xref: /openbmc/linux/drivers/thermal/qcom/tsens.c (revision ccc319dc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2019, 2020, Linaro Ltd.
5  */
6 
7 #include <linux/debugfs.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_platform.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21 #include "../thermal_hwmon.h"
22 #include "tsens.h"
23 
24 /**
25  * struct tsens_irq_data - IRQ status and temperature violations
26  * @up_viol:        upper threshold violated
27  * @up_thresh:      upper threshold temperature value
28  * @up_irq_mask:    mask register for upper threshold irqs
29  * @up_irq_clear:   clear register for uppper threshold irqs
30  * @low_viol:       lower threshold violated
31  * @low_thresh:     lower threshold temperature value
32  * @low_irq_mask:   mask register for lower threshold irqs
33  * @low_irq_clear:  clear register for lower threshold irqs
34  * @crit_viol:      critical threshold violated
35  * @crit_thresh:    critical threshold temperature value
36  * @crit_irq_mask:  mask register for critical threshold irqs
37  * @crit_irq_clear: clear register for critical threshold irqs
38  *
39  * Structure containing data about temperature threshold settings and
40  * irq status if they were violated.
41  */
42 struct tsens_irq_data {
43 	u32 up_viol;
44 	int up_thresh;
45 	u32 up_irq_mask;
46 	u32 up_irq_clear;
47 	u32 low_viol;
48 	int low_thresh;
49 	u32 low_irq_mask;
50 	u32 low_irq_clear;
51 	u32 crit_viol;
52 	u32 crit_thresh;
53 	u32 crit_irq_mask;
54 	u32 crit_irq_clear;
55 };
56 
57 char *qfprom_read(struct device *dev, const char *cname)
58 {
59 	struct nvmem_cell *cell;
60 	ssize_t data;
61 	char *ret;
62 
63 	cell = nvmem_cell_get(dev, cname);
64 	if (IS_ERR(cell))
65 		return ERR_CAST(cell);
66 
67 	ret = nvmem_cell_read(cell, &data);
68 	nvmem_cell_put(cell);
69 
70 	return ret;
71 }
72 
73 /*
74  * Use this function on devices where slope and offset calculations
75  * depend on calibration data read from qfprom. On others the slope
76  * and offset values are derived from tz->tzp->slope and tz->tzp->offset
77  * resp.
78  */
79 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
80 			     u32 *p2, u32 mode)
81 {
82 	int i;
83 	int num, den;
84 
85 	for (i = 0; i < priv->num_sensors; i++) {
86 		dev_dbg(priv->dev,
87 			"%s: sensor%d - data_point1:%#x data_point2:%#x\n",
88 			__func__, i, p1[i], p2[i]);
89 
90 		if (!priv->sensor[i].slope)
91 			priv->sensor[i].slope = SLOPE_DEFAULT;
92 		if (mode == TWO_PT_CALIB) {
93 			/*
94 			 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
95 			 *	temp_120_degc - temp_30_degc (x2 - x1)
96 			 */
97 			num = p2[i] - p1[i];
98 			num *= SLOPE_FACTOR;
99 			den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
100 			priv->sensor[i].slope = num / den;
101 		}
102 
103 		priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
104 				(CAL_DEGC_PT1 *
105 				priv->sensor[i].slope);
106 		dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
107 			priv->sensor[i].offset);
108 	}
109 }
110 
111 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
112 {
113 	u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
114 
115 	pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
116 	return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
117 }
118 
119 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
120 {
121 	int degc, num, den;
122 
123 	num = (adc_code * SLOPE_FACTOR) - s->offset;
124 	den = s->slope;
125 
126 	if (num > 0)
127 		degc = num + (den / 2);
128 	else if (num < 0)
129 		degc = num - (den / 2);
130 	else
131 		degc = num;
132 
133 	degc /= den;
134 
135 	return degc;
136 }
137 
138 /**
139  * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
140  * @s:     Pointer to sensor struct
141  * @field: Index into regmap_field array pointing to temperature data
142  *
143  * This function handles temperature returned in ADC code or deciCelsius
144  * depending on IP version.
145  *
146  * Return: Temperature in milliCelsius on success, a negative errno will
147  * be returned in error cases
148  */
149 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
150 {
151 	struct tsens_priv *priv = s->priv;
152 	u32 resolution;
153 	u32 temp = 0;
154 	int ret;
155 
156 	resolution = priv->fields[LAST_TEMP_0].msb -
157 		priv->fields[LAST_TEMP_0].lsb;
158 
159 	ret = regmap_field_read(priv->rf[field], &temp);
160 	if (ret)
161 		return ret;
162 
163 	/* Convert temperature from ADC code to milliCelsius */
164 	if (priv->feat->adc)
165 		return code_to_degc(temp, s) * 1000;
166 
167 	/* deciCelsius -> milliCelsius along with sign extension */
168 	return sign_extend32(temp, resolution) * 100;
169 }
170 
171 /**
172  * tsens_mC_to_hw - Convert temperature to hardware register value
173  * @s: Pointer to sensor struct
174  * @temp: temperature in milliCelsius to be programmed to hardware
175  *
176  * This function outputs the value to be written to hardware in ADC code
177  * or deciCelsius depending on IP version.
