1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2019, 2020, Linaro Ltd. 5 */ 6 7 #include <linux/debugfs.h> 8 #include <linux/err.h> 9 #include <linux/io.h> 10 #include <linux/module.h> 11 #include <linux/nvmem-consumer.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/of_platform.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm.h> 17 #include <linux/regmap.h> 18 #include <linux/slab.h> 19 #include <linux/thermal.h> 20 #include "tsens.h" 21 22 /** 23 * struct tsens_irq_data - IRQ status and temperature violations 24 * @up_viol: upper threshold violated 25 * @up_thresh: upper threshold temperature value 26 * @up_irq_mask: mask register for upper threshold irqs 27 * @up_irq_clear: clear register for uppper threshold irqs 28 * @low_viol: lower threshold violated 29 * @low_thresh: lower threshold temperature value 30 * @low_irq_mask: mask register for lower threshold irqs 31 * @low_irq_clear: clear register for lower threshold irqs 32 * @crit_viol: critical threshold violated 33 * @crit_thresh: critical threshold temperature value 34 * @crit_irq_mask: mask register for critical threshold irqs 35 * @crit_irq_clear: clear register for critical threshold irqs 36 * 37 * Structure containing data about temperature threshold settings and 38 * irq status if they were violated. 39 */ 40 struct tsens_irq_data { 41 u32 up_viol; 42 int up_thresh; 43 u32 up_irq_mask; 44 u32 up_irq_clear; 45 u32 low_viol; 46 int low_thresh; 47 u32 low_irq_mask; 48 u32 low_irq_clear; 49 u32 crit_viol; 50 u32 crit_thresh; 51 u32 crit_irq_mask; 52 u32 crit_irq_clear; 53 }; 54 55 char *qfprom_read(struct device *dev, const char *cname) 56 { 57 struct nvmem_cell *cell; 58 ssize_t data; 59 char *ret; 60 61 cell = nvmem_cell_get(dev, cname); 62 if (IS_ERR(cell)) 63 return ERR_CAST(cell); 64 65 ret = nvmem_cell_read(cell, &data); 66 nvmem_cell_put(cell); 67 68 return ret; 69 } 70 71 /* 72 * Use this function on devices where slope and offset calculations 73 * depend on calibration data read from qfprom. On others the slope 74 * and offset values are derived from tz->tzp->slope and tz->tzp->offset 75 * resp. 76 */ 77 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1, 78 u32 *p2, u32 mode) 79 { 80 int i; 81 int num, den; 82 83 for (i = 0; i < priv->num_sensors; i++) { 84 dev_dbg(priv->dev, 85 "%s: sensor%d - data_point1:%#x data_point2:%#x\n", 86 __func__, i, p1[i], p2[i]); 87 88 priv->sensor[i].slope = SLOPE_DEFAULT; 89 if (mode == TWO_PT_CALIB) { 90 /* 91 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/ 92 * temp_120_degc - temp_30_degc (x2 - x1) 93 */ 94 num = p2[i] - p1[i]; 95 num *= SLOPE_FACTOR; 96 den = CAL_DEGC_PT2 - CAL_DEGC_PT1; 97 priv->sensor[i].slope = num / den; 98 } 99 100 priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) - 101 (CAL_DEGC_PT1 * 102 priv->sensor[i].slope); 103 dev_dbg(priv->dev, "%s: offset:%d\n", __func__, 104 priv->sensor[i].offset); 105 } 106 } 107 108 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s) 109 { 110 u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR); 111 112 pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc); 113 return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE); 114 } 115 116 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s) 117 { 118 int degc, num, den; 119 120 num = (adc_code * SLOPE_FACTOR) - s->offset; 121 den = s->slope; 122 123 if (num > 0) 124 degc = num + (den / 2); 125 else if (num < 0) 126 degc = num - (den / 2); 127 else 128 degc = num; 129 130 degc /= den; 131 132 return degc; 133 } 134 135 /** 136 * tsens_hw_to_mC - Return sign-extended temperature in mCelsius. 