xref: /openbmc/linux/drivers/thermal/qcom/tsens.c (revision 18da174d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2019, 2020, Linaro Ltd.
5  */
6 
7 #include <linux/debugfs.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_platform.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21 #include "../thermal_hwmon.h"
22 #include "tsens.h"
23 
24 /**
25  * struct tsens_irq_data - IRQ status and temperature violations
26  * @up_viol:        upper threshold violated
27  * @up_thresh:      upper threshold temperature value
28  * @up_irq_mask:    mask register for upper threshold irqs
29  * @up_irq_clear:   clear register for uppper threshold irqs
30  * @low_viol:       lower threshold violated
31  * @low_thresh:     lower threshold temperature value
32  * @low_irq_mask:   mask register for lower threshold irqs
33  * @low_irq_clear:  clear register for lower threshold irqs
34  * @crit_viol:      critical threshold violated
35  * @crit_thresh:    critical threshold temperature value
36  * @crit_irq_mask:  mask register for critical threshold irqs
37  * @crit_irq_clear: clear register for critical threshold irqs
38  *
39  * Structure containing data about temperature threshold settings and
40  * irq status if they were violated.
41  */
42 struct tsens_irq_data {
43 	u32 up_viol;
44 	int up_thresh;
45 	u32 up_irq_mask;
46 	u32 up_irq_clear;
47 	u32 low_viol;
48 	int low_thresh;
49 	u32 low_irq_mask;
50 	u32 low_irq_clear;
51 	u32 crit_viol;
52 	u32 crit_thresh;
53 	u32 crit_irq_mask;
54 	u32 crit_irq_clear;
55 };
56 
57 char *qfprom_read(struct device *dev, const char *cname)
58 {
59 	struct nvmem_cell *cell;
60 	ssize_t data;
61 	char *ret;
62 
63 	cell = nvmem_cell_get(dev, cname);
64 	if (IS_ERR(cell))
65 		return ERR_CAST(cell);
66 
67 	ret = nvmem_cell_read(cell, &data);
68 	nvmem_cell_put(cell);
69 
70 	return ret;
71 }
72 
73 int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, bool backup)
74 {
75 	u32 mode;
76 	u32 base1, base2;
77 	char name[] = "sXX_pY_backup"; /* s10_p1_backup */
78 	int i, ret;
79 
80 	if (priv->num_sensors > MAX_SENSORS)
81 		return -EINVAL;
82 
83 	ret = snprintf(name, sizeof(name), "mode%s", backup ? "_backup" : "");
84 	if (ret < 0)
85 		return ret;
86 
87 	ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &mode);
88 	if (ret == -ENOENT)
89 		dev_warn(priv->dev, "Please migrate to separate nvmem cells for calibration data\n");
90 	if (ret < 0)
91 		return ret;
92 
93 	dev_dbg(priv->dev, "calibration mode is %d\n", mode);
94 
95 	ret = snprintf(name, sizeof(name), "base1%s", backup ? "_backup" : "");
96 	if (ret < 0)
97 		return ret;
98 
99 	ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &base1);
100 	if (ret < 0)
101 		return ret;
102 
103 	ret = snprintf(name, sizeof(name), "base2%s", backup ? "_backup" : "");
104 	if (ret < 0)
105 		return ret;
106 
107 	ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &base2);
108 	if (ret < 0)
109 		return ret;
110 
111 	for (i = 0; i < priv->num_sensors; i++) {
112 		ret = snprintf(name, sizeof(name), "s%d_p1%s", priv->sensor[i].hw_id,
113 			       backup ? "_backup" : "");
114 		if (ret < 0)
115 			return ret;
116 
117 		ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &p1[i]);
118 		if (ret)
119 			return ret;
120 
121 		ret = snprintf(name, sizeof(name), "s%d_p2%s", priv->sensor[i].hw_id,
122 			       backup ? "_backup" : "");
123 		if (ret < 0)
