1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2019, 2020, Linaro Ltd. 5 */ 6 7 #include <linux/debugfs.h> 8 #include <linux/err.h> 9 #include <linux/io.h> 10 #include <linux/module.h> 11 #include <linux/nvmem-consumer.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/of_platform.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm.h> 18 #include <linux/regmap.h> 19 #include <linux/slab.h> 20 #include <linux/thermal.h> 21 #include "../thermal_hwmon.h" 22 #include "tsens.h" 23 24 /** 25 * struct tsens_irq_data - IRQ status and temperature violations 26 * @up_viol: upper threshold violated 27 * @up_thresh: upper threshold temperature value 28 * @up_irq_mask: mask register for upper threshold irqs 29 * @up_irq_clear: clear register for uppper threshold irqs 30 * @low_viol: lower threshold violated 31 * @low_thresh: lower threshold temperature value 32 * @low_irq_mask: mask register for lower threshold irqs 33 * @low_irq_clear: clear register for lower threshold irqs 34 * @crit_viol: critical threshold violated 35 * @crit_thresh: critical threshold temperature value 36 * @crit_irq_mask: mask register for critical threshold irqs 37 * @crit_irq_clear: clear register for critical threshold irqs 38 * 39 * Structure containing data about temperature threshold settings and 40 * irq status if they were violated. 41 */ 42 struct tsens_irq_data { 43 u32 up_viol; 44 int up_thresh; 45 u32 up_irq_mask; 46 u32 up_irq_clear; 47 u32 low_viol; 48 int low_thresh; 49 u32 low_irq_mask; 50 u32 low_irq_clear; 51 u32 crit_viol; 52 u32 crit_thresh; 53 u32 crit_irq_mask; 54 u32 crit_irq_clear; 55 }; 56 57 char *qfprom_read(struct device *dev, const char *cname) 58 { 59 struct nvmem_cell *cell; 60 ssize_t data; 61 char *ret; 62 63 cell = nvmem_cell_get(dev, cname); 64 if (IS_ERR(cell)) 65 return ERR_CAST(cell); 66 67 ret = nvmem_cell_read(cell, &data); 68 nvmem_cell_put(cell); 69 70 return ret; 71 } 72 73 /* 74 * Use this function on devices where slope and offset calculations 75 * depend on calibration data read from qfprom. On others the slope 76 * and offset values are derived from tz->tzp->slope and tz->tzp->offset 77 * resp. 78 */ 79 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1, 80 u32 *p2, u32 mode) 81 { 82 int i; 83 int num, den; 84 85 for (i = 0; i < priv->num_sensors; i++) { 86 dev_dbg(priv->dev, 87 "%s: sensor%d - data_point1:%#x data_point2:%#x\n", 88 __func__, i, p1[i], p2[i]); 89 90 if (!priv->sensor[i].slope) 91 priv->sensor[i].slope = SLOPE_DEFAULT; 92 if (mode == TWO_PT_CALIB) { 93 /* 94 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/ 95 * temp_120_degc - temp_30_degc (x2 - x1) 96 */ 97 num = p2[i] - p1[i]; 98 num *= SLOPE_FACTOR; 99 den = CAL_DEGC_PT2 - CAL_DEGC_PT1; 100 priv->sensor[i].slope = num / den; 101 } 102 103 priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) - 104 (CAL_DEGC_PT1 * 105 priv->sensor[i].slope); 106 dev_dbg(priv->dev, "%s: offset:%d\n", __func__, 107 priv->sensor[i].offset); 108 } 109 } 110 111 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s) 112 { 113 u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR); 114 115 pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc); 116 return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE); 117 } 118 119 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s) 120 { 121 int degc, num, den; 122 123 num = (adc_code * SLOPE_FACTOR) - s->offset; 124 den = s->slope; 125 126 if (num > 0) 127 degc = num + (den / 2); 128 else if (num < 0) 129 degc = num - (den / 2); 130 else 131 degc = num; 132 133 degc /= den; 134 135 return degc; 136 } 137 138 /** 139 * tsens_hw_to_mC - Return sign-extended temperature in mCelsius. 140 * @s: Pointer to sensor struct 141 * @field: Index into regmap_field array pointing to temperature data 142 * 143 * This function handles temperature returned in ADC code or deciCelsius 144 * depending on IP version. 