137 * @s: Pointer to sensor struct 138 * @field: Index into regmap_field array pointing to temperature data 139 * 140 * This function handles temperature returned in ADC code or deciCelsius 141 * depending on IP version. 142 * 143 * Return: Temperature in milliCelsius on success, a negative errno will 144 * be returned in error cases 145 */ 146 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field) 147 { 148 struct tsens_priv *priv = s->priv; 149 u32 resolution; 150 u32 temp = 0; 151 int ret; 152 153 resolution = priv->fields[LAST_TEMP_0].msb - 154 priv->fields[LAST_TEMP_0].lsb; 155 156 ret = regmap_field_read(priv->rf[field], &temp); 157 if (ret) 158 return ret; 159 160 /* Convert temperature from ADC code to milliCelsius */ 161 if (priv->feat->adc) 162 return code_to_degc(temp, s) * 1000; 163 164 /* deciCelsius -> milliCelsius along with sign extension */ 165 return sign_extend32(temp, resolution) * 100; 166 } 167 168 /** 169 * tsens_mC_to_hw - Convert temperature to hardware register value 170 * @s: Pointer to sensor struct 171 * @temp: temperature in milliCelsius to be programmed to hardware 172 * 173 * This function outputs the value to be written to hardware in ADC code 174 * or deciCelsius depending on IP version. 175 * 176 * Return: ADC code or temperature in deciCelsius. 177 */ 178 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp) 179 { 180 struct tsens_priv *priv = s->priv; 181 182 /* milliC to adc code */ 183 if (priv->feat->adc) 184 return degc_to_code(temp / 1000, s); 185 186 /* milliC to deciC */ 187 return temp / 100; 188 } 189 190 static inline enum tsens_ver tsens_version(struct tsens_priv *priv) 191 { 192 return priv->feat->ver_major; 193 } 194 195 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id, 196 enum tsens_irq_type irq_type, bool enable) 197 { 198 u32 index = 0; 199 200 switch (irq_type) { 201 case UPPER: 202 index = UP_INT_CLEAR_0 + hw_id; 203 break; 204 case LOWER: 205 index = LOW_INT_CLEAR_0 + hw_id; 206 break; 207 case CRITICAL: 208 /* No critical interrupts before v2 */ 209 return; 210 } 211 regmap_field_write(priv->rf[index], enable ? 0 : 1); 212 } 213 214 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id, 215 enum tsens_irq_type irq_type, bool enable) 216 { 217 u32 index_mask = 0, index_clear = 0; 218 219 /* 220 * To enable the interrupt flag for a sensor: 221 * - clear the mask bit 222 * To disable the interrupt flag for a sensor: 223 * - Mask further interrupts for this sensor 224 * - Write 1 followed by 0 to clear the interrupt 225 */ 226 switch (irq_type) { 227 case UPPER: 228 index_mask = UP_INT_MASK_0 + hw_id; 229 index_clear = UP_INT_CLEAR_0 + hw_id; 230 break; 231 case LOWER: 232 index_mask = LOW_INT_MASK_0 + hw_id; 233 index_clear = LOW_INT_CLEAR_0 + hw_id; 234 break; 235 case CRITICAL: 236 index_mask = CRIT_INT_MASK_0 + hw_id; 237 index_clear = CRIT_INT_CLEAR_0 + hw_id; 238 break; 239 } 240 241 if (enable) { 242 regmap_field_write(priv->rf[index_mask], 0); 243 } else { 244 regmap_field_write(priv->rf[index_mask], 1); 245 regmap_field_write(priv->rf[index_clear], 1); 246 regmap_field_write(priv->rf[index_clear], 0); 247 } 248 } 249 250 /** 251 * tsens_set_interrupt - Set state of an interrupt 252 * @priv: Pointer to tsens controller private data 253 * @hw_id: Hardware ID aka. sensor number 254 * @irq_type: irq_type from enum tsens_irq_type 255 * @enable: false = disable, true = enable 256 * 257 * Call IP-specific function to set state of an interrupt 258 * 259 * Return: void 260 */ 261 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id, 262 enum tsens_irq_type irq_type, bool enable) 263 { 264 dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__, 265 irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW", 266 enable ? "en" : "dis"); 267 if (tsens_version(priv) > VER_1_X) 268 