124 			return ret;
125 
126 		ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &p2[i]);
127 		if (ret)
128 			return ret;
129 	}
130 
131 	switch (mode) {
132 	case ONE_PT_CALIB:
133 		for (i = 0; i < priv->num_sensors; i++)
134 			p1[i] = p1[i] + (base1 << shift);
135 		break;
136 	case TWO_PT_CALIB:
137 		for (i = 0; i < priv->num_sensors; i++)
138 			p2[i] = (p2[i] + base2) << shift;
139 		fallthrough;
140 	case ONE_PT_CALIB2:
141 		for (i = 0; i < priv->num_sensors; i++)
142 			p1[i] = (p1[i] + base1) << shift;
143 		break;
144 	default:
145 		dev_dbg(priv->dev, "calibrationless mode\n");
146 		for (i = 0; i < priv->num_sensors; i++) {
147 			p1[i] = 500;
148 			p2[i] = 780;
149 		}
150 	}
151 
152 	return mode;
153 }
154 
155 int tsens_calibrate_nvmem(struct tsens_priv *priv, int shift)
156 {
157 	u32 p1[MAX_SENSORS], p2[MAX_SENSORS];
158 	int mode;
159 
160 	mode = tsens_read_calibration(priv, shift, p1, p2, false);
161 	if (mode < 0)
162 		return mode;
163 
164 	compute_intercept_slope(priv, p1, p2, mode);
165 
166 	return 0;
167 }
168 
169 int tsens_calibrate_common(struct tsens_priv *priv)
170 {
171 	return tsens_calibrate_nvmem(priv, 2);
172 }
173 
174 static u32 tsens_read_cell(const struct tsens_single_value *cell, u8 len, u32 *data0, u32 *data1)
175 {
176 	u32 val;
177 	u32 *data = cell->blob ? data1 : data0;
178 
179 	if (cell->shift + len <= 32) {
180 		val = data[cell->idx] >> cell->shift;
181 	} else {
182 		u8 part = 32 - cell->shift;
183 
184 		val = data[cell->idx] >> cell->shift;
185 		val |= data[cell->idx + 1] << part;
186 	}
187 
188 	return val & ((1 << len) - 1);
189 }
190 
191 int tsens_read_calibration_legacy(struct tsens_priv *priv,
192 				  const struct tsens_legacy_calibration_format *format,
193 				  u32 *p1, u32 *p2,
194 				  u32 *cdata0, u32 *cdata1)
195 {
196 	u32 mode, invalid;
197 	u32 base1, base2;
198 	int i;
199 
200 	mode = tsens_read_cell(&format->mode, 2, cdata0, cdata1);
201 	invalid = tsens_read_cell(&format->invalid, 1, cdata0, cdata1);
202 	if (invalid)
203 		mode = NO_PT_CALIB;
204 	dev_dbg(priv->dev, "calibration mode is %d\n", mode);
205 
206 	base1 = tsens_read_cell(&format->base[0], format->base_len, cdata0, cdata1);
207 	base2 = tsens_read_cell(&format->base[1], format->base_len, cdata0, cdata1);
208 
209 	for (i = 0; i < priv->num_sensors; i++) {
210 		p1[i] = tsens_read_cell(&format->sp[i][0], format->sp_len, cdata0, cdata1);
211 		p2[i] = tsens_read_cell(&format->sp[i][1], format->sp_len, cdata0, cdata1);
212 	}
213 
214 	switch (mode) {
215 	case ONE_PT_CALIB:
216 		for (i = 0; i < priv->num_sensors; i++)
217 			p1[i] = p1[i] + (base1 << format->base_shift);
218 		break;
219 	case TWO_PT_CALIB:
220 		for (i = 0; i < priv->num_sensors; i++)
221 			p2[i] = (p2[i] + base2) << format->base_shift;
222 		fallthrough;
223 	case ONE_PT_CALIB2:
224 		for (i = 0; i < priv->num_sensors; i++)
225 			p1[i] = (p1[i] + base1) << format->base_shift;
226 		break;
227 	default:
228 		dev_dbg(priv->dev, "calibrationless mode\n");
229 		for (i = 0; i < priv->num_sensors; i++) {
230 			p1[i] = 500;
231 			p2[i] = 780;
232 		}
233 	}
234 
235 	return mode;
236 }
237 
238 /*
239  * Use this function on devices where slope and offset calculations
240  * depend on calibration data read from qfprom. On others the slope
241  * and offset values are derived from tz->tzp->slope and tz->tzp->offset
242  * resp.
