1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * R-Car Gen3 THS thermal sensor driver 4 * Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen. 5 * 6 * Copyright (C) 2016 Renesas Electronics Corporation. 7 * Copyright (C) 2016 Sang Engineering 8 */ 9 #include <linux/delay.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/sys_soc.h> 18 #include <linux/thermal.h> 19 20 #include "thermal_core.h" 21 #include "thermal_hwmon.h" 22 23 /* Register offsets */ 24 #define REG_GEN3_IRQSTR 0x04 25 #define REG_GEN3_IRQMSK 0x08 26 #define REG_GEN3_IRQCTL 0x0C 27 #define REG_GEN3_IRQEN 0x10 28 #define REG_GEN3_IRQTEMP1 0x14 29 #define REG_GEN3_IRQTEMP2 0x18 30 #define REG_GEN3_IRQTEMP3 0x1C 31 #define REG_GEN3_CTSR 0x20 32 #define REG_GEN3_THCTR 0x20 33 #define REG_GEN3_TEMP 0x28 34 #define REG_GEN3_THCODE1 0x50 35 #define REG_GEN3_THCODE2 0x54 36 #define REG_GEN3_THCODE3 0x58 37 38 /* IRQ{STR,MSK,EN} bits */ 39 #define IRQ_TEMP1 BIT(0) 40 #define IRQ_TEMP2 BIT(1) 41 #define IRQ_TEMP3 BIT(2) 42 #define IRQ_TEMPD1 BIT(3) 43 #define IRQ_TEMPD2 BIT(4) 44 #define IRQ_TEMPD3 BIT(5) 45 46 /* CTSR bits */ 47 #define CTSR_PONM BIT(8) 48 #define CTSR_AOUT BIT(7) 49 #define CTSR_THBGR BIT(5) 50 #define CTSR_VMEN BIT(4) 51 #define CTSR_VMST BIT(1) 52 #define CTSR_THSST BIT(0) 53 54 /* THCTR bits */ 55 #define THCTR_PONM BIT(6) 56 #define THCTR_THSST BIT(0) 57 58 #define CTEMP_MASK 0xFFF 59 60 #define MCELSIUS(temp) ((temp) * 1000) 61 #define GEN3_FUSE_MASK 0xFFF 62 63 #define TSC_MAX_NUM 4 64 65 /* default THCODE values if FUSEs are missing */ 66 static const int thcodes[TSC_MAX_NUM][3] = { 67 { 3397, 2800, 2221 }, 68 { 3393, 2795, 2216 }, 69 { 3389, 2805, 2237 }, 70 { 3415, 2694, 2195 }, 71 }; 72 73 /* Structure for thermal temperature calculation */ 74 struct equation_coefs { 75 int a1; 76 int b1; 77 int a2; 78 int b2; 79 }; 80 81 struct rcar_gen3_thermal_tsc { 82 void __iomem *base; 83 struct thermal_zone_device *zone; 84 struct equation_coefs coef; 85 int tj_t; 86 int id; /* thermal channel id */ 87 }; 88 89 struct rcar_gen3_thermal_priv { 90 struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM]; 91 unsigned int num_tscs; 92 void (*thermal_init)(struct rcar_gen3_thermal_tsc *tsc); 93 }; 94 95 static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc, 96 u32 reg) 97 { 98 return ioread32(tsc->base + reg); 99 } 100 101 static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc, 102 u32 reg, u32 data) 103 { 104 iowrite32(data, tsc->base + reg); 105 } 106 107 /* 108 * Linear approximation for temperature 109 * 110 * [reg] = [temp] * a + b => [temp] = ([reg] - b) / a 111 * 112 * The constants a and b are calculated using two triplets of int values PTAT 113 * and THCODE. PTAT and THCODE can either be read from hardware or use hard 114 * coded values from driver. The formula to calculate a and b are taken from 115 * BSP and sparsely documented and understood. 116 * 117 * Examining the linear formula and the formula used to calculate constants a 118 * and b while knowing that the span for PTAT and THCODE values are between 119 * 0x000 and 0xfff the largest integer possible is 0xfff * 0xfff == 0xffe001. 120 * Integer also needs to be signed so that leaves 7 bits for binary 121 * fixed point scaling. 122 */ 123 124 #define FIXPT_SHIFT 7 125 #define FIXPT_INT(_x) ((_x) << FIXPT_SHIFT) 126 #define INT_FIXPT(_x) ((_x) >> FIXPT_SHIFT) 127 #define FIXPT_DIV(_a, _b) DIV_ROUND_CLOSEST(((_a) << FIXPT_SHIFT), (_b)) 128 #define FIXPT_TO_MCELSIUS(_x) ((_x) * 1000 >> FIXPT_SHIFT) 129 130 #define RCAR3_THERMAL_GRAN 500 /* mili Celsius */ 131 132 /* no idea where these constants come from */ 133 #define TJ_3 -41 134 135 static void rcar_gen3_thermal_calc_coefs(struct rcar_gen3_thermal_tsc *tsc, 136 int *ptat, const int *thcode, 137 int ths_tj_1) 138 { 139 /* TODO: Find documentation and document constant calculation formula */ 140 141 /* 142 * Division is not scaled in BSP and if scaled it might overflow 143 * the