tsens_set_interrupt_v2(priv, hw_id, irq_type, enable); 269 else 270 tsens_set_interrupt_v1(priv, hw_id, irq_type, enable); 271 } 272 273 /** 274 * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold 275 * @priv: Pointer to tsens controller private data 276 * @hw_id: Hardware ID aka. sensor number 277 * @d: Pointer to irq state data 278 * 279 * Return: 0 if threshold was not violated, 1 if it was violated and negative 280 * errno in case of errors 281 */ 282 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id, 283 struct tsens_irq_data *d) 284 { 285 int ret; 286 287 ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol); 288 if (ret) 289 return ret; 290 ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol); 291 if (ret) 292 return ret; 293 294 if (priv->feat->crit_int) { 295 ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id], 296 &d->crit_viol); 297 if (ret) 298 return ret; 299 } 300 301 if (d->up_viol || d->low_viol || d->crit_viol) 302 return 1; 303 304 return 0; 305 } 306 307 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id, 308 const struct tsens_sensor *s, 309 struct tsens_irq_data *d) 310 { 311 int ret; 312 313 ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear); 314 if (ret) 315 return ret; 316 ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear); 317 if (ret) 318 return ret; 319 if (tsens_version(priv) > VER_1_X) { 320 ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask); 321 if (ret) 322 return ret; 323 ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask); 324 if (ret) 325 return ret; 326 ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id], 327 &d->crit_irq_clear); 328 if (ret) 329 return ret; 330 ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id], 331 &d->crit_irq_mask); 332 if (ret) 333 return ret; 334 335 d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id); 336 } else { 337 /* No mask register on older TSENS */ 338 d->up_irq_mask = 0; 339 d->low_irq_mask = 0; 340 d->crit_irq_clear = 0; 341 d->crit_irq_mask = 0; 342 d->crit_thresh = 0; 343 } 344 345 d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id); 346 d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id); 347 348 dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n", 349 hw_id, __func__, 350 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", 351 d->low_viol, d->up_viol, d->crit_viol, 352 d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear, 353 d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask); 354 dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__, 355 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", 356 d->low_thresh, d->up_thresh, d->crit_thresh); 357 358 return 0; 359 } 360 361 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver) 362 { 363 if (ver > VER_1_X) 364 return mask & (1 << hw_id); 365 366 /* v1, v0.1 don't have a irq mask register */ 367 return 0; 368 } 369 370 /** 371 * tsens_critical_irq_thread() - Threaded handler for critical interrupts 372 * @irq: irq number 373 * @data: tsens controller private data 374 * 375 * Check FSM watchdog bark status and clear if needed. 376 * Check all sensors to find ones that violated their critical threshold limits. 377 * Clear and then re-enable the interrupt. 