243  */
244 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
245 			     u32 *p2, u32 mode)
246 {
247 	int i;
248 	int num, den;
249 
250 	for (i = 0; i < priv->num_sensors; i++) {
251 		dev_dbg(priv->dev,
252 			"%s: sensor%d - data_point1:%#x data_point2:%#x\n",
253 			__func__, i, p1[i], p2[i]);
254 
255 		if (!priv->sensor[i].slope)
256 			priv->sensor[i].slope = SLOPE_DEFAULT;
257 		if (mode == TWO_PT_CALIB) {
258 			/*
259 			 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
260 			 *	temp_120_degc - temp_30_degc (x2 - x1)
261 			 */
262 			num = p2[i] - p1[i];
263 			num *= SLOPE_FACTOR;
264 			den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
265 			priv->sensor[i].slope = num / den;
266 		}
267 
268 		priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
269 				(CAL_DEGC_PT1 *
270 				priv->sensor[i].slope);
271 		dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
272 			priv->sensor[i].offset);
273 	}
274 }
275 
276 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
277 {
278 	u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
279 
280 	pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
281 	return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
282 }
283 
284 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
285 {
286 	int degc, num, den;
287 
288 	num = (adc_code * SLOPE_FACTOR) - s->offset;
289 	den = s->slope;
290 
291 	if (num > 0)
292 		degc = num + (den / 2);
293 	else if (num < 0)
294 		degc = num - (den / 2);
295 	else
296 		degc = num;
297 
298 	degc /= den;
299 
300 	return degc;
301 }
302 
303 /**
304  * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
305  * @s:     Pointer to sensor struct
306  * @field: Index into regmap_field array pointing to temperature data
307  *
308  * This function handles temperature returned in ADC code or deciCelsius
309  * depending on IP version.
310  *
311  * Return: Temperature in milliCelsius on success, a negative errno will
312  * be returned in error cases
313  */
314 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
315 {
316 	struct tsens_priv *priv = s->priv;
317 	u32 resolution;
318 	u32 temp = 0;
319 	int ret;
320 
321 	resolution = priv->fields[LAST_TEMP_0].msb -
322 		priv->fields[LAST_TEMP_0].lsb;
323 
324 	ret = regmap_field_read(priv->rf[field], &temp);
325 	if (ret)
326 		return ret;
327 
328 	/* Convert temperature from ADC code to milliCelsius */
329 	if (priv->feat->adc)
330 		return code_to_degc(temp, s) * 1000;
331 
332 	/* deciCelsius -> milliCelsius along with sign extension */
333 	return sign_extend32(temp, resolution) * 100;
334 }
335 
336 /**
337  * tsens_mC_to_hw - Convert temperature to hardware register value
338  * @s: Pointer to sensor struct
339  * @temp: temperature in milliCelsius to be programmed to hardware
340  *
341  * This function outputs the value to be written to hardware in ADC code
342  * or deciCelsius depending on IP version.
343  *
344  * Return: ADC code or temperature in deciCelsius.
345  */
346 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
347 {
348 	struct tsens_priv *priv = s->priv;
349 
350 	/* milliC to adc code */
351 	if (priv->feat->adc)
352 		return degc_to_code(temp / 1000, s);
353 
354 	/* milliC to deciC */
355 	return temp / 100;
356 }
357 
358 static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
359 {
360 	return priv->feat->ver_major;
361 }
362 
363 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
364 				   enum tsens_irq_type irq_type, bool enable)
365 {
366 	u32 index = 0;
367 
368 	switch (irq_type) {
369 	case UPPER:
370 		index = UP_INT_CLEAR_0 + hw_id;
371 		break;
372 	case LOWER:
373 		index = LOW_INT_CLEAR_0 + hw_id;
374 		break;
375 	case CRITICAL:
376 		/* No critical interrupts before v2 */
377 		return;
378 	}
379 	regmap_field_write(priv->rf[index], enable ? 0 : 1);
380 }
381 
382 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
383 				   enum tsens_irq_type irq_type, bool enable)
384 {
385 	u32 index_mask = 0, index_clear = 0;
386 
387 	/*
388 	 * To enable the interrupt flag for a sensor:
389 	 *    - clear the mask bit
390 	 * To disable the interrupt flag for a sensor:
391 	 *    - Mask further interrupts for this sensor
392 	 *    - Write 1 followed by 0 to clear the interrupt
393 	 */
394 	switch (irq_type) {
395 	case UPPER:
396 		index_mask  = UP_INT_MASK_0 + hw_id;
397 		index_clear = UP_INT_CLEAR_0 + hw_id;
398 		break;
399 	case LOWER:
400 		index_mask  = LOW_INT_MASK_0 + hw_id;
401 		index_clear = LOW_INT_CLEAR_0 + hw_id;
402 		break;
403 	case CRITICAL:
404 		index_mask  = CRIT_INT_MASK_0 + hw_id;
405 		index_clear = CRIT_INT_CLEAR_0 + hw_id;
406 		break;
407 	}
408 
409 	if (enable) {
410 		regmap_field_write(priv->rf[index_mask], 0);
411 	} else {
412 		regmap_field_write(priv->rf[index_mask],  1);
413 		regmap_field_write(priv->rf[index_clear], 1);
414 		regmap_field_write(priv->rf[index_clear], 0);
415 	}
416 }
417 
418 /**
419  * tsens_set_interrupt - Set state of an interrupt
420  * @priv: Pointer to tsens controller private data
421  * @hw_id: Hardware ID aka. sensor number
422  * @irq_type: irq_type from enum tsens_irq_type
423  * @enable: false = disable, true = enable
424  *
425  * Call IP-specific function to set state of an interrupt
426  *
427  * Return: void
428  */
429 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
430 				enum tsens_irq_type irq_type, bool enable)
431 {
432 	dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
433 		irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
434 		enable ? "en" : "dis");
435 	if (tsens_version(priv) > VER_1_X)