145 * 146 * Return: Temperature in milliCelsius on success, a negative errno will 147 * be returned in error cases 148 */ 149 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field) 150 { 151 struct tsens_priv *priv = s->priv; 152 u32 resolution; 153 u32 temp = 0; 154 int ret; 155 156 resolution = priv->fields[LAST_TEMP_0].msb - 157 priv->fields[LAST_TEMP_0].lsb; 158 159 ret = regmap_field_read(priv->rf[field], &temp); 160 if (ret) 161 return ret; 162 163 /* Convert temperature from ADC code to milliCelsius */ 164 if (priv->feat->adc) 165 return code_to_degc(temp, s) * 1000; 166 167 /* deciCelsius -> milliCelsius along with sign extension */ 168 return sign_extend32(temp, resolution) * 100; 169 } 170 171 /** 172 * tsens_mC_to_hw - Convert temperature to hardware register value 173 * @s: Pointer to sensor struct 174 * @temp: temperature in milliCelsius to be programmed to hardware 175 * 176 * This function outputs the value to be written to hardware in ADC code 177 * or deciCelsius depending on IP version. 178 * 179 * Return: ADC code or temperature in deciCelsius. 180 */ 181 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp) 182 { 183 struct tsens_priv *priv = s->priv; 184 185 /* milliC to adc code */ 186 if (priv->feat->adc) 187 return degc_to_code(temp / 1000, s); 188 189 /* milliC to deciC */ 190 return temp / 100; 191 } 192 193 static inline enum tsens_ver tsens_version(struct tsens_priv *priv) 194 { 195 return priv->feat->ver_major; 196 } 197 198 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id, 199 enum tsens_irq_type irq_type, bool enable) 200 { 201 u32 index = 0; 202 203 switch (irq_type) { 204 case UPPER: 205 index = UP_INT_CLEAR_0 + hw_id; 206 break; 207 case LOWER: 208 index = LOW_INT_CLEAR_0 + hw_id; 209 break; 210 case CRITICAL: 211 /* No critical interrupts before v2 */ 212 return; 213 } 214 regmap_field_write(priv->rf[index], enable ? 0 : 1); 215 } 216 217 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id, 218 enum tsens_irq_type irq_type, bool enable) 219 { 220 u32 index_mask = 0, index_clear = 0; 221 222 /* 223 * To enable the interrupt flag for a sensor: 224 * - clear the mask bit 225 * To disable the interrupt flag for a sensor: 226 * - Mask further interrupts for this sensor 227 * - Write 1 followed by 0 to clear the interrupt 228 */ 229 switch (irq_type) { 230 case UPPER: 231 index_mask = UP_INT_MASK_0 + hw_id; 232 index_clear = UP_INT_CLEAR_0 + hw_id; 233 break; 234 case LOWER: 235 index_mask = LOW_INT_MASK_0 + hw_id; 236 index_clear = LOW_INT_CLEAR_0 + hw_id; 237 break; 238 case CRITICAL: 239 index_mask = CRIT_INT_MASK_0 + hw_id; 240 index_clear = CRIT_INT_CLEAR_0 + hw_id; 241 break; 242 } 243 244 if (enable) { 245 regmap_field_write(priv->rf[index_mask], 0); 246 } else { 247 regmap_field_write(priv->rf[index_mask], 1); 248 regmap_field_write(priv->rf[index_clear], 1); 249 regmap_field_write(priv->rf[index_clear], 0); 250 } 251 } 252 253 /** 254 * tsens_set_interrupt - Set state of an interrupt 255 * @priv: Pointer to tsens controller private data 256 * @hw_id: Hardware ID aka. sensor number 257 * @irq_type: irq_type from enum tsens_irq_type 258 * @enable: false = disable, true = enable 259 * 260 * Call IP-specific function to set state of an interrupt 261 * 262 * Return: void 263 */ 264 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id, 265 enum tsens_irq_type irq_type, bool enable) 266 { 267 dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__, 268 irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW", 269 enable ? "en" : "dis"); 270 if (tsens_version(priv) > VER_1_X) 271 tsens_set_interrupt_v2(priv, hw_id, irq_type, enable); 272 else 273 tsens_set_interrupt_v1(priv, hw_id, irq_type, enable); 274 } 275 276 /** 277 * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold 278 * @priv: Pointer to tsens controller private data 279 * @hw_id: Hardware ID aka. sensor number 280 * @d: Pointer to irq state data 281 * 282 * Return: 0 if threshold was not violated, 1 if it was violated and negative 283 * errno in case of errors 284 */ 285 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id, 286 struct tsens_irq_data *d) 287 { 288 int ret; 289 290 ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol); 291 if (ret) 292 return ret; 293 ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol); 294 if (ret) 295 return ret; 296 297 if (priv->feat->crit_int) { 298 ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id], 299 &d->crit_viol); 300 if (ret) 301 return ret; 302 } 303 304 if (d->up_viol || d->low_viol || d->crit_viol) 305 return 1; 306 307 return 0; 308 } 309 310 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id, 311 const struct tsens_sensor *s, 312 struct tsens_irq_data *d) 313 { 314 int ret; 315 316 ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear); 317 if (ret) 318 return ret; 319 ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear); 320 if (ret) 321 return ret; 322 if (tsens_version(priv) > VER_1_X) { 323 ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask); 324 if (ret) 325 return ret; 326 ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask); 327 if (ret) 328 return ret; 329 ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id], 330 &d->crit_irq_clear); 331 if (ret) 332 return ret; 333 ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id], 334 &d->crit_irq_mask); 335 if (ret) 336 return ret; 337 338 d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id); 339 } else { 340 /* No mask register on older TSENS */ 341 d->up_irq_mask = 0; 342 d->low_irq_mask = 0; 343 d->crit_irq_clear = 0; 344 d->crit_irq_mask = 0; 345 d->crit_thresh = 0; 346 } 347 348 d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id); 349 d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id); 350 351 dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n", 352 hw_id, __func__, 353 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", 354 d->low_viol, d->up_viol, d->crit_viol, 355 d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear, 356 d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask); 357 dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__, 358 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", 359 d->low_thresh, d->up_thresh, d->crit_thresh); 360 361 return 0; 362 } 363 364 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver) 365 { 366 if (ver > VER_1_X) 367 return mask & (1 << hw_id); 368 369 /* v1, v0.1 don't have a irq mask register */ 370 return 0; 371 } 372 373 /** 374 * tsens_critical_irq_thread() - Threaded handler for critical interrupts 375 * @irq: irq number 376 * @data: tsens controller private data 377 * 378 * Check FSM watchdog bark status and clear if needed. 379 * Check all sensors to find ones that violated their critical threshold limits. 380 * Clear and then re-enable the interrupt. 381 * 382 * The level-triggered interrupt might deassert if the temperature returned to 383 * within the threshold limits by the time the handler got scheduled. We 384 * consider the irq to have been handled in that case. 385 * 386 * Return: IRQ_HANDLED 387 */ 388 static irqreturn_t tsens_critical_irq_thread(int irq, void *data) 389 { 390 struct tsens_priv *priv = data; 391 struct tsens_irq_data d; 392 int temp, ret, i; 393 u32 wdog_status, wdog_count; 394 395 if (priv->feat->has_watchdog) { 396 ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS], 397 &wdog_status); 398 if (ret) 399 return ret; 400 401 if (wdog_status) { 402 /* Clear WDOG interrupt */ 403 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1); 404 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0); 405 ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT], 406 &wdog_count); 407 if (ret) 408 return ret; 409 if (wdog_count) 410 dev_dbg(priv->dev, "%s: watchdog count: %d\n", 411 __func__, wdog_count); 412 413 /* Fall through to handle critical interrupts if any */ 414 } 415 } 416 417 for (i = 0; i < priv->num_sensors; i++) { 418 const struct tsens_sensor *s = &priv->sensor[i]; 419 u32 hw_id = s->hw_id; 420 421 if (!s->tzd) 422 continue; 423 if (!tsens_threshold_violated(priv, hw_id, &d)) 424 continue; 425 ret = get_temp_tsens_valid(s, &temp); 426 if (ret) { 427 dev_err(priv->dev, "[%u] %s: error reading sensor\n", 428 hw_id, __func__); 429 continue; 430 } 431 432 tsens_read_irq_state(priv, hw_id, s, &d); 433 if (d.crit_viol && 434 !