378 * 379 * The level-triggered interrupt might deassert if the temperature returned to 380 * within the threshold limits by the time the handler got scheduled. We 381 * consider the irq to have been handled in that case. 382 * 383 * Return: IRQ_HANDLED 384 */ 385 static irqreturn_t tsens_critical_irq_thread(int irq, void *data) 386 { 387 struct tsens_priv *priv = data; 388 struct tsens_irq_data d; 389 int temp, ret, i; 390 u32 wdog_status, wdog_count; 391 392 if (priv->feat->has_watchdog) { 393 ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS], 394 &wdog_status); 395 if (ret) 396 return ret; 397 398 if (wdog_status) { 399 /* Clear WDOG interrupt */ 400 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1); 401 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0); 402 ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT], 403 &wdog_count); 404 if (ret) 405 return ret; 406 if (wdog_count) 407 dev_dbg(priv->dev, "%s: watchdog count: %d\n", 408 __func__, wdog_count); 409 410 /* Fall through to handle critical interrupts if any */ 411 } 412 } 413 414 for (i = 0; i < priv->num_sensors; i++) { 415 const struct tsens_sensor *s = &priv->sensor[i]; 416 u32 hw_id = s->hw_id; 417 418 if (IS_ERR(s->tzd)) 419 continue; 420 if (!tsens_threshold_violated(priv, hw_id, &d)) 421 continue; 422 ret = get_temp_tsens_valid(s, &temp); 423 if (ret) { 424 dev_err(priv->dev, "[%u] %s: error reading sensor\n", 425 hw_id, __func__); 426 continue; 427 } 428 429 tsens_read_irq_state(priv, hw_id, s, &d); 430 if (d.crit_viol && 431 !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) { 432 /* Mask critical interrupts, unused on Linux */ 433 tsens_set_interrupt(priv, hw_id, CRITICAL, false); 434 } 435 } 436 437 return IRQ_HANDLED; 438 } 439 440 /** 441 * tsens_irq_thread - Threaded interrupt handler for uplow interrupts 442 * @irq: irq number 443 * @data: tsens controller private data 444 * 445 * Check all sensors to find ones that violated their threshold limits. If the 446 * temperature is still outside the limits, call thermal_zone_device_update() to 447 * update the thresholds, else re-enable the interrupts. 448 * 449 * The level-triggered interrupt might deassert if the temperature returned to 450 * within the threshold limits by the time the handler got scheduled. We 451 * consider the irq to have been handled in that case. 452 * 453 * Return: IRQ_HANDLED 454 */ 455 static irqreturn_t tsens_irq_thread(int irq, void *data) 456 { 457 struct tsens_priv *priv = data; 458 struct tsens_irq_data d; 459 bool enable = true, disable = false; 460 unsigned long flags; 461 int temp, ret, i; 462 463 for (i = 0; i < priv->num_sensors; i++) { 464 bool trigger = false; 465 const struct tsens_sensor *s = &priv->sensor[i]; 466 u32 hw_id = s->hw_id; 467 468 if (IS_ERR(s->tzd)) 469 continue; 470 if (!tsens_threshold_violated(priv, hw_id, &d)) 471 continue; 472 ret = get_temp_tsens_valid(s, &temp); 473 if (ret) { 474 dev_err(priv->dev, "[%u] %s: error reading sensor\n", 475 hw_id, __func__); 476 continue; 477 } 478 479 spin_lock_irqsave(&priv->ul_lock, flags); 480 481 tsens_read_irq_state(priv, hw_id, s, &d); 482 483 if (d.up_viol && 484 !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) { 485 tsens_set_interrupt(priv, hw_id, UPPER, disable); 486 if (d.up_thresh > temp) { 487 dev_dbg(priv->dev, "[%u] %s: re-arm upper\n", 488 hw_id, __func__); 489 tsens_set_interrupt(priv, hw_id, UPPER, enable); 490 } else { 491 trigger = true; 492 /* Keep irq masked */ 493 } 494 } else if (d.low_viol && 495 !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) { 496 tsens_set_interrupt(priv, hw_id, LOWER, disable); 497 if (d.low_thresh < temp) { 498 dev_dbg(priv->dev, "[%u] %s: re-arm low\n", 499 hw_id, __func__); 500 tsens_set_interrupt(priv, hw_id, LOWER, enable); 501 } else { 502 trigger = true; 503 /* Keep irq masked */ 504 } 505 } 506 507 spin_unlock_irqrestore(&priv->ul_lock, flags); 508 509 if (trigger) { 510 dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n", 511 hw_id, __func__, temp); 512 thermal_zone_device_update(s->tzd, 513 THERMAL_EVENT_UNSPECIFIED); 514 } else { 515 dev_dbg(priv->dev, "[%u] %s: no violation: %d\n", 516 hw_id, __func__, temp); 517 } 518 } 519 