178  *
179  * Return: ADC code or temperature in deciCelsius.
180  */
181 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
182 {
183 	struct tsens_priv *priv = s->priv;
184 
185 	/* milliC to adc code */
186 	if (priv->feat->adc)
187 		return degc_to_code(temp / 1000, s);
188 
189 	/* milliC to deciC */
190 	return temp / 100;
191 }
192 
193 static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
194 {
195 	return priv->feat->ver_major;
196 }
197 
198 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
199 				   enum tsens_irq_type irq_type, bool enable)
200 {
201 	u32 index = 0;
202 
203 	switch (irq_type) {
204 	case UPPER:
205 		index = UP_INT_CLEAR_0 + hw_id;
206 		break;
207 	case LOWER:
208 		index = LOW_INT_CLEAR_0 + hw_id;
209 		break;
210 	case CRITICAL:
211 		/* No critical interrupts before v2 */
212 		return;
213 	}
214 	regmap_field_write(priv->rf[index], enable ? 0 : 1);
215 }
216 
217 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
218 				   enum tsens_irq_type irq_type, bool enable)
219 {
220 	u32 index_mask = 0, index_clear = 0;
221 
222 	/*
223 	 * To enable the interrupt flag for a sensor:
224 	 *    - clear the mask bit
225 	 * To disable the interrupt flag for a sensor:
226 	 *    - Mask further interrupts for this sensor
227 	 *    - Write 1 followed by 0 to clear the interrupt
228 	 */
229 	switch (irq_type) {
230 	case UPPER:
231 		index_mask  = UP_INT_MASK_0 + hw_id;
232 		index_clear = UP_INT_CLEAR_0 + hw_id;
233 		break;
234 	case LOWER:
235 		index_mask  = LOW_INT_MASK_0 + hw_id;
236 		index_clear = LOW_INT_CLEAR_0 + hw_id;
237 		break;
238 	case CRITICAL:
239 		index_mask  = CRIT_INT_MASK_0 + hw_id;
240 		index_clear = CRIT_INT_CLEAR_0 + hw_id;
241 		break;
242 	}
243 
244 	if (enable) {
245 		regmap_field_write(priv->rf[index_mask], 0);
246 	} else {
247 		regmap_field_write(priv->rf[index_mask],  1);
248 		regmap_field_write(priv->rf[index_clear], 1);
249 		regmap_field_write(priv->rf[index_clear], 0);
250 	}
251 }
252 
253 /**
254  * tsens_set_interrupt - Set state of an interrupt
255  * @priv: Pointer to tsens controller private data
256  * @hw_id: Hardware ID aka. sensor number
257  * @irq_type: irq_type from enum tsens_irq_type
258  * @enable: false = disable, true = enable
259  *
260  * Call IP-specific function to set state of an interrupt
261  *
262  * Return: void
263  */
264 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
265 				enum tsens_irq_type irq_type, bool enable)
266 {
267 	dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
268 		irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
269 		enable ? "en" : "dis");
270 	if (tsens_version(priv) > VER_1_X)
271 		tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
272 	else
273 		tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
274 }
275 
276 /**
277  * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
278  * @priv: Pointer to tsens controller private data
279  * @hw_id: Hardware ID aka. sensor number
280  * @d: Pointer to irq state data
281  *
282  * Return: 0 if threshold was not violated, 1 if it was violated and negative
283  * errno in case of errors
284  */
285 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
286 				    struct tsens_irq_data *d)
287 {
288 	int ret;
289 
290 	ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
291 	if (ret)
292 		return ret;
293 	ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
294 	if (ret)
295 		return ret;
296 
297 	if (priv->feat->crit_int) {
298 		ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
299 					&d->crit_viol);
300 		if (ret)
301 			return ret;
302 	}
303 
304 	if (d->up_viol || d->low_viol || d->crit_viol)
305 		return 1;
306 
307 	return 0;
308 }
309 
310 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
311 				const struct tsens_sensor *s,
312 				struct tsens_irq_data *d)
313 {
314 	int ret;
315 
316 	ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
317 	if (ret)
318 		return ret;
319 	ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
320 	if (ret)
321 		return ret;
322 	if (tsens_version(priv) > VER_1_X) {
323 		ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
324 		if (ret)
325 			return ret;
326 		ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
327 		if (ret)
328 			return ret;
329 		ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
330 					&d->crit_irq_clear);
331 		if (ret)
332 			return ret;
333 		ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
334 					&d->crit_irq_mask);
335 		if (ret)
336 			return ret;
337 
338 		d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
339 	} else {
340 		/* No mask register on older TSENS */
341 		d->up_irq_mask = 0;
342 		d->low_irq_mask = 0;
343 		d->crit_irq_clear = 0;
344 		d->crit_irq_mask = 0;
345 		d->crit_thresh = 0;
346 	}
347 
348 	d->up_thresh  = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
349 	d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
350 
351 	dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
352 		hw_id, __func__,
353 		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
354 		d->low_viol, d->up_viol, d->crit_viol,
355 		d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
356 		d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
357 	dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
358 		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
359 		d->low_thresh, d->up_thresh, d->crit_thresh);
360 
361 	return 0;
362 }
363 
364 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
365 {
366 	if (ver > VER_1_X)
367 		return mask & (1 << hw_id);
368 
369 	/* v1, v0.1 don't have a irq mask register */
370 	return 0;
371 }
372 
373 /**
374  * tsens_critical_irq_thread() - Threaded handler for critical interrupts
375  * @irq: irq number
376  * @data: tsens controller private data
377  *
378  * Check FSM watchdog bark status and clear if needed.