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) { 435 /* Mask critical interrupts, unused on Linux */ 436 tsens_set_interrupt(priv, hw_id, CRITICAL, false); 437 } 438 } 439 440 return IRQ_HANDLED; 441 } 442 443 /** 444 * tsens_irq_thread - Threaded interrupt handler for uplow interrupts 445 * @irq: irq number 446 * @data: tsens controller private data 447 * 448 * Check all sensors to find ones that violated their threshold limits. If the 449 * temperature is still outside the limits, call thermal_zone_device_update() to 450 * update the thresholds, else re-enable the interrupts. 451 * 452 * The level-triggered interrupt might deassert if the temperature returned to 453 * within the threshold limits by the time the handler got scheduled. We 454 * consider the irq to have been handled in that case. 455 * 456 * Return: IRQ_HANDLED 457 */ 458 static irqreturn_t tsens_irq_thread(int irq, void *data) 459 { 460 struct tsens_priv *priv = data; 461 struct tsens_irq_data d; 462 bool enable = true, disable = false; 463 unsigned long flags; 464 int temp, ret, i; 465 466 for (i = 0; i < priv->num_sensors; i++) { 467 bool trigger = false; 468 const struct tsens_sensor *s = &priv->sensor[i]; 469 u32 hw_id = s->hw_id; 470 471 if (!s->tzd) 472 continue; 473 if (!tsens_threshold_violated(priv, hw_id, &d)) 474 continue; 475 ret = get_temp_tsens_valid(s, &temp); 476 if (ret) { 477 dev_err(priv->dev, "[%u] %s: error reading sensor\n", 478 hw_id, __func__); 479 continue; 480 } 481 482 spin_lock_irqsave(&priv->ul_lock, flags); 483 484 tsens_read_irq_state(priv, hw_id, s, &d); 485 486 if (d.up_viol && 487 !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) { 488 tsens_set_interrupt(priv, hw_id, UPPER, disable); 489 if (d.up_thresh > temp) { 490 dev_dbg(priv->dev, "[%u] %s: re-arm upper\n", 491 hw_id, __func__); 492 tsens_set_interrupt(priv, hw_id, UPPER, enable); 493 } else { 494 trigger = true; 495 /* Keep irq masked */ 496 } 497 } else if (d.low_viol && 498 !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) { 499 tsens_set_interrupt(priv, hw_id, LOWER, disable); 500 if (d.low_thresh < temp) { 501 dev_dbg(priv->dev, "[%u] %s: re-arm low\n", 502 hw_id, __func__); 503 tsens_set_interrupt(priv, hw_id, LOWER, enable); 504 } else { 505 trigger = true; 506 /* Keep irq masked */ 507 } 508 } 509 510 spin_unlock_irqrestore(&priv->ul_lock, flags); 511 512 if (trigger) { 513 dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n", 514 hw_id, __func__, temp); 515 thermal_zone_device_update(s->tzd, 516 THERMAL_EVENT_UNSPECIFIED); 517 } else { 518 dev_dbg(priv->dev, "[%u] %s: no violation: %d\n", 519 hw_id, __func__, temp); 520 } 521 522 if (tsens_version(priv) < VER_0_1) { 523 /* Constraint: There is only 1 interrupt control register for all 524 * 11 temperature sensor. So monitoring more than 1 sensor based 525 * on interrupts will yield inconsistent result. To overcome this 526 * issue we will monitor only sensor 0 which is the master sensor. 527 */ 528 break; 529 } 530 } 531 532 return IRQ_HANDLED; 533 } 534 535 static int tsens_set_trips(void *_sensor, int low, int high) 536 { 537 struct tsens_sensor *s = _sensor; 538 struct tsens_priv *priv = s->priv; 539 struct device *dev = priv->dev; 540 struct tsens_irq_data d; 541 unsigned long flags; 542 int high_val, low_val, cl_high, cl_low; 543 u32 hw_id = s->hw_id; 544 545 if (tsens_version(priv) < VER_0_1) { 546 /* Pre v0.1 IP had a single register for each type of interrupt 547 * and thresholds 548 */ 549 hw_id = 0; 550 } 551 552 dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n", 553 hw_id, __func__, low, high); 554 555 cl_high = clamp_val(high, -40000, 120000); 556 cl_low = clamp_val(low, -40000, 120000); 557 558 high_val = tsens_mC_to_hw(s, cl_high); 559 low_val = tsens_mC_to_hw(s, cl_low); 560 561 spin_lock_irqsave(&priv->ul_lock, flags); 562 563 tsens_read_irq_state(priv, hw_id, s, &d); 564 565 /* Write the new thresholds and clear the status */ 566 regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val); 567 regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val); 568 tsens_set_interrupt(priv, hw_id, LOWER, true); 569 tsens_set_interrupt(priv, hw_id, UPPER, true); 570 571 spin_unlock_irqrestore(&priv->ul_lock, flags); 572 573 dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n", 574 hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high); 575 576 return 0; 577 } 578 579 static int tsens_enable_irq(struct tsens_priv *priv) 580 { 581 int ret; 582 int val = tsens_version(priv) > VER_1_X ? 