520 return IRQ_HANDLED; 521 } 522 523 static int tsens_set_trips(void *_sensor, int low, int high) 524 { 525 struct tsens_sensor *s = _sensor; 526 struct tsens_priv *priv = s->priv; 527 struct device *dev = priv->dev; 528 struct tsens_irq_data d; 529 unsigned long flags; 530 int high_val, low_val, cl_high, cl_low; 531 u32 hw_id = s->hw_id; 532 533 dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n", 534 hw_id, __func__, low, high); 535 536 cl_high = clamp_val(high, -40000, 120000); 537 cl_low = clamp_val(low, -40000, 120000); 538 539 high_val = tsens_mC_to_hw(s, cl_high); 540 low_val = tsens_mC_to_hw(s, cl_low); 541 542 spin_lock_irqsave(&priv->ul_lock, flags); 543 544 tsens_read_irq_state(priv, hw_id, s, &d); 545 546 /* Write the new thresholds and clear the status */ 547 regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val); 548 regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val); 549 tsens_set_interrupt(priv, hw_id, LOWER, true); 550 tsens_set_interrupt(priv, hw_id, UPPER, true); 551 552 spin_unlock_irqrestore(&priv->ul_lock, flags); 553 554 dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n", 555 hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high); 556 557 return 0; 558 } 559 560 static int tsens_enable_irq(struct tsens_priv *priv) 561 { 562 int ret; 563 int val = tsens_version(priv) > VER_1_X ? 7 : 1; 564 565 ret = regmap_field_write(priv->rf[INT_EN], val); 566 if (ret < 0) 567 dev_err(priv->dev, "%s: failed to enable interrupts\n", 568 __func__); 569 570 return ret; 571 } 572 573 static void tsens_disable_irq(struct tsens_priv *priv) 574 { 575 regmap_field_write(priv->rf[INT_EN], 0); 576 } 577 578 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp) 579 { 580 struct tsens_priv *priv = s->priv; 581 int hw_id = s->hw_id; 582 u32 temp_idx = LAST_TEMP_0 + hw_id; 583 u32 valid_idx = VALID_0 + hw_id; 584 u32 valid; 585 int ret; 586 587 ret = regmap_field_read(priv->rf[valid_idx], &valid); 588 if (ret) 589 return ret; 590 while (!valid) { 591 /* Valid bit is 0 for 6 AHB clock cycles. 592 * At 19.2MHz, 1 AHB clock is ~60ns. 593 * We should enter this loop very, very rarely. 594 */ 595 ndelay(400); 596 ret = regmap_field_read(priv->rf[valid_idx], &valid); 597 if (ret) 598 return ret; 599 } 600 601 /* Valid bit is set, OK to read the temperature */ 602 *temp = tsens_hw_to_mC(s, temp_idx); 603 604 return 0; 605 } 606 607 int get_temp_common(const struct tsens_sensor *s, int *temp) 608 { 609 struct tsens_priv *priv = s->priv; 610 int hw_id = s->hw_id; 611 int last_temp = 0, ret; 612 613 ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp); 614 if (ret) 615 return ret; 616 617 *temp = code_to_degc(last_temp, s) * 1000; 618 619 return 0; 620 } 621 622 #ifdef CONFIG_DEBUG_FS 623 static int dbg_sensors_show(struct seq_file *s, void *data) 624 { 625 struct platform_device *pdev = s->private; 626 struct tsens_priv *priv = platform_get_drvdata(pdev); 627 int i; 628 629 seq_printf(s, "max: %2d\nnum: %2d\n\n", 630 priv->feat->max_sensors, priv->num_sensors); 631 632 seq_puts(s, " id slope offset\n--------------------------\n"); 633 for (i = 0; i < priv->num_sensors; i++) { 634 seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id, 635 priv->sensor[i].slope, priv->sensor[i].offset); 636 } 637 638 return 0; 639 } 640 641 static int dbg_version_show(struct seq_file *s, void *data) 642 { 643 struct platform_device *pdev = s->private; 644 struct tsens_priv *priv = platform_get_drvdata(pdev); 645 u32 maj_ver, min_ver, step_ver; 646 int ret; 647 648 if (tsens_version(priv) > VER_0_1) { 649 ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver); 650 if (ret) 651 return ret; 652 ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver); 