379  * Check all sensors to find ones that violated their critical threshold limits.
380  * Clear and then re-enable the interrupt.
381  *
382  * The level-triggered interrupt might deassert if the temperature returned to
383  * within the threshold limits by the time the handler got scheduled. We
384  * consider the irq to have been handled in that case.
385  *
386  * Return: IRQ_HANDLED
387  */
388 static irqreturn_t tsens_critical_irq_thread(int irq, void *data)
389 {
390 	struct tsens_priv *priv = data;
391 	struct tsens_irq_data d;
392 	int temp, ret, i;
393 	u32 wdog_status, wdog_count;
394 
395 	if (priv->feat->has_watchdog) {
396 		ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
397 					&wdog_status);
398 		if (ret)
399 			return ret;
400 
401 		if (wdog_status) {
402 			/* Clear WDOG interrupt */
403 			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
404 			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
405 			ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
406 						&wdog_count);
407 			if (ret)
408 				return ret;
409 			if (wdog_count)
410 				dev_dbg(priv->dev, "%s: watchdog count: %d\n",
411 					__func__, wdog_count);
412 
413 			/* Fall through to handle critical interrupts if any */
414 		}
415 	}
416 
417 	for (i = 0; i < priv->num_sensors; i++) {
418 		const struct tsens_sensor *s = &priv->sensor[i];
419 		u32 hw_id = s->hw_id;
420 
421 		if (!s->tzd)
422 			continue;
423 		if (!tsens_threshold_violated(priv, hw_id, &d))
424 			continue;
425 		ret = get_temp_tsens_valid(s, &temp);
426 		if (ret) {
427 			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
428 				hw_id, __func__);
429 			continue;
430 		}
431 
432 		tsens_read_irq_state(priv, hw_id, s, &d);
433 		if (d.crit_viol &&
434 		    !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
435 			/* Mask critical interrupts, unused on Linux */
436 			tsens_set_interrupt(priv, hw_id, CRITICAL, false);
437 		}
438 	}
439 
440 	return IRQ_HANDLED;
441 }
442 
443 /**
444  * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
445  * @irq: irq number
446  * @data: tsens controller private data
447  *
448  * Check all sensors to find ones that violated their threshold limits. If the
449  * temperature is still outside the limits, call thermal_zone_device_update() to
450  * update the thresholds, else re-enable the interrupts.
451  *
452  * The level-triggered interrupt might deassert if the temperature returned to
453  * within the threshold limits by the time the handler got scheduled. We
454  * consider the irq to have been handled in that case.
455  *
456  * Return: IRQ_HANDLED
457  */
458 static irqreturn_t tsens_irq_thread(int irq, void *data)
459 {
460 	struct tsens_priv *priv = data;
461 	struct tsens_irq_data d;
462 	bool enable = true, disable = false;
463 	unsigned long flags;
464 	int temp, ret, i;
465 
466 	for (i = 0; i < priv->num_sensors; i++) {
467 		bool trigger = false;
468 		const struct tsens_sensor *s = &priv->sensor[i];
469 		u32 hw_id = s->hw_id;
470 
471 		if (!s->tzd)
472 			continue;
473 		if (!tsens_threshold_violated(priv, hw_id, &d))
474 			continue;
475 		ret = get_temp_tsens_valid(s, &temp);
476 		if (ret) {
477 			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
478 				hw_id, __func__);
479 			continue;
480 		}
481 
482 		spin_lock_irqsave(&priv->ul_lock, flags);
483 
484 		tsens_read_irq_state(priv, hw_id, s, &d);
485 
486 		if (d.up_viol &&
487 		    !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
488 			tsens_set_interrupt(priv, hw_id, UPPER, disable);
489 			if (d.up_thresh > temp) {
490 				dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
491 					hw_id, __func__);
492 				tsens_set_interrupt(priv, hw_id, UPPER, enable);
493 			} else {
494 				trigger = true;
495 				/* Keep irq masked */
496 			}
497 		} else if (d.low_viol &&
498 			   !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
499 			tsens_set_interrupt(priv, hw_id, LOWER, disable);
500 			if (d.low_thresh < temp) {
501 				dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
502 					hw_id, __func__);
503 				tsens_set_interrupt(priv, hw_id, LOWER, enable);
504 			} else {
505 				trigger = true;
506 				/* Keep irq masked */
507 			}
508 		}
509 
510 		spin_unlock_irqrestore(&priv->ul_lock, flags);
511 
512 		if (trigger) {
513 			dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
514 				hw_id, __func__, temp);
515 			thermal_zone_device_update(s->tzd,
516 						   THERMAL_EVENT_UNSPECIFIED);
517 		} else {
518 			dev_dbg(priv->dev, "[%u] %s: no violation:  %d\n",
519 				hw_id, __func__, temp);
520 		}
521 
522 		if (tsens_version(priv) < VER_0_1) {
523 			/* Constraint: There is only 1 interrupt control register for all
524 			 * 11 temperature sensor. So monitoring more than 1 sensor based
525 			 * on interrupts will yield inconsistent result. To overcome this
526 			 * issue we will monitor only sensor 0 which is the master sensor.