7 : 1; 583 584 ret = regmap_field_write(priv->rf[INT_EN], val); 585 if (ret < 0) 586 dev_err(priv->dev, "%s: failed to enable interrupts\n", 587 __func__); 588 589 return ret; 590 } 591 592 static void tsens_disable_irq(struct tsens_priv *priv) 593 { 594 regmap_field_write(priv->rf[INT_EN], 0); 595 } 596 597 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp) 598 { 599 struct tsens_priv *priv = s->priv; 600 int hw_id = s->hw_id; 601 u32 temp_idx = LAST_TEMP_0 + hw_id; 602 u32 valid_idx = VALID_0 + hw_id; 603 u32 valid; 604 int ret; 605 606 /* VER_0 doesn't have VALID bit */ 607 if (tsens_version(priv) == VER_0) 608 goto get_temp; 609 610 /* Valid bit is 0 for 6 AHB clock cycles. 611 * At 19.2MHz, 1 AHB clock is ~60ns. 612 * We should enter this loop very, very rarely. 613 * Wait 1 us since it's the min of poll_timeout macro. 614 * Old value was 400 ns. 615 */ 616 ret = regmap_field_read_poll_timeout(priv->rf[valid_idx], valid, 617 valid, 1, 20 * USEC_PER_MSEC); 618 if (ret) 619 return ret; 620 621 get_temp: 622 /* Valid bit is set, OK to read the temperature */ 623 *temp = tsens_hw_to_mC(s, temp_idx); 624 625 return 0; 626 } 627 628 int get_temp_common(const struct tsens_sensor *s, int *temp) 629 { 630 struct tsens_priv *priv = s->priv; 631 int hw_id = s->hw_id; 632 int last_temp = 0, ret, trdy; 633 unsigned long timeout; 634 635 timeout = jiffies + usecs_to_jiffies(TIMEOUT_US); 636 do { 637 if (tsens_version(priv) == VER_0) { 638 ret = regmap_field_read(priv->rf[TRDY], &trdy); 639 if (ret) 640 return ret; 641 if (!trdy) 642 continue; 643 } 644 645 ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp); 646 if (ret) 647 return ret; 648 649 *temp = code_to_degc(last_temp, s) * 1000; 650 651 return 0; 652 } while (time_before(jiffies, timeout)); 653 654 return -ETIMEDOUT; 655 } 656 657 #ifdef CONFIG_DEBUG_FS 658 static int dbg_sensors_show(struct seq_file *s, void *data) 659 { 660 struct platform_device *pdev = s->private; 661 struct tsens_priv *priv = platform_get_drvdata(pdev); 662 int i; 663 664 seq_printf(s, "max: %2d\nnum: %2d\n\n", 665 priv->feat->max_sensors, priv->num_sensors); 666 667 seq_puts(s, " id slope offset\n--------------------------\n"); 668 for (i = 0; i < priv->num_sensors; i++) { 669 seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id, 670 priv->sensor[i].slope, priv->sensor[i].offset); 671 } 672 673 return 0; 674 } 675 676 static int dbg_version_show(struct seq_file *s, void *data) 677 { 678 struct platform_device *pdev = s->private; 679 struct tsens_priv *priv = platform_get_drvdata(pdev); 680 u32 maj_ver, min_ver, step_ver; 681 int ret; 682 683 if (tsens_version(priv) > VER_0_1) { 684 ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver); 685 if (ret) 686 return ret; 687 ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver); 688 if (ret) 689 return ret; 690 ret = regmap_field_read(priv->rf[VER_STEP], &step_ver); 691 if (ret) 692 return ret; 693 seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver); 694 } else { 695 seq_puts(s, "0.1.0\n"); 696 } 697 698 return 0; 699 } 700 701 DEFINE_SHOW_ATTRIBUTE(dbg_version); 702 DEFINE_SHOW_ATTRIBUTE(dbg_sensors); 703 704 static void tsens_debug_init(struct platform_device *pdev) 705 { 706 struct tsens_priv *priv = platform_get_drvdata(pdev); 707 struct dentry *root, *file; 708 709 root = debugfs_lookup("tsens", NULL); 710 if (!root) 711 priv->debug_root = debugfs_create_dir("tsens", NULL); 712 else 713 priv->debug_root = root; 714 715 file = debugfs_lookup("version", priv->debug_root); 716 if (!file) 717 debugfs_create_file("version", 0444, priv->debug_root, 718 pdev, &dbg_version_fops); 719 720 /* A directory for each instance of the TSENS IP */ 721 priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root); 722 debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops); 723 } 724 #else 725 static inline void tsens_debug_init(struct