653 if (ret) 654 return ret; 655 ret = regmap_field_read(priv->rf[VER_STEP], &step_ver); 656 if (ret) 657 return ret; 658 seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver); 659 } else { 660 seq_puts(s, "0.1.0\n"); 661 } 662 663 return 0; 664 } 665 666 DEFINE_SHOW_ATTRIBUTE(dbg_version); 667 DEFINE_SHOW_ATTRIBUTE(dbg_sensors); 668 669 static void tsens_debug_init(struct platform_device *pdev) 670 { 671 struct tsens_priv *priv = platform_get_drvdata(pdev); 672 struct dentry *root, *file; 673 674 root = debugfs_lookup("tsens", NULL); 675 if (!root) 676 priv->debug_root = debugfs_create_dir("tsens", NULL); 677 else 678 priv->debug_root = root; 679 680 file = debugfs_lookup("version", priv->debug_root); 681 if (!file) 682 debugfs_create_file("version", 0444, priv->debug_root, 683 pdev, &dbg_version_fops); 684 685 /* A directory for each instance of the TSENS IP */ 686 priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root); 687 debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops); 688 } 689 #else 690 static inline void tsens_debug_init(struct platform_device *pdev) {} 691 #endif 692 693 static const struct regmap_config tsens_config = { 694 .name = "tm", 695 .reg_bits = 32, 696 .val_bits = 32, 697 .reg_stride = 4, 698 }; 699 700 static const struct regmap_config tsens_srot_config = { 701 .name = "srot", 702 .reg_bits = 32, 703 .val_bits = 32, 704 .reg_stride = 4, 705 }; 706 707 int __init init_common(struct tsens_priv *priv) 708 { 709 void __iomem *tm_base, *srot_base; 710 struct device *dev = priv->dev; 711 u32 ver_minor; 712 struct resource *res; 713 u32 enabled; 714 int ret, i, j; 715 struct platform_device *op = of_find_device_by_node(priv->dev->of_node); 716 717 if (!op) 718 return -EINVAL; 719 720 if (op->num_resources > 1) { 721 /* DT with separate SROT and TM address space */ 722 priv->tm_offset = 0; 723 res = platform_get_resource(op, IORESOURCE_MEM, 1); 724 srot_base = devm_ioremap_resource(dev, res); 725 if (IS_ERR(srot_base)) { 726 ret = PTR_ERR(srot_base); 727 goto err_put_device; 728 } 729 730 priv->srot_map = devm_regmap_init_mmio(dev, srot_base, 731 &tsens_srot_config); 732 if (IS_ERR(priv->srot_map)) { 733 ret = PTR_ERR(priv->srot_map); 734 goto err_put_device; 735 } 736 } else { 737 /* old DTs where SROT and TM were in a contiguous 2K block */ 738 priv->tm_offset = 0x1000; 739 } 740 741 res = platform_get_resource(op, IORESOURCE_MEM, 0); 742 tm_base = devm_ioremap_resource(dev, res); 743 if (IS_ERR(tm_base)) { 744 ret = PTR_ERR(tm_base); 745 goto err_put_device; 746 } 747 748 priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config); 749 if (IS_ERR(priv->tm_map)) { 750 ret = PTR_ERR(priv->tm_map); 751 goto err_put_device; 752 } 753 754 if (tsens_version(priv) > VER_0_1) { 755 for (i = VER_MAJOR; i <= VER_STEP; i++) { 756 priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map, 757 priv->fields[i]); 758 if (IS_ERR(priv->rf[i])) 759 return PTR_ERR(priv->rf[i]); 760 } 761 ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor); 762 if (ret) 763 goto err_put_device; 764 } 765 766 priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map, 767 priv->fields[TSENS_EN]); 768 if (IS_ERR(priv->rf[TSENS_EN])) { 769 ret = PTR_ERR(priv->rf[TSENS_EN]); 770 goto err_put_device; 771 } 772 ret = regmap_field_read(priv->rf[TSENS_EN], &enabled); 773 if (ret) 774 goto err_put_device; 775 if (!enabled) { 776 dev_err(dev, "%s: device not enabled\n", __func__); 777 ret = -ENODEV; 778 goto err_put_device; 779 } 780 781 priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map, 782 priv->fields[SENSOR_EN]); 783 if (IS_ERR(priv->rf[SENSOR_EN])) { 784 ret = PTR_ERR(priv->rf[SENSOR_EN]); 785 goto err_put_device; 786 } 787 priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map, 788 priv->fields[INT_EN]); 789 if (IS_ERR(priv->rf[INT_EN])) { 790 ret = PTR_ERR(priv->rf[INT_EN]); 791 goto err_put_device; 792 } 793 794 /* This loop might need changes if enum regfield_ids is reordered */ 795 for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) { 796 for (i = 0; i < priv->feat->max_sensors; i++) { 797 int idx = j + i; 798 799 priv->rf[idx] = devm_regmap_field_alloc(dev, 800 priv->tm_map, 801 priv->fields[idx]); 802 if (IS_ERR(priv->rf[idx])) { 803 ret = PTR_ERR(priv->rf[idx]); 804 goto err_put_device; 805 } 806 } 807 } 808 809 if (priv->feat->crit_int) { 810 /* Loop might need changes if enum regfield_ids is reordered */ 811 for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) { 812 for (i = 0; i < priv->feat->max_sensors; i++) { 813 int idx = j + i; 814 815 priv->rf[idx] = 816 devm_regmap_field_alloc(dev, 817 priv->tm_map, 818 priv->fields[idx]); 819 if (IS_ERR(priv->rf[idx])) { 820 ret = PTR_ERR(priv->rf[idx]); 821 goto err_put_device; 822 } 823 } 824 } 825 } 826 827 if (tsens_version(priv) > VER_1_X && ver_minor > 2) { 828 /* Watchdog is present only on v2.3+ */ 829 priv->feat->has_watchdog = 1; 830 for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) { 831 priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map, 832 priv->fields[i]); 833 if (IS_ERR(priv->rf[i])) { 834 ret = PTR_ERR(priv->rf[i]); 835 goto err_put_device; 836 } 837 } 838 /* 839 * Watchdog is already enabled, unmask the bark. 840 * Disable cycle completion monitoring 841 */ 842 regmap_field_write(priv->rf[WDOG_BARK_MASK], 0); 843 regmap_field_write(priv->rf[CC_MON_MASK], 1); 844 } 845 846 spin_lock_init(&priv->ul_lock); 847 tsens_enable_irq(priv); 848 tsens_debug_init(op); 849 850 err_put_device: 851 put_device(&op->dev); 852 return ret; 853 } 854 855 static int tsens_get_temp(void *data, int *temp) 856 { 857 struct tsens_sensor *s = data; 858 struct tsens_priv *priv = s->priv; 859 860 return priv->ops->get_temp(s, temp); 861 } 862 863 static int tsens_get_trend(void *data, int trip, enum thermal_trend *trend) 864 { 865 struct tsens_sensor *s = data; 866 struct tsens_priv *priv = s->priv; 867 868 if (priv->ops->get_trend) 869 return priv->ops->get_trend(s, trend); 870 871 return -ENOTSUPP; 872 } 873 874 static int __maybe_unused tsens_suspend(struct device *dev) 875 { 876 struct tsens_priv *priv = dev_get_drvdata(dev); 877 878 if (priv->ops && priv->ops->suspend) 879 return priv->ops->suspend(priv); 880 881 return 0; 882 } 883 884 static int __maybe_unused tsens_resume(struct device *dev) 885 { 886 struct tsens_priv *priv = dev_get_drvdata(dev); 887 888 if (priv->ops && priv->ops->resume) 889 return priv->ops->resume(priv); 890 891 return 0; 892 } 893 894 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume); 895 896 static const struct of_device_id tsens_table[] = { 897 { 898 .compatible = "qcom,msm8916-tsens", 899 .data = &data_8916, 900 }, { 901 .compatible = "qcom,msm8974-tsens", 902 .data = &data_8974, 903 }, { 904 .compatible = "qcom,msm8976-tsens", 905 .data = &data_8976, 906 }, { 907 .compatible = "qcom,msm8996-tsens", 908 .data = &data_8996, 909 }, { 910 .compatible = "qcom,tsens-v1", 911 .data = &data_tsens_v1, 912 }, { 913 .compatible = "qcom,tsens-v2", 914 .data = &data_tsens_v2, 915 }, 916 {} 917 }; 918 MODULE_DEVICE_TABLE(of, tsens_table); 919 920 static const struct thermal_zone_of_device_ops tsens_of_ops = { 921 .get_temp = tsens_get_temp, 922 .get_trend = tsens_get_trend, 923 .set_trips = tsens_set_trips, 924 }; 925 926 static int tsens_register_irq(struct tsens_priv *priv, char *irqname, 927 irq_handler_t thread_fn) 928 { 929 struct platform_device *pdev; 930 int