527 			 */
528 			break;
529 		}
530 	}
531 
532 	return IRQ_HANDLED;
533 }
534 
535 static int tsens_set_trips(void *_sensor, int low, int high)
536 {
537 	struct tsens_sensor *s = _sensor;
538 	struct tsens_priv *priv = s->priv;
539 	struct device *dev = priv->dev;
540 	struct tsens_irq_data d;
541 	unsigned long flags;
542 	int high_val, low_val, cl_high, cl_low;
543 	u32 hw_id = s->hw_id;
544 
545 	if (tsens_version(priv) < VER_0_1) {
546 		/* Pre v0.1 IP had a single register for each type of interrupt
547 		 * and thresholds
548 		 */
549 		hw_id = 0;
550 	}
551 
552 	dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
553 		hw_id, __func__, low, high);
554 
555 	cl_high = clamp_val(high, -40000, 120000);
556 	cl_low  = clamp_val(low, -40000, 120000);
557 
558 	high_val = tsens_mC_to_hw(s, cl_high);
559 	low_val  = tsens_mC_to_hw(s, cl_low);
560 
561 	spin_lock_irqsave(&priv->ul_lock, flags);
562 
563 	tsens_read_irq_state(priv, hw_id, s, &d);
564 
565 	/* Write the new thresholds and clear the status */
566 	regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
567 	regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
568 	tsens_set_interrupt(priv, hw_id, LOWER, true);
569 	tsens_set_interrupt(priv, hw_id, UPPER, true);
570 
571 	spin_unlock_irqrestore(&priv->ul_lock, flags);
572 
573 	dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
574 		hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
575 
576 	return 0;
577 }
578 
579 static int tsens_enable_irq(struct tsens_priv *priv)
580 {
581 	int ret;
582 	int val = tsens_version(priv) > VER_1_X ? 7 : 1;
583 
584 	ret = regmap_field_write(priv->rf[INT_EN], val);
585 	if (ret < 0)
586 		dev_err(priv->dev, "%s: failed to enable interrupts\n",
587 			__func__);
588 
589 	return ret;
590 }
591 
592 static void tsens_disable_irq(struct tsens_priv *priv)
593 {
594 	regmap_field_write(priv->rf[INT_EN], 0);
595 }
596 
597 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
598 {
599 	struct tsens_priv *priv = s->priv;
600 	int hw_id = s->hw_id;
601 	u32 temp_idx = LAST_TEMP_0 + hw_id;
602 	u32 valid_idx = VALID_0 + hw_id;
603 	u32 valid;
604 	int ret;
605 
606 	/* VER_0 doesn't have VALID bit */
607 	if (tsens_version(priv) == VER_0)
608 		goto get_temp;
609 
610 	/* Valid bit is 0 for 6 AHB clock cycles.
611 	 * At 19.2MHz, 1 AHB clock is ~60ns.
612 	 * We should enter this loop very, very rarely.
613 	 * Wait 1 us since it's the min of poll_timeout macro.
614 	 * Old value was 400 ns.