436 		tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
437 	else
438 		tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
439 }
440 
441 /**
442  * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
443  * @priv: Pointer to tsens controller private data
444  * @hw_id: Hardware ID aka. sensor number
445  * @d: Pointer to irq state data
446  *
447  * Return: 0 if threshold was not violated, 1 if it was violated and negative
448  * errno in case of errors
449  */
450 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
451 				    struct tsens_irq_data *d)
452 {
453 	int ret;
454 
455 	ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
456 	if (ret)
457 		return ret;
458 	ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
459 	if (ret)
460 		return ret;
461 
462 	if (priv->feat->crit_int) {
463 		ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
464 					&d->crit_viol);
465 		if (ret)
466 			return ret;
467 	}
468 
469 	if (d->up_viol || d->low_viol || d->crit_viol)
470 		return 1;
471 
472 	return 0;
473 }
474 
475 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
476 				const struct tsens_sensor *s,
477 				struct tsens_irq_data *d)
478 {
479 	int ret;
480 
481 	ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
482 	if (ret)
483 		return ret;
484 	ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
485 	if (ret)
486 		return ret;
487 	if (tsens_version(priv) > VER_1_X) {
488 		ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
489 		if (ret)
490 			return ret;
491 		ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
492 		if (ret)
493 			return ret;
494 		ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
495 					&d->crit_irq_clear);
496 		if (ret)
497 			return ret;
498 		ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
499 					&d->crit_irq_mask);
500 		if (ret)
501 			return ret;
502 
503 		d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
504 	} else {
505 		/* No mask register on older TSENS */
506 		d->up_irq_mask = 0;
507 		d->low_irq_mask = 0;
508 		d->crit_irq_clear = 0;
509 		d->crit_irq_mask = 0;
510 		d->crit_thresh = 0;
511 	}
512 
513 	d->up_thresh  = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
514 	d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
515 
516 	dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
517 		hw_id, __func__,
518 		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
519 		d->low_viol, d->up_viol, d->crit_viol,
520 		d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
521 		d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
522 	dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
523 		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
524 		d->low_thresh, d->up_thresh, d->crit_thresh);
525 
526 	return 0;
527 }
528 
529 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
530 {
531 	if (ver > VER_1_X)
532 		return mask & (1 << hw_id);
533 
534 	/* v1, v0.1 don't have a irq mask register */
535 	return 0;
536 }
537 
538 /**
539  * tsens_critical_irq_thread() - Threaded handler for critical interrupts
540  * @irq: irq number
541  * @data: tsens controller private data
542  *
543  * Check FSM watchdog bark status and clear if needed.
544  * Check all sensors to find ones that violated their critical threshold limits.
545  * Clear and then re-enable the interrupt.
546  *
547  * The level-triggered interrupt might deassert if the temperature returned to
548  * within the threshold limits by the time the handler got scheduled. We
549  * consider the irq to have been handled in that case.
550  *
551  * Return: IRQ_HANDLED
552  */
553 static irqreturn_t tsens_critical_irq_thread(int irq, void *data)
554 {
555 	struct tsens_priv *priv = data;
556 	struct tsens_irq_data d;
557 	int temp, ret, i;
558 	u32 wdog_status, wdog_count;
559 
560 	if (priv->feat->has_watchdog) {
561 		ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
562 					&wdog_status);
563 		if (ret)
564 			return ret;
565 
566 		if (wdog_status) {
567 			/* Clear WDOG interrupt */
568 			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
569 			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
570 			ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
571 						&wdog_count);
572 			if (ret)
573 				return ret;
574 			if (wdog_count)
575 				dev_dbg(priv->dev, "%s: watchdog count: %d\n",
576 					__func__, wdog_count);
577 
578 			/* Fall through to handle critical interrupts if any */
579 		}
580 	}
581 
582 	for (i = 0; i < priv->num_sensors; i++) {
583 		const struct tsens_sensor *s = &priv->sensor[i];
584 		u32 hw_id = s->hw_id;
585 
586 		if (!s->tzd)
587 			continue;
588 		if (!tsens_threshold_violated(priv, hw_id, &d))
589 			continue;
590 		ret = get_temp_tsens_valid(s, &temp);
591 		if (ret) {
592 			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
593 				hw_id, __func__);
594 			continue;
595 		}
596 
597 		tsens_read_irq_state(priv, hw_id, s, &d);
598 		if (d.crit_viol &&
599 		    !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
600 			/* Mask critical interrupts, unused on Linux */
601 			tsens_set_interrupt(priv, hw_id, CRITICAL, false);
602 		}
603 	}
604 
605 	return IRQ_HANDLED;
606 }
607 
608 /**
609  * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
610  * @irq: irq number
611  * @data: tsens controller private data
612  *
613  * Check all sensors to find ones that violated their threshold limits. If the
614  * temperature is still outside the limits, call thermal_zone_device_update() to
615  * update the thresholds, else re-enable the interrupts.