ret, irq; 931 932 pdev = of_find_device_by_node(priv->dev->of_node); 933 if (!pdev) 934 return -ENODEV; 935 936 irq = platform_get_irq_byname(pdev, irqname); 937 if (irq < 0) { 938 ret = irq; 939 /* For old DTs with no IRQ defined */ 940 if (irq == -ENXIO) 941 ret = 0; 942 } else { 943 ret = devm_request_threaded_irq(&pdev->dev, irq, 944 NULL, thread_fn, 945 IRQF_ONESHOT, 946 dev_name(&pdev->dev), priv); 947 if (ret) 948 dev_err(&pdev->dev, "%s: failed to get irq\n", 949 __func__); 950 else 951 enable_irq_wake(irq); 952 } 953 954 put_device(&pdev->dev); 955 return ret; 956 } 957 958 static int tsens_register(struct tsens_priv *priv) 959 { 960 int i, ret; 961 struct thermal_zone_device *tzd; 962 963 for (i = 0; i < priv->num_sensors; i++) { 964 priv->sensor[i].priv = priv; 965 tzd = devm_thermal_zone_of_sensor_register(priv->dev, priv->sensor[i].hw_id, 966 &priv->sensor[i], 967 &tsens_of_ops); 968 if (IS_ERR(tzd)) 969 continue; 970 priv->sensor[i].tzd = tzd; 971 if (priv->ops->enable) 972 priv->ops->enable(priv, i); 973 } 974 975 ret = tsens_register_irq(priv, "uplow", tsens_irq_thread); 976 if (ret < 0) 977 return ret; 978 979 if (priv->feat->crit_int) 980 ret = tsens_register_irq(priv, "critical", 981 tsens_critical_irq_thread); 982 983 return ret; 984 } 985 986 static int tsens_probe(struct platform_device *pdev) 987 { 988 int ret, i; 989 struct device *dev; 990 struct device_node *np; 991 struct tsens_priv *priv; 992 const struct tsens_plat_data *data; 993 const struct of_device_id *id; 994 u32 num_sensors; 995 996 if (pdev->dev.of_node) 997 dev = &pdev->dev; 998 else 999 dev = pdev->dev.parent; 1000 1001 np = dev->of_node; 1002 1003 id = of_match_node(tsens_table, np); 1004 if (id) 1005 data = id->data; 1006 else 1007 data = &data_8960; 1008 1009 num_sensors = data->num_sensors; 1010 1011 if (np) 1012 of_property_read_u32(np, "#qcom,sensors", &num_sensors); 1013 1014 if (num_sensors <= 0) { 1015 dev_err(dev, "%s: invalid number of sensors\n", __func__); 1016 return -EINVAL; 1017 } 1018 1019 priv = devm_kzalloc(dev, 1020 struct_size(priv, sensor, num_sensors), 1021 GFP_KERNEL); 1022 if (!priv) 1023 return -ENOMEM; 1024 1025 priv->dev = dev; 1026 priv->num_sensors = num_sensors; 1027 priv->ops = data->ops; 1028 for (i = 0; i < priv->num_sensors; i++) { 1029 if (data->hw_ids) 1030 priv->sensor[i].hw_id = data->hw_ids[i]; 1031 else 1032 priv->sensor[i].hw_id = i; 1033 } 1034 priv->feat = data->feat; 1035 priv->fields = data->fields; 1036 1037 platform_set_drvdata(pdev, priv); 1038 1039 if (!priv->ops || !priv->ops->init || !priv->ops->get_temp) 1040 return -EINVAL; 1041 1042 ret = priv->ops->init(priv); 1043 if (ret < 0) { 1044 dev_err(dev, "%s: init failed\n", __func__); 1045 return ret; 1046 } 1047 1048 if (priv->ops->calibrate) { 1049 ret = priv->ops->calibrate(priv); 1050 if (ret < 0) { 1051 if (ret != -EPROBE_DEFER) 1052 dev_err(dev, "%s: calibration failed\n", __func__); 1053 return ret; 1054 } 1055 } 1056 1057 return tsens_register(priv); 1058 } 1059 1060 static int tsens_remove(struct platform_device *pdev) 1061 { 1062 struct tsens_priv *priv = platform_get_drvdata(pdev); 1063 1064 debugfs_remove_recursive(priv->debug_root); 1065 tsens_disable_irq(priv); 1066 if (priv->ops->disable) 1067 priv->ops->disable(priv); 1068 1069 return 0; 1070 } 1071 1072 static struct platform_driver tsens_driver = { 1073 .probe = tsens_probe, 1074 .remove = tsens_remove, 1075 .driver = { 1076 .name = "qcom-tsens", 1077 .pm = &tsens_pm_ops, 1078 .of_match_table = tsens_table, 1079 }, 1080 }; 1081 module_platform_driver(tsens_driver); 1082 1083 MODULE_LICENSE("GPL v2"); 1084 MODULE_DESCRIPTION("QCOM Temperature Sensor driver"); 1085 MODULE_ALIAS("platform:qcom-tsens"); 1086