615 	 */
616 	ret = regmap_field_read_poll_timeout(priv->rf[valid_idx], valid,
617 					     valid, 1, 20 * USEC_PER_MSEC);
618 	if (ret)
619 		return ret;
620 
621 get_temp:
622 	/* Valid bit is set, OK to read the temperature */
623 	*temp = tsens_hw_to_mC(s, temp_idx);
624 
625 	return 0;
626 }
627 
628 int get_temp_common(const struct tsens_sensor *s, int *temp)
629 {
630 	struct tsens_priv *priv = s->priv;
631 	int hw_id = s->hw_id;
632 	int last_temp = 0, ret, trdy;
633 	unsigned long timeout;
634 
635 	timeout = jiffies + usecs_to_jiffies(TIMEOUT_US);
636 	do {
637 		if (tsens_version(priv) == VER_0) {
638 			ret = regmap_field_read(priv->rf[TRDY], &trdy);
639 			if (ret)
640 				return ret;
641 			if (!trdy)
642 				continue;
643 		}
644 
645 		ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
646 		if (ret)
647 			return ret;
648 
649 		*temp = code_to_degc(last_temp, s) * 1000;
650 
651 		return 0;
652 	} while (time_before(jiffies, timeout));
653 
654 	return -ETIMEDOUT;
655 }
656 
657 #ifdef CONFIG_DEBUG_FS
658 static int dbg_sensors_show(struct seq_file *s, void *data)
659 {
660 	struct platform_device *pdev = s->private;
661 	struct tsens_priv *priv = platform_get_drvdata(pdev);
662 	int i;
663 
664 	seq_printf(s, "max: %2d\nnum: %2d\n\n",
665 		   priv->feat->max_sensors, priv->num_sensors);
666 
667 	seq_puts(s, "      id    slope   offset\n--------------------------\n");
668 	for (i = 0;  i < priv->num_sensors; i++) {
669 		seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
670 			   priv->sensor[i].slope, priv->sensor[i].offset);
671 	}
672 
673 	return 0;
674 }
675 
676 static int dbg_version_show(struct seq_file *s, void *data)
677 {
678 	struct platform_device *pdev = s->private;
679 	struct tsens_priv *priv = platform_get_drvdata(pdev);
680 	u32 maj_ver, min_ver, step_ver;
681 	int ret;
682 
683 	if (tsens_version(priv) > VER_0_1) {
684 		ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
685 		if (ret)
686 			return ret;
687 		ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
688 		if (ret)
689 			return ret;
690 		ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
691 		if (ret)
692 			return ret;
693 		seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
694 	} else {
695 		seq_puts(s, "0.1.0\n");
696 	}
697 
698 	return 0;
699 }
700 
701 DEFINE_SHOW_ATTRIBUTE(dbg_version);
702 DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
703 
704 static void tsens_debug_init(struct platform_device *pdev)
705 {
706 	struct tsens_priv *priv = platform_get_drvdata(pdev);
707 	struct dentry *root, *file;
708 
709 	root = debugfs_lookup("tsens", NULL);
710 	if (!root)
711 		priv->debug_root = debugfs_create_dir("tsens", NULL);
712 	else
713 		priv->debug_root = root;
714 
715 	file = debugfs_lookup("version", priv->debug_root);
716 	if (!file)
717 		debugfs_create_file("version", 0444, priv->debug_root,
718 				    pdev, &dbg_version_fops);
719 
720 	/* A directory for each instance of the TSENS IP */
721 	priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
722 	debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
723 }
724 #else
725 static inline void tsens_debug_init(struct platform_device *pdev) {}
726 #endif
727 
728 static const struct regmap_config tsens_config = {
729 	.name		= "tm",
730 	.reg_bits	= 32,
731 	.val_bits	= 32,
732 	.reg_stride	= 4,
733 };
734 
735 static const struct regmap_config tsens_srot_config = {
736 	.name		= "srot",
737 	.reg_bits	= 32,
738 	.val_bits	= 32,
739 	.reg_stride	= 4,
740 };
741 
742 int __init init_common(struct tsens_priv *priv)
743 {
744 	void __iomem *tm_base, *srot_base;
745 	struct device *dev = priv->dev;
746 	u32 ver_minor;
747 	struct resource *res;
748 	u32 enabled;
749 	int ret, i, j;
750 	struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
751 
752 	if (!op)
753 		return -EINVAL;
754 
755 	if (op->num_resources > 1) {
756 		/* DT with separate SROT and TM address space */
757 		priv->tm_offset = 0;
758 		res = platform_get_resource(op, IORESOURCE_MEM, 1);
759 		srot_base = devm_ioremap_resource(dev, res);
760 		if (IS_ERR(srot_base)) {
761 			ret = PTR_ERR(srot_base);
762 			goto err_put_device;
763 		}
764 
765 		priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
766 						       &tsens_srot_config);
767 		if (IS_ERR(priv->srot_map)) {
768 			ret = PTR_ERR(priv->srot_map);