616  *
617  * The level-triggered interrupt might deassert if the temperature returned to
618  * within the threshold limits by the time the handler got scheduled. We
619  * consider the irq to have been handled in that case.
620  *
621  * Return: IRQ_HANDLED
622  */
623 static irqreturn_t tsens_irq_thread(int irq, void *data)
624 {
625 	struct tsens_priv *priv = data;
626 	struct tsens_irq_data d;
627 	int i;
628 
629 	for (i = 0; i < priv->num_sensors; i++) {
630 		const struct tsens_sensor *s = &priv->sensor[i];
631 		u32 hw_id = s->hw_id;
632 
633 		if (!s->tzd)
634 			continue;
635 		if (!tsens_threshold_violated(priv, hw_id, &d))
636 			continue;
637 
638 		thermal_zone_device_update(s->tzd, THERMAL_EVENT_UNSPECIFIED);
639 
640 		if (tsens_version(priv) < VER_0_1) {
641 			/* Constraint: There is only 1 interrupt control register for all
642 			 * 11 temperature sensor. So monitoring more than 1 sensor based
643 			 * on interrupts will yield inconsistent result. To overcome this
644 			 * issue we will monitor only sensor 0 which is the master sensor.
645 			 */
646 			break;
647 		}
648 	}
649 
650 	return IRQ_HANDLED;
651 }
652 
653 /**
654  * tsens_combined_irq_thread() - Threaded interrupt handler for combined interrupts
655  * @irq: irq number
656  * @data: tsens controller private data
657  *
658  * Handle the combined interrupt as if it were 2 separate interrupts, so call the
659  * critical handler first and then the up/low one.
660  *
661  * Return: IRQ_HANDLED
662  */
663 static irqreturn_t tsens_combined_irq_thread(int irq, void *data)
664 {
665 	irqreturn_t ret;
666 
667 	ret = tsens_critical_irq_thread(irq, data);
668 	if (ret != IRQ_HANDLED)
669 		return ret;
670 
671 	return tsens_irq_thread(irq, data);
672 }
673 
674 static int tsens_set_trips(struct thermal_zone_device *tz, int low, int high)
675 {
676 	struct tsens_sensor *s = thermal_zone_device_priv(tz);
677 	struct tsens_priv *priv = s->priv;
678 	struct device *dev = priv->dev;
679 	struct tsens_irq_data d;
680 	unsigned long flags;
681 	int high_val, low_val, cl_high, cl_low;
682 	u32 hw_id = s->hw_id;
683 
684 	if (tsens_version(priv) < VER_0_1) {
685 		/* Pre v0.1 IP had a single register for each type of interrupt
686 		 * and thresholds
687 		 */
688 		hw_id = 0;
689 	}
690 
691 	dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
692 		hw_id, __func__, low, high);
693 
694 	cl_high = clamp_val(high, priv->feat->trip_min_temp, priv->feat->trip_max_temp);
695 	cl_low  = clamp_val(low, priv->feat->trip_min_temp, priv->feat->trip_max_temp);
696 
697 	high_val = tsens_mC_to_hw(s, cl_high);
698 	low_val  = tsens_mC_to_hw(s, cl_low);
699 
700 	spin_lock_irqsave(&priv->ul_lock, flags);
701 
702 	tsens_read_irq_state(priv, hw_id, s, &d);
703 
704 	/* Write the new thresholds and clear the status */
705 	regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
706 	regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
707 	tsens_set_interrupt(priv, hw_id, LOWER, true);
708 	tsens_set_interrupt(priv, hw_id, UPPER, true);
709 
710 	spin_unlock_irqrestore(&priv->ul_lock, flags);
711 
712 	dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
713 		hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
714 
715 	return 0;
716 }
717 
718 static int tsens_enable_irq(struct tsens_priv *priv)
719 {
720 	int ret;
721 	int val = tsens_version(priv) > VER_1_X ? 7 : 1;
722 
723 	ret = regmap_field_write(priv->rf[INT_EN], val);
724 	if (ret < 0)
725 		dev_err(priv->dev, "%s: failed to enable interrupts\n",
726 			__func__);
727 
728 	return ret;
729 }
730 
731 static void tsens_disable_irq(struct tsens_priv *priv)
732 {
733 	regmap_field_write(priv->rf[INT_EN], 0);
734 }
735 
736 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
737 {
738 	struct tsens_priv *priv = s->priv;
739 	int hw_id = s->hw_id;
740 	u32 temp_idx = LAST_TEMP_0 + hw_id;
741 	u32 valid_idx = VALID_0 + hw_id;
742 	u32 valid;
743 	int ret;
744 
745 	/* VER_0 doesn't have VALID bit */
746 	if (tsens_version(priv) == VER_0)
747 		goto get_temp;
748 
749 	/* Valid bit is 0 for 6 AHB clock cycles.