platform_device *pdev) {} 726 #endif 727 728 static const struct regmap_config tsens_config = { 729 .name = "tm", 730 .reg_bits = 32, 731 .val_bits = 32, 732 .reg_stride = 4, 733 }; 734 735 static const struct regmap_config tsens_srot_config = { 736 .name = "srot", 737 .reg_bits = 32, 738 .val_bits = 32, 739 .reg_stride = 4, 740 }; 741 742 int __init init_common(struct tsens_priv *priv) 743 { 744 void __iomem *tm_base, *srot_base; 745 struct device *dev = priv->dev; 746 u32 ver_minor; 747 struct resource *res; 748 u32 enabled; 749 int ret, i, j; 750 struct platform_device *op = of_find_device_by_node(priv->dev->of_node); 751 752 if (!op) 753 return -EINVAL; 754 755 if (op->num_resources > 1) { 756 /* DT with separate SROT and TM address space */ 757 priv->tm_offset = 0; 758 res = platform_get_resource(op, IORESOURCE_MEM, 1); 759 srot_base = devm_ioremap_resource(dev, res); 760 if (IS_ERR(srot_base)) { 761 ret = PTR_ERR(srot_base); 762 goto err_put_device; 763 } 764 765 priv->srot_map = devm_regmap_init_mmio(dev, srot_base, 766 &tsens_srot_config); 767 if (IS_ERR(priv->srot_map)) { 768 ret = PTR_ERR(priv->srot_map); 769 goto err_put_device; 770 } 771 } else { 772 /* old DTs where SROT and TM were in a contiguous 2K block */ 773 priv->tm_offset = 0x1000; 774 } 775 776 if (tsens_version(priv) >= VER_0_1) { 777 res = platform_get_resource(op, IORESOURCE_MEM, 0); 778 tm_base = devm_ioremap_resource(dev, res); 779 if (IS_ERR(tm_base)) { 780 ret = PTR_ERR(tm_base); 781 goto err_put_device; 782 } 783 784 priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config); 785 } else { /* VER_0 share the same gcc regs using a syscon */ 786 struct device *parent = priv->dev->parent; 787 788 if (parent) 789 priv->tm_map = syscon_node_to_regmap(parent->of_node); 790 } 791 792 if (IS_ERR_OR_NULL(priv->tm_map)) { 793 if (!priv->tm_map) 794 ret = -ENODEV; 795 else 796 ret = PTR_ERR(priv->tm_map); 797 goto err_put_device; 798 } 799 800 /* VER_0 have only tm_map */ 801 if (!priv->srot_map) 802 priv->srot_map = priv->tm_map; 803 804 if (tsens_version(priv) > VER_0_1) { 805 for (i = VER_MAJOR; i <= VER_STEP; i++) { 806 priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map, 807 priv->fields[i]); 808 if (IS_ERR(priv->rf[i])) { 809 ret = PTR_ERR(priv->rf[i]); 810 goto err_put_device; 811 } 812 } 813 ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor); 814 if (ret) 815 goto err_put_device; 816 } 817 818 priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map, 819 priv->fields[TSENS_EN]); 820 if (IS_ERR(priv->rf[TSENS_EN])) { 821 ret = PTR_ERR(priv->rf[TSENS_EN]); 822 goto err_put_device; 823 } 824 /* in VER_0 TSENS need to be explicitly enabled */ 825 if (tsens_version(priv) == VER_0) 826 regmap_field_write(priv->rf[TSENS_EN], 1); 827 828 ret = regmap_field_read(priv->rf[TSENS_EN], &enabled); 829 if (ret) 830 goto err_put_device; 831 if (!enabled) { 832 dev_err(dev, "%s: device not enabled\n", __func__); 833 ret = -ENODEV; 834 goto err_put_device; 835 } 836 837 priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map, 838 priv->fields[SENSOR_EN]); 839 if (IS_ERR(priv->rf[SENSOR_EN])) { 840 ret = PTR_ERR(priv->rf[SENSOR_EN]); 841 goto err_put_device; 842 } 843 priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map, 844 priv->fields[INT_EN]); 845 if (IS_ERR(priv->rf[INT_EN])) { 846 ret = PTR_ERR(priv->rf[INT_EN]); 847 goto err_put_device; 848 } 849 850 priv->rf[TSENS_SW_RST] = 851 devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_SW_RST]); 852 if (IS_ERR(priv->rf[TSENS_SW_RST])) { 853 ret = PTR_ERR(priv->rf[TSENS_SW_RST]); 854 goto err_put_device; 855 } 856 857 priv->rf[TRDY] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[TRDY]); 858 if (IS_ERR(priv->rf[TRDY])) { 859 ret = PTR_ERR(priv->rf[TRDY]); 860 goto err_put_device; 861 } 862 863 /* This loop might need changes if enum regfield_ids is reordered */ 864 for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) { 865 for (i = 0; i < priv->feat->max_sensors; i++) { 866 int idx = j + i; 867 868 priv->rf[idx] = devm_regmap_field_alloc(dev, 869 priv->tm_map, 870 priv->fields[idx]); 871 if (IS_ERR(priv->rf[idx])) { 872 ret = PTR_ERR(priv->rf[idx]); 873 goto err_put_device; 874 } 875 } 876 } 877 878 if (priv->feat->crit_int || tsens_version(priv) < VER_0_1) { 879 /* Loop might need changes if enum regfield_ids is reordered */ 880 for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) { 881 for (i = 0; i < priv->feat->max_sensors; i++) { 882 int idx = j + i; 883 884 priv->rf[idx] = 885 devm_regmap_field_alloc(dev, 886 priv->tm_map, 887 priv->fields[idx]); 888 if (IS_ERR(priv->rf[idx])) { 889 ret = PTR_ERR(priv->rf[idx]); 890 goto err_put_device; 891 } 892 } 893 } 894 } 895 896 if (tsens_version(priv) > VER_1_X && ver_minor > 2) { 897 /* Watchdog is present only on v2.3+ */ 898 priv->feat->has_watchdog = 1; 899 for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) { 900 priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map, 901 priv->fields[i]); 902 if (IS_ERR(priv->rf[i])) { 903 ret = PTR_ERR(priv->rf[i]); 904 goto err_put_device; 905 } 906 } 907 /* 908 * Watchdog is already enabled, unmask the bark. 909 * Disable cycle completion monitoring 910 */ 911 regmap_field_write(priv->rf[WDOG_BARK_MASK], 0); 912 regmap_field_write(priv->rf[CC_MON_MASK], 1); 913 } 914 915 spin_lock_init(&priv->ul_lock); 916 917 /* VER_0 interrupt doesn't need to be enabled */ 918 if (tsens_version(priv) >= VER_0_1) 919 tsens_enable_irq(priv); 920 921 tsens_debug_init(op); 922 923 err_put_device: 924 put_device(&op->dev); 925 return ret; 926 } 927 928 static int tsens_get_temp(void *data, int *temp) 929 { 930 struct tsens_sensor *s = data; 931 struct tsens_priv *priv = s->priv; 932 933 return priv->ops->get_temp(s, temp); 934 } 935 936 static int tsens_get_trend(void *data, int trip, enum thermal_trend *trend) 937 { 938 struct tsens_sensor *s = data; 939 struct tsens_priv *priv = s->priv; 940 941 if (priv->ops->get_trend) 942 return priv->ops->get_trend(s, trend); 943 944 return -ENOTSUPP; 945 } 946 947 static int __maybe_unused tsens_suspend(struct device *dev) 948 { 949 struct tsens_priv *priv = dev_get_drvdata(dev); 950 951 if (priv->ops && priv->ops->suspend) 952 return priv->ops->suspend(priv); 953 954 return 0; 955 } 956 957 static int __maybe_unused tsens_resume(struct device *dev) 958 { 959 struct tsens_priv *priv = dev_get_drvdata(dev); 960 961 if (priv->ops && priv->ops->resume) 962 return priv->ops->resume(priv); 963 964 return 0; 965 } 966 967 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume); 968 969 static const struct of_device_id tsens_table[] = { 970 { 971 .compatible = "qcom,ipq8064-tsens", 972 .data = &data_8960, 973 }, { 974 .compatible = "qcom,mdm9607-tsens", 975 .data = &data_9607, 976 }, { 977 .compatible = "qcom,msm8916-tsens", 978 .data = &data_8916, 979 }, { 980 .compatible = "qcom,msm8939-tsens", 981 .data = &data_8939, 982 }, { 983 .compatible = "qcom,msm8960-tsens", 984 .data = &data_8960, 985 }, { 986 .compatible = "qcom,msm8974-tsens", 987 .data = &data_8974, 988 }, { 989 .compatible = "qcom,msm8976-tsens", 990 .data = &data_8976, 991 }, { 992 .compatible = "qcom,msm8996-tsens", 993 .data = &data_8996, 994 }, { 995 .compatible = "qcom,tsens-v1", 996 .data = &data_tsens_v1, 997 }, { 998 .compatible = "qcom,tsens-v2", 999 .data = &data_tsens_v2, 1000 }, 1001 {} 1002 }; 1003 MODULE_DEVICE_TABLE(of, tsens_table); 1004 1005 static const struct thermal_zone_of_device_ops tsens_of_ops = { 1006 .get_temp = tsens_get_temp, 1007 .get_trend = tsens_get_trend, 1008 .set_trips = tsens_set_trips, 1009 }; 1010 1011 static int tsens_register_irq(struct tsens_priv *priv, char *irqname, 1012 irq_handler_t thread_fn) 1013 { 1014 struct platform_device *pdev; 1015 int ret, irq; 1016 1017 pdev = of_find_device_by_node(priv->dev->of_node); 1018 if (!pdev) 1019 return -ENODEV; 1020 1021 irq = platform_get_irq_byname(pdev, irqname); 1022 if (irq < 0) { 1023 ret = irq; 1024 /* For old DTs with no IRQ defined */ 1025 if (irq == -ENXIO) 1026 ret = 0; 1027 } else { 1028 /* VER_0 interrupt is TRIGGER_RISING, VER_0_1 and up is ONESHOT */ 1029 if (tsens_version(priv) == VER_0) 1030 ret = devm_request_threaded_irq(&pdev->dev, irq, 1031 thread_fn, NULL, 1032 