769 			goto err_put_device;
770 		}
771 	} else {
772 		/* old DTs where SROT and TM were in a contiguous 2K block */
773 		priv->tm_offset = 0x1000;
774 	}
775 
776 	if (tsens_version(priv) >= VER_0_1) {
777 		res = platform_get_resource(op, IORESOURCE_MEM, 0);
778 		tm_base = devm_ioremap_resource(dev, res);
779 		if (IS_ERR(tm_base)) {
780 			ret = PTR_ERR(tm_base);
781 			goto err_put_device;
782 		}
783 
784 		priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
785 	} else { /* VER_0 share the same gcc regs using a syscon */
786 		struct device *parent = priv->dev->parent;
787 
788 		if (parent)
789 			priv->tm_map = syscon_node_to_regmap(parent->of_node);
790 	}
791 
792 	if (IS_ERR_OR_NULL(priv->tm_map)) {
793 		if (!priv->tm_map)
794 			ret = -ENODEV;
795 		else
796 			ret = PTR_ERR(priv->tm_map);
797 		goto err_put_device;
798 	}
799 
800 	/* VER_0 have only tm_map */
801 	if (!priv->srot_map)
802 		priv->srot_map = priv->tm_map;
803 
804 	if (tsens_version(priv) > VER_0_1) {
805 		for (i = VER_MAJOR; i <= VER_STEP; i++) {
806 			priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
807 							      priv->fields[i]);
808 			if (IS_ERR(priv->rf[i])) {
809 				ret = PTR_ERR(priv->rf[i]);
810 				goto err_put_device;
811 			}
812 		}
813 		ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
814 		if (ret)
815 			goto err_put_device;
816 	}
817 
818 	priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
819 						     priv->fields[TSENS_EN]);
820 	if (IS_ERR(priv->rf[TSENS_EN])) {
821 		ret = PTR_ERR(priv->rf[TSENS_EN]);
822 		goto err_put_device;
823 	}
824 	/* in VER_0 TSENS need to be explicitly enabled */
825 	if (tsens_version(priv) == VER_0)
826 		regmap_field_write(priv->rf[TSENS_EN], 1);
827 
828 	ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
829 	if (ret)
830 		goto err_put_device;
831 	if (!enabled) {
832 		dev_err(dev, "%s: device not enabled\n", __func__);
833 		ret = -ENODEV;
834 		goto err_put_device;
835 	}
836 
837 	priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
838 						      priv->fields[SENSOR_EN]);
839 	if (IS_ERR(priv->rf[SENSOR_EN])) {
840 		ret = PTR_ERR(priv->rf[SENSOR_EN]);
841 		goto err_put_device;
842 	}
843 	priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
844 						   priv->fields[INT_EN]);
845 	if (IS_ERR(priv->rf[INT_EN])) {
846 		ret = PTR_ERR(priv->rf[INT_EN]);
847 		goto err_put_device;
848 	}
849 
850 	priv->rf[TSENS_SW_RST] =
851 		devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_SW_RST]);
852 	if (IS_ERR(priv->rf[TSENS_SW_RST])) {
853 		ret = PTR_ERR(priv->rf[TSENS_SW_RST]);
854 		goto err_put_device;
855 	}
856 
857 	priv->rf[TRDY] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[TRDY]);
858 	if (IS_ERR(priv->rf[TRDY])) {
859 		ret = PTR_ERR(priv->rf[TRDY]);
860 		goto err_put_device;
861 	}
862 
863 	/* This loop might need changes if enum regfield_ids is reordered */
864 	for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
865 		for (i = 0; i < priv->feat->max_sensors; i++) {
866 			int idx = j + i;
867 
868 			priv->rf[idx] = devm_regmap_field_alloc(dev,
869 								priv->tm_map,
870 								priv->fields[idx]);
871 			if (IS_ERR(priv->rf[idx])) {
872 				ret = PTR_ERR(priv->rf[idx]);
873 				goto err_put_device;
874 			}
875 		}
876 	}
877 
878 	if (priv->feat->crit_int || tsens_version(priv) < VER_0_1) {
879 		/* Loop might need changes if enum regfield_ids is reordered */
880 		for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
881 			for (i = 0; i < priv->feat->max_sensors; i++) {
882 				int idx = j + i;
883 
884 				priv->rf[idx] =
885 					devm_regmap_field_alloc(dev,
886 								priv->tm_map,
887 								priv->fields[idx]);
888 				if (IS_ERR(priv->rf[idx])) {
889 					ret = PTR_ERR(priv->rf[idx]);
890 					goto err_put_device;
891 				}
892 			}
893 		}
894 	}
895 
896 	if (tsens_version(priv) > VER_1_X &&  ver_minor > 2) {
897 		/* Watchdog is present only on v2.3+ */
898 		priv->feat->has_watchdog = 1;
899 		for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
900 			priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
901 							      priv->fields[i]);
902 			if (IS_ERR(priv->rf[i])) {
903 				ret = PTR_ERR(priv->rf[i]);
904 				goto err_put_device;
905 			}
906 		}
907 		/*
908 		 * Watchdog is already enabled, unmask the bark.
