
1252 
1253 #ifdef CONFIG_PM_SLEEP
1254 static int exynos_tmu_suspend(struct device *dev)
1255 {
1256 	exynos_tmu_control(to_platform_device(dev), false);
1257 
1258 	return 0;
1259 }
1260 
1261 static int exynos_tmu_resume(struct device *dev)
1262 {
1263 	struct platform_device *pdev = to_platform_device(dev);
1264 
1265 	exynos_tmu_initialize(pdev);
1266 	exynos_tmu_control(pdev, true);
1267 
1268 	return 0;
1269 }
1270 
1271 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
1272 			 exynos_tmu_suspend, exynos_tmu_resume);
1273 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
1274 #else
1275 #define EXYNOS_TMU_PM	NULL
1276 #endif
1277 
1278 static struct platform_driver exynos_tmu_driver = {
1279 	.driver = {
1280 		.name   = "exynos-tmu",
1281 		.pm     = EXYNOS_TMU_PM,
1282 		.of_match_table = exynos_tmu_match,
1283 	},
1284 	.probe = exynos_tmu_probe,
1285 	.remove	= exynos_tmu_remove,
1286 };
1287 
1288 module_platform_driver(exynos_tmu_driver);
1289 
1290 MODULE_DESCRIPTION("EXYNOS TMU Driver");
1291 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
1292 MODULE_LICENSE("GPL");
1293 MODULE_ALIAS("platform:exynos-tmu");
1294