750 	 * At 19.2MHz, 1 AHB clock is ~60ns.
751 	 * We should enter this loop very, very rarely.
752 	 * Wait 1 us since it's the min of poll_timeout macro.
753 	 * Old value was 400 ns.
754 	 */
755 	ret = regmap_field_read_poll_timeout(priv->rf[valid_idx], valid,
756 					     valid, 1, 20 * USEC_PER_MSEC);
757 	if (ret)
758 		return ret;
759 
760 get_temp:
761 	/* Valid bit is set, OK to read the temperature */
762 	*temp = tsens_hw_to_mC(s, temp_idx);
763 
764 	return 0;
765 }
766 
767 int get_temp_common(const struct tsens_sensor *s, int *temp)
768 {
769 	struct tsens_priv *priv = s->priv;
770 	int hw_id = s->hw_id;
771 	int last_temp = 0, ret, trdy;
772 	unsigned long timeout;
773 
774 	timeout = jiffies + usecs_to_jiffies(TIMEOUT_US);
775 	do {
776 		if (tsens_version(priv) == VER_0) {
777 			ret = regmap_field_read(priv->rf[TRDY], &trdy);
778 			if (ret)
779 				return ret;
780 			if (!trdy)
781 				continue;
782 		}
783 
784 		ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
785 		if (ret)
786 			return ret;
787 
788 		*temp = code_to_degc(last_temp, s) * 1000;
789 
790 		return 0;
791 	} while (time_before(jiffies, timeout));
792 
793 	return -ETIMEDOUT;
794 }
795 
796 #ifdef CONFIG_DEBUG_FS
797 static int dbg_sensors_show(struct seq_file *s, void *data)
798 {
799 	struct platform_device *pdev = s->private;
800 	struct tsens_priv *priv = platform_get_drvdata(pdev);
801 	int i;
802 
803 	seq_printf(s, "max: %2d\nnum: %2d\n\n",
804 		   priv->feat->max_sensors, priv->num_sensors);
805 
806 	seq_puts(s, "      id    slope   offset\n--------------------------\n");
807 	for (i = 0;  i < priv->num_sensors; i++) {
808 		seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
809 			   priv->sensor[i].slope, priv->sensor[i].offset);
810 	}
811 
812 	return 0;
813 }
814 
815 static int dbg_version_show(struct seq_file *s, void *data)
816 {
817 	struct platform_device *pdev = s->private;
818 	struct tsens_priv *priv = platform_get_drvdata(pdev);
819 	u32 maj_ver, min_ver, step_ver;
820 	int ret;
821 
822 	if (tsens_version(priv) > VER_0_1) {
823 		ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
824 		if (ret)
825 			return ret;
826 		ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
827 		if (ret)
828 			return ret;
829 		ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
830 		if (ret)
831 			return ret;
832 		seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
833 	} else {
834 		seq_printf(s, "0.%d.0\n", priv->feat->ver_major);
835 	}
836 
837 	return 0;
838 }
839 
840 DEFINE_SHOW_ATTRIBUTE(dbg_version);
841 DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
842 
843 static void tsens_debug_init(struct platform_device *pdev)
844 {
845 	struct tsens_priv *priv = platform_get_drvdata(pdev);
846 
847 	priv->debug_root = debugfs_lookup("tsens", NULL);
848 	if (!priv->debug_root)
849 		priv->debug_root = debugfs_create_dir("tsens", NULL);
850 
851 	/* A directory for each instance of the TSENS IP */
852 	priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
853 	debugfs_create_file("version", 0444, priv->debug, pdev, &dbg_version_fops);
854 	debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
855 }
856 #else
857 static inline void tsens_debug_init(struct platform_device *pdev) {}
858 #endif
859 
860 static const struct regmap_config tsens_config = {
861 	.name		= "tm",
862 	.reg_bits	= 32,
863 	.val_bits	= 32,
864 	.reg_stride	= 4,
865 };
866 
867 static const struct regmap_config tsens_srot_config = {