909 		 * Disable cycle completion monitoring
910 		 */
911 		regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
912 		regmap_field_write(priv->rf[CC_MON_MASK], 1);
913 	}
914 
915 	spin_lock_init(&priv->ul_lock);
916 
917 	/* VER_0 interrupt doesn't need to be enabled */
918 	if (tsens_version(priv) >= VER_0_1)
919 		tsens_enable_irq(priv);
920 
921 	tsens_debug_init(op);
922 
923 err_put_device:
924 	put_device(&op->dev);
925 	return ret;
926 }
927 
928 static int tsens_get_temp(void *data, int *temp)
929 {
930 	struct tsens_sensor *s = data;
931 	struct tsens_priv *priv = s->priv;
932 
933 	return priv->ops->get_temp(s, temp);
934 }
935 
936 static int tsens_get_trend(void *data, int trip, enum thermal_trend *trend)
937 {
938 	struct tsens_sensor *s = data;
939 	struct tsens_priv *priv = s->priv;
940 
941 	if (priv->ops->get_trend)
942 		return priv->ops->get_trend(s, trend);
943 
944 	return -ENOTSUPP;
945 }
946 
947 static int  __maybe_unused tsens_suspend(struct device *dev)
948 {
949 	struct tsens_priv *priv = dev_get_drvdata(dev);
950 
951 	if (priv->ops && priv->ops->suspend)
952 		return priv->ops->suspend(priv);
953 
954 	return 0;
955 }
956 
957 static int __maybe_unused tsens_resume(struct device *dev)
958 {
959 	struct tsens_priv *priv = dev_get_drvdata(dev);
960 
961 	if (priv->ops && priv->ops->resume)
962 		return priv->ops->resume(priv);
963 
964 	return 0;
965 }
966 
967 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume);
968 
969 static const struct of_device_id tsens_table[] = {
970 	{
971 		.compatible = "qcom,ipq8064-tsens",
972 		.data = &data_8960,
973 	}, {
974 		.compatible = "qcom,mdm9607-tsens",
975 		.data = &data_9607,
976 	}, {
977 		.compatible = "qcom,msm8916-tsens",
978 		.data = &data_8916,
979 	}, {
980 		.compatible = "qcom,msm8939-tsens",
981 		.data = &data_8939,
982 	}, {
983 		.compatible = "qcom,msm8960-tsens",
984 		.data = &data_8960,
985 	}, {
986 		.compatible = "qcom,msm8974-tsens",
987 		.data = &data_8974,
988 	}, {
989 		.compatible = "qcom,msm8976-tsens",
990 		.data = &data_8976,
991 	}, {
992 		.compatible = "qcom,msm8996-tsens",
993 		.data = &data_8996,
994 	}, {
995 		.compatible = "qcom,tsens-v1",
996 		.data = &data_tsens_v1,
997 	}, {
998 		.compatible = "qcom,tsens-v2",
999 		.data = &data_tsens_v2,
1000 	},
1001 	{}
1002 };
1003 MODULE_DEVICE_TABLE(of, tsens_table);
1004 
1005 static const struct thermal_zone_of_device_ops tsens_of_ops = {
1006 	.get_temp = tsens_get_temp,
1007 	.get_trend = tsens_get_trend,
1008 	.set_trips = tsens_set_trips,
1009 };
1010 
1011 static int tsens_register_irq(struct tsens_priv *priv, char *irqname,
1012 			      irq_handler_t thread_fn)
1013 {
1014 	struct platform_device *pdev;
1015 	int ret, irq;
1016 
1017 	pdev = of_find_device_by_node(priv->dev->of_node);
1018 	if (!pdev)
1019 		return -ENODEV;
1020 
1021 	irq = platform_get_irq_byname(pdev, irqname);
1022 	if (irq < 0) {
1023 		ret = irq;
1024 		/* For old DTs with no IRQ defined */
1025 		if (irq == -ENXIO)
1026 			ret = 0;
1027 	} else {
1028 		/* VER_0 interrupt is TRIGGER_RISING, VER_0_1 and up is ONESHOT */
1029 		if (tsens_version(priv) == VER_0)
1030 			ret = devm_request_threaded_irq(&pdev->dev, irq,
1031 							thread_fn, NULL,
1032 							IRQF_TRIGGER_RISING,
1033 							dev_name(&pdev->dev),
1034 							priv);
1035 		else
1036 			ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
1037 							thread_fn, IRQF_ONESHOT,
1038 							dev_name(&pdev->dev),
1039 							priv);
1040 
1041 		if (ret)
1042 			dev_err(&pdev->dev, "%s: failed to get irq\n",
1043 				__func__);
1044 		else
1045 			enable_irq_wake(irq);
1046 	}
1047 
1048 	put_device(&pdev->dev);
1049 	return ret;
1050 }
1051 
1052 static int tsens_register(struct tsens_priv *priv)
1053 {
1054 	int i, ret;
1055 	struct thermal_zone_device *tzd;
1056 