dividend (4095 * 4095 << 14 > INT_MAX) so keep it unscaled 144 */ 145 tsc->tj_t = (FIXPT_INT((ptat[1] - ptat[2]) * 157) 146 / (ptat[0] - ptat[2])) + FIXPT_INT(TJ_3); 147 148 tsc->coef.a1 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[2]), 149 tsc->tj_t - FIXPT_INT(TJ_3)); 150 tsc->coef.b1 = FIXPT_INT(thcode[2]) - tsc->coef.a1 * TJ_3; 151 152 tsc->coef.a2 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[0]), 153 tsc->tj_t - FIXPT_INT(ths_tj_1)); 154 tsc->coef.b2 = FIXPT_INT(thcode[0]) - tsc->coef.a2 * ths_tj_1; 155 } 156 157 static int rcar_gen3_thermal_round(int temp) 158 { 159 int result, round_offs; 160 161 round_offs = temp >= 0 ? RCAR3_THERMAL_GRAN / 2 : 162 -RCAR3_THERMAL_GRAN / 2; 163 result = (temp + round_offs) / RCAR3_THERMAL_GRAN; 164 return result * RCAR3_THERMAL_GRAN; 165 } 166 167 static int rcar_gen3_thermal_get_temp(void *devdata, int *temp) 168 { 169 struct rcar_gen3_thermal_tsc *tsc = devdata; 170 int mcelsius, val; 171 int reg; 172 173 /* Read register and convert to mili Celsius */ 174 reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK; 175 176 if (reg <= thcodes[tsc->id][1]) 177 val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b1, 178 tsc->coef.a1); 179 else 180 val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b2, 181 tsc->coef.a2); 182 mcelsius = FIXPT_TO_MCELSIUS(val); 183 184 /* Guaranteed operating range is -40C to 125C. */ 185 186 /* Round value to device granularity setting */ 187 *temp = rcar_gen3_thermal_round(mcelsius); 188 189 return 0; 190 } 191 192 static const struct thermal_zone_of_device_ops rcar_gen3_tz_of_ops = { 193 .get_temp = rcar_gen3_thermal_get_temp, 194 }; 195 196 static const struct soc_device_attribute r8a7795es1[] = { 197 { .soc_id = "r8a7795", .revision = "ES1.*" }, 198 { /* sentinel */ } 199 }; 200 201 static void rcar_gen3_thermal_init_r8a7795es1(struct rcar_gen3_thermal_tsc *tsc) 202 { 203 rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_THBGR); 204 rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, 0x0); 205 206 usleep_range(1000, 2000); 207 208 rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM); 209 210 rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F); 211 rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0); 212 213 rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, 214 CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN); 215 216 usleep_range(100, 200); 217 218 rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, 219 CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN | 220 CTSR_VMST | CTSR_THSST); 221 222 usleep_range(1000, 2000); 223 } 224 225 static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_tsc *tsc) 226 { 227 u32 reg_val; 228 229 reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR); 230 reg_val &= ~THCTR_PONM; 231 rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val); 232 233 usleep_range(1000, 2000); 234 235 rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0); 236 rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0); 237 238 reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR); 239 reg_val |= THCTR_THSST; 240 rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val); 241 242 usleep_range(1000, 2000); 243 } 244 245 static const int rcar_gen3_ths_tj_1 = 126; 246 static const int rcar_gen3_ths_tj_1_m3_w = 116; 247 static const struct of_device_id rcar_gen3_thermal_dt_ids[] = { 248 { 249 .compatible = "renesas,r8a774a1-thermal", 250 .data = &rcar_gen3_ths_tj_1_m3_w, 251 }, 252 { 253 .compatible = "renesas,r8a774b1-thermal", 254 .data = &rcar_gen3_ths_tj_1, 255 }, 256 { 257 .compatible = "renesas,r8a774e1-thermal", 258 .data = &rcar_gen3_ths_tj_1, 259 }, 260 { 261 .compatible = "renesas,r8a7795-thermal", 262 .data = &rcar_gen3_ths_tj_1, 263 }, 264 { 265 .compatible = "renesas,r8a7796-thermal", 266 .data = &rcar_gen3_ths_tj_1_m3_w, 267 }, 268 { 269 .compatible = "renesas,r8a77961-thermal", 270 .data = &rcar_gen3_ths_tj_1_m3_w, 271 }, 272 { 273 .compatible = "renesas,r8a77965-thermal", 274 .data = &rcar_gen3_ths_tj_1, 275 }, 276 { 277 .compatible = "renesas,r8a77980-thermal", 278 .data = &rcar_gen3_ths_tj_1, 279 }, 280 { 281 .compatible = "renesas,r8a779a0-thermal", 282 .data = &rcar_gen3_ths_tj_1, 283 }, 284 {}, 285 }; 286 MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids); 287 288 static int rcar_gen3_thermal_remove(struct platform_device *pdev) 289 { 290 struct device *dev = &pdev->dev; 291 292 pm_runtime_put(dev); 293 pm_runtime_disable(dev); 294 295 return 0; 296 } 297 298 static void rcar_gen3_hwmon_action(void *data) 299 { 300 struct thermal_zone_device *zone = data; 301 302 thermal_remove_hwmon_sysfs(zone); 303 } 304 305 static int rcar_gen3_thermal_probe(struct platform_device *pdev) 306 { 307 struct rcar_gen3_thermal_priv *priv; 308 struct device *dev = &pdev->dev; 309 const int *rcar_gen3_ths_tj_1 = of_device_get_match_data(dev); 310 struct resource *res; 311 struct thermal_zone_device *zone; 312 int ret, i; 313 314 /* default values if FUSEs are missing */ 315 /* TODO: Read values from hardware on supported platforms */ 316 int ptat[3] = { 2631, 1509, 435 }; 317 318 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 319 if (!priv) 320 return -ENOMEM; 321 322 priv->thermal_init = rcar_gen3_thermal_init; 323 if (soc_device_match(r8a7795es1)) 324 priv->thermal_init = rcar_gen3_thermal_init_r8a7795es1; 325 326 platform_set_drvdata(pdev, priv); 327 328 pm_runtime_enable(dev); 329 pm_runtime_get_sync(dev); 330 331 for (i = 0; i < TSC_MAX_NUM; i++) { 332 struct rcar_gen3_thermal_tsc *tsc; 333 334 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 335 if (!res) 336 break; 337 338 tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL); 339 if (!tsc) { 340 ret = -ENOMEM; 341 goto error_unregister; 342 } 343 344 tsc->base = devm_ioremap_resource(dev, res); 345 if (IS_ERR(tsc->base)) { 346 ret = PTR_ERR(tsc->base); 347 goto error_unregister; 348 } 349 tsc->id = i; 350 351 priv->tscs[i] = tsc; 352 353 priv->thermal_init(tsc); 354 rcar_gen3_thermal_calc_coefs(tsc, ptat, thcodes[i], 355 *rcar_gen3_ths_tj_1); 356 357 zone = devm_thermal_zone_of_sensor_register(dev, i, tsc, 358 &rcar_gen3_tz_of_ops); 359 if (IS_ERR(zone)) { 360 dev_err(dev, "Can't register thermal zone\n"); 361 ret = PTR_ERR(zone); 362 goto error_unregister; 363 } 364 tsc->zone = zone; 365 366 tsc->zone->tzp->no_hwmon = false; 367 ret = thermal_add_hwmon_sysfs(tsc->zone); 368 if (ret) 369 goto error_unregister; 370 371 ret = devm_add_action_or_reset(dev, rcar_gen3_hwmon_action, zone); 372 if (ret) 373 goto error_unregister; 374 375 ret = of_thermal_get_ntrips(tsc->zone); 376 if (ret < 0) 377 goto error_unregister; 378 379 dev_info(dev, "TSC%d: Loaded %d trip points\n", i, ret); 380 } 381 382 priv->num_tscs = i; 383 384 if (!priv->num_tscs) { 385 ret = -ENODEV; 386 goto error_unregister; 387 } 388 389 return 0; 390 391 error_unregister: 392 rcar_gen3_thermal_remove(pdev); 393 394 return ret; 395 } 396 397 static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev) 398 { 399 struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev); 400 unsigned int i; 401 402 for (i = 0; i < priv->num_tscs; i++) { 403 struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i]; 404 405 priv->thermal_init(tsc); 406 } 407 408 return 0; 409 } 410 411 static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, NULL, 412 rcar_gen3_thermal_resume); 413 414 static struct platform_driver rcar_gen3_thermal_driver = { 415 .driver = { 416 .name = "rcar_gen3_thermal", 417 .pm = &rcar_gen3_thermal_pm_ops, 418 .of_match_table = rcar_gen3_thermal_dt_ids, 419 }, 420 .probe = rcar_gen3_thermal_probe, 421 .remove = rcar_gen3_thermal_remove, 422 }; 423 module_platform_driver(rcar_gen3_thermal_driver); 424 425 MODULE_LICENSE("GPL v2"); 426 MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver"); 427 MODULE_AUTHOR("Wolfram Sang <wsa+renesas@sang-engineering.com>"); 428