868 	.name		= "srot",
869 	.reg_bits	= 32,
870 	.val_bits	= 32,
871 	.reg_stride	= 4,
872 };
873 
874 int __init init_common(struct tsens_priv *priv)
875 {
876 	void __iomem *tm_base, *srot_base;
877 	struct device *dev = priv->dev;
878 	u32 ver_minor;
879 	struct resource *res;
880 	u32 enabled;
881 	int ret, i, j;
882 	struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
883 
884 	if (!op)
885 		return -EINVAL;
886 
887 	if (op->num_resources > 1) {
888 		/* DT with separate SROT and TM address space */
889 		priv->tm_offset = 0;
890 		res = platform_get_resource(op, IORESOURCE_MEM, 1);
891 		srot_base = devm_ioremap_resource(dev, res);
892 		if (IS_ERR(srot_base)) {
893 			ret = PTR_ERR(srot_base);
894 			goto err_put_device;
895 		}
896 
897 		priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
898 						       &tsens_srot_config);
899 		if (IS_ERR(priv->srot_map)) {
900 			ret = PTR_ERR(priv->srot_map);
901 			goto err_put_device;
902 		}
903 	} else {
904 		/* old DTs where SROT and TM were in a contiguous 2K block */
905 		priv->tm_offset = 0x1000;
906 	}
907 
908 	if (tsens_version(priv) >= VER_0_1) {
909 		res = platform_get_resource(op, IORESOURCE_MEM, 0);
910 		tm_base = devm_ioremap_resource(dev, res);
911 		if (IS_ERR(tm_base)) {
912 			ret = PTR_ERR(tm_base);
913 			goto err_put_device;
914 		}
915 
916 		priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
917 	} else { /* VER_0 share the same gcc regs using a syscon */
918 		struct device *parent = priv->dev->parent;
919 
920 		if (parent)
921 			priv->tm_map = syscon_node_to_regmap(parent->of_node);
922 	}
923 
924 	if (IS_ERR_OR_NULL(priv->tm_map)) {
925 		if (!priv->tm_map)
926 			ret = -ENODEV;
927 		else
928 			ret = PTR_ERR(priv->tm_map);
929 		goto err_put_device;
930 	}
931 
932 	/* VER_0 have only tm_map */
933 	if (!priv->srot_map)
934 		priv->srot_map = priv->tm_map;
935 
936 	if (tsens_version(priv) > VER_0_1) {
937 		for (i = VER_MAJOR; i <= VER_STEP; i++) {
938 			priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
939 							      priv->fields[i]);
940 			if (IS_ERR(priv->rf[i])) {
941 				ret = PTR_ERR(priv->rf[i]);
942 				goto err_put_device;
943 			}
944 		}
945 		ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
946 		if (ret)
947 			goto err_put_device;
948 	}
949 
950 	priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
951 						     priv->fields[TSENS_EN]);
952 	if (IS_ERR(priv->rf[TSENS_EN])) {
953 		ret = PTR_ERR(priv->rf[TSENS_EN]);
954 		goto err_put_device;
955 	}
956 	/* in VER_0 TSENS need to be explicitly enabled */
957 	if (tsens_version(priv) == VER_0)
958 		regmap_field_write(priv->rf[TSENS_EN], 1);
959 
960 	ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
961 	if (ret)
962 		goto err_put_device;
963 	if (!enabled) {
964 		dev_err(dev, "%s: device not enabled\n", __func__);
965 		ret = -ENODEV;
966 		goto err_put_device;
967 	}
968 
969 	priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
970 						      priv->fields[SENSOR_EN]);
971 	if (IS_ERR(priv->rf[SENSOR_EN])) {
972 		ret = PTR_ERR(priv->rf[SENSOR_EN]);
973 		goto err_put_device;
974 	}
975 	priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
976 						   priv->fields[INT_EN]);
977 	if (IS_ERR(priv->rf[INT_EN])) {
978 		ret = PTR_ERR(priv->rf[INT_EN]);
979 		goto err_put_device;
980 	}
981 
982 	priv->rf[TSENS_SW_RST] =
983 		devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_SW_RST]);
984 	if (IS_ERR(priv->rf[TSENS_SW_RST])) {