1057 	for (i = 0;  i < priv->num_sensors; i++) {
1058 		priv->sensor[i].priv = priv;
1059 		tzd = devm_thermal_zone_of_sensor_register(priv->dev, priv->sensor[i].hw_id,
1060 							   &priv->sensor[i],
1061 							   &tsens_of_ops);
1062 		if (IS_ERR(tzd))
1063 			continue;
1064 		priv->sensor[i].tzd = tzd;
1065 		if (priv->ops->enable)
1066 			priv->ops->enable(priv, i);
1067 
1068 		if (devm_thermal_add_hwmon_sysfs(tzd))
1069 			dev_warn(priv->dev,
1070 				 "Failed to add hwmon sysfs attributes\n");
1071 	}
1072 
1073 	/* VER_0 require to set MIN and MAX THRESH
1074 	 * These 2 regs are set using the:
1075 	 * - CRIT_THRESH_0 for MAX THRESH hardcoded to 120°C
1076 	 * - CRIT_THRESH_1 for MIN THRESH hardcoded to   0°C
1077 	 */
1078 	if (tsens_version(priv) < VER_0_1) {
1079 		regmap_field_write(priv->rf[CRIT_THRESH_0],
1080 				   tsens_mC_to_hw(priv->sensor, 120000));
1081 
1082 		regmap_field_write(priv->rf[CRIT_THRESH_1],
1083 				   tsens_mC_to_hw(priv->sensor, 0));
1084 	}
1085 
1086 	ret = tsens_register_irq(priv, "uplow", tsens_irq_thread);
1087 	if (ret < 0)
1088 		return ret;
1089 
1090 	if (priv->feat->crit_int)
1091 		ret = tsens_register_irq(priv, "critical",
1092 					 tsens_critical_irq_thread);
1093 
1094 	return ret;
1095 }
1096 
1097 static int tsens_probe(struct platform_device *pdev)
1098 {
1099 	int ret, i;
1100 	struct device *dev;
1101 	struct device_node *np;
1102 	struct tsens_priv *priv;
1103 	const struct tsens_plat_data *data;
1104 	const struct of_device_id *id;
1105 	u32 num_sensors;
1106 
1107 	if (pdev->dev.of_node)
1108 		dev = &pdev->dev;
1109 	else
1110 		dev = pdev->dev.parent;
1111 
1112 	np = dev->of_node;
1113 
1114 	id = of_match_node(tsens_table, np);
1115 	if (id)
1116 		data = id->data;
1117 	else
1118 		data = &data_8960;
1119 
1120 	num_sensors = data->num_sensors;
1121 
1122 	if (np)
1123 		of_property_read_u32(np, "#qcom,sensors", &num_sensors);
1124 
1125 	if (num_sensors <= 0) {
1126 		dev_err(dev, "%s: invalid number of sensors\n", __func__);
1127 		return -EINVAL;
1128 	}
1129 
1130 	priv = devm_kzalloc(dev,
1131 			     struct_size(priv, sensor, num_sensors),
1132 			     GFP_KERNEL);
1133 	if (!priv)
1134 		return -ENOMEM;
1135 
1136 	priv->dev = dev;
1137 	priv->num_sensors = num_sensors;
1138 	priv->ops = data->ops;
1139 	for (i = 0;  i < priv->num_sensors; i++) {
1140 		if (data->hw_ids)
1141 			priv->sensor[i].hw_id = data->hw_ids[i];
1142 		else
1143 			priv->sensor[i].hw_id = i;
1144 	}
1145 	priv->feat = data->feat;
1146 	priv->fields = data->fields;
1147 
1148 	platform_set_drvdata(pdev, priv);
1149 
1150 	if (!priv->ops || !priv->ops->init || !priv->ops->get_temp)
1151 		return -EINVAL;
1152 
1153 	ret = priv->ops->init(priv);
1154 	if (ret < 0) {
1155 		dev_err(dev, "%s: init failed\n", __func__);
1156 		return ret;
1157 	}
1158 
1159 	if (priv->ops->calibrate) {
1160 		ret = priv->ops->calibrate(priv);
1161 		if (ret < 0) {
1162 			if (ret != -EPROBE_DEFER)
1163 				dev_err(dev, "%s: calibration failed\n", __func__);
1164 			return ret;
1165 		}
1166 	}
1167 
1168 	return tsens_register(priv);
1169 }
1170 
1171 static int tsens_remove(struct platform_device *pdev)
1172 {
1173 	struct tsens_priv *priv = platform_get_drvdata(pdev);
1174 
1175 	debugfs_remove_recursive(priv->debug_root);
1176 	tsens_disable_irq(priv);
1177 	if (priv->ops->disable)
1178 		priv->ops->disable(priv);
1179 
1180 	return 0;
1181 }
1182 
1183 static struct platform_driver tsens_driver = {
1184 	.probe = tsens_probe,
1185 	.remove = tsens_remove,
1186 	.driver = {
1187 		.name = "qcom-tsens",
1188 		.pm	= &tsens_pm_ops,
1189 		.of_match_table = tsens_table,
1190 	},
1191 };
1192 module_platform_driver(tsens_driver);
1193 
1194 MODULE_LICENSE("GPL v2");
1195 MODULE_DESCRIPTION("QCOM Temperature Sensor driver");
1196 MODULE_ALIAS("platform:qcom-tsens");
1197