IRQF_TRIGGER_RISING, 1033 dev_name(&pdev->dev), 1034 priv); 1035 else 1036 ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, 1037 thread_fn, IRQF_ONESHOT, 1038 dev_name(&pdev->dev), 1039 priv); 1040 1041 if (ret) 1042 dev_err(&pdev->dev, "%s: failed to get irq\n", 1043 __func__); 1044 else 1045 enable_irq_wake(irq); 1046 } 1047 1048 put_device(&pdev->dev); 1049 return ret; 1050 } 1051 1052 static int tsens_register(struct tsens_priv *priv) 1053 { 1054 int i, ret; 1055 struct thermal_zone_device *tzd; 1056 1057 for (i = 0; i < priv->num_sensors; i++) { 1058 priv->sensor[i].priv = priv; 1059 tzd = devm_thermal_zone_of_sensor_register(priv->dev, priv->sensor[i].hw_id, 1060 &priv->sensor[i], 1061 &tsens_of_ops); 1062 if (IS_ERR(tzd)) 1063 continue; 1064 priv->sensor[i].tzd = tzd; 1065 if (priv->ops->enable) 1066 priv->ops->enable(priv, i); 1067 1068 if (devm_thermal_add_hwmon_sysfs(tzd)) 1069 dev_warn(priv->dev, 1070 "Failed to add hwmon sysfs attributes\n"); 1071 } 1072 1073 /* VER_0 require to set MIN and MAX THRESH 1074 * These 2 regs are set using the: 1075 * - CRIT_THRESH_0 for MAX THRESH hardcoded to 120°C 1076 * - CRIT_THRESH_1 for MIN THRESH hardcoded to 0°C 1077 */ 1078 if (tsens_version(priv) < VER_0_1) { 1079 regmap_field_write(priv->rf[CRIT_THRESH_0], 1080 tsens_mC_to_hw(priv->sensor, 120000)); 1081 1082 regmap_field_write(priv->rf[CRIT_THRESH_1], 1083 tsens_mC_to_hw(priv->sensor, 0)); 1084 } 1085 1086 ret = tsens_register_irq(priv, "uplow", tsens_irq_thread); 1087 if (ret < 0) 1088 return ret; 1089 1090 if (priv->feat->crit_int) 1091 ret = tsens_register_irq(priv, "critical", 1092 tsens_critical_irq_thread); 1093 1094 return ret; 1095 } 1096 1097 static int tsens_probe(struct platform_device *pdev) 1098 { 1099 int ret, i; 1100 struct device *dev; 1101 struct device_node *np; 1102 struct tsens_priv *priv; 1103 const struct tsens_plat_data *data; 1104 const struct of_device_id *id; 1105 u32 num_sensors; 1106 1107 if (pdev->dev.of_node) 1108 dev = &pdev->dev; 1109 else 1110 dev = pdev->dev.parent; 1111 1112 np = dev->of_node; 1113 1114 id = of_match_node(tsens_table, np); 1115 if (id) 1116 data = id->data; 1117 else 1118 data = &data_8960; 1119 1120 num_sensors = data->num_sensors; 1121 1122 if (np) 1123 of_property_read_u32(np, "#qcom,sensors", &num_sensors); 1124 1125 if (num_sensors <= 0) { 1126 dev_err(dev, "%s: invalid number of sensors\n", __func__); 1127 return -EINVAL; 1128 } 1129 1130 priv = devm_kzalloc(dev, 1131 struct_size(priv, sensor, num_sensors), 1132 GFP_KERNEL); 1133 if (!priv) 1134 return -ENOMEM; 1135 1136 priv->dev = dev; 1137 priv->num_sensors = num_sensors; 1138 priv->ops = data->ops; 1139 for (i = 0; i < priv->num_sensors; i++) { 1140 if (data->hw_ids) 1141 priv->sensor[i].hw_id = data->hw_ids[i]; 1142 else 1143 priv->sensor[i].hw_id = i; 1144 } 1145 priv->feat = data->feat; 1146 priv->fields = data->fields; 1147 1148 platform_set_drvdata(pdev, priv); 1149 1150 if (!priv->ops || !priv->ops->init || !priv->ops->get_temp) 1151 return -EINVAL; 1152 1153 ret = priv->ops->init(priv); 1154 if (ret < 0) { 1155 dev_err(dev, "%s: init failed\n", __func__); 1156 return ret; 1157 } 1158 1159 if (priv->ops->calibrate) { 1160 ret = priv->ops->calibrate(priv); 1161 if (ret < 0) { 1162 if (ret != -EPROBE_DEFER) 1163 dev_err(dev, "%s: calibration failed\n", __func__); 1164 return ret; 1165 } 1166 } 1167 1168 return tsens_register(priv); 1169 } 1170 1171 static int tsens_remove(struct platform_device *pdev) 1172 { 1173 struct tsens_priv *priv = platform_get_drvdata(pdev); 1174 1175 debugfs_remove_recursive(priv->debug_root); 1176 tsens_disable_irq(priv); 1177 if (priv->ops->disable) 1178 priv->ops->disable(priv); 1179 1180 return 0; 1181 } 1182 1183 static struct platform_driver tsens_driver = { 1184 .probe = tsens_probe, 1185 .remove = tsens_remove, 1186 .driver = { 1187 .name = "qcom-tsens", 1188 .pm = &tsens_pm_ops, 1189 .of_match_table = tsens_table, 1190 }, 1191 }; 1192 module_platform_driver(tsens_driver); 1193 1194 MODULE_LICENSE("GPL v2"); 1195 MODULE_DESCRIPTION("QCOM Temperature Sensor driver"); 1196 MODULE_ALIAS("platform:qcom-tsens"); 1197