985 		ret = PTR_ERR(priv->rf[TSENS_SW_RST]);
986 		goto err_put_device;
987 	}
988 
989 	priv->rf[TRDY] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[TRDY]);
990 	if (IS_ERR(priv->rf[TRDY])) {
991 		ret = PTR_ERR(priv->rf[TRDY]);
992 		goto err_put_device;
993 	}
994 
995 	/* This loop might need changes if enum regfield_ids is reordered */
996 	for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
997 		for (i = 0; i < priv->feat->max_sensors; i++) {
998 			int idx = j + i;
999 
1000 			priv->rf[idx] = devm_regmap_field_alloc(dev,
1001 								priv->tm_map,
1002 								priv->fields[idx]);
1003 			if (IS_ERR(priv->rf[idx])) {
1004 				ret = PTR_ERR(priv->rf[idx]);
1005 				goto err_put_device;
1006 			}
1007 		}
1008 	}
1009 
1010 	if (priv->feat->crit_int || tsens_version(priv) < VER_0_1) {
1011 		/* Loop might need changes if enum regfield_ids is reordered */
1012 		for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
1013 			for (i = 0; i < priv->feat->max_sensors; i++) {
1014 				int idx = j + i;
1015 
1016 				priv->rf[idx] =
1017 					devm_regmap_field_alloc(dev,
1018 								priv->tm_map,
1019 								priv->fields[idx]);
1020 				if (IS_ERR(priv->rf[idx])) {
1021 					ret = PTR_ERR(priv->rf[idx]);
1022 					goto err_put_device;
1023 				}
1024 			}
1025 		}
1026 	}
1027 
1028 	if (tsens_version(priv) > VER_1_X &&  ver_minor > 2) {
1029 		/* Watchdog is present only on v2.3+ */
1030 		priv->feat->has_watchdog = 1;
1031 		for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
1032 			priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
1033 							      priv->fields[i]);
1034 			if (IS_ERR(priv->rf[i])) {
1035 				ret = PTR_ERR(priv->rf[i]);
1036 				goto err_put_device;
1037 			}
1038 		}
1039 		/*
1040 		 * Watchdog is already enabled, unmask the bark.
1041 		 * Disable cycle completion monitoring
1042 		 */
1043 		regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
1044 		regmap_field_write(priv->rf[CC_MON_MASK], 1);
1045 	}
1046 
1047 	spin_lock_init(&priv->ul_lock);
1048 
1049 	/* VER_0 interrupt doesn't need to be enabled */
1050 	if (tsens_version(priv) >= VER_0_1)
1051 		tsens_enable_irq(priv);
1052 
1053 err_put_device:
1054 	put_device(&op->dev);
1055 	return ret;
1056 }
1057 
1058 static int tsens_get_temp(struct thermal_zone_device *tz, int *temp)
1059 {
1060 	struct tsens_sensor *s = thermal_zone_device_priv(tz);
1061 	struct tsens_priv *priv = s->priv;
1062 
1063 	return priv->ops->get_temp(s, temp);
1064 }
1065 
1066 static int  __maybe_unused tsens_suspend(struct device *dev)
1067 {
1068 	struct tsens_priv *priv = dev_get_drvdata(dev);
1069 
1070 	if (priv->ops && priv->ops->suspend)
1071 		return priv->ops->suspend(priv);
1072 
1073 	return 0;
1074 }
1075 
1076 static int __maybe_unused tsens_resume(struct device *dev)
1077 {
1078 	struct tsens_priv *priv = dev_get_drvdata(dev);
1079 
1080 	if (priv->ops && priv->ops->resume)
1081 		return priv->ops->resume(priv);
1082 
1083 	return 0;
1084 }
1085 
1086 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume);
1087 
1088 static const struct of_device_id tsens_table[] = {
1089 	{
1090 		.compatible = "qcom,ipq8064-tsens",
1091 		.data = &data_8960,
1092 	}, {
1093 		.compatible = "qcom,ipq8074-tsens",
1094 		.data = &data_ipq8074,
1095 	}, {
1096 		.compatible = "qcom,mdm9607-tsens",
1097 		.data = &data_9607,
1098 	}, {
1099 		.compatible = "qcom,msm8916-tsens",
1100 		.data = &data_8916,
1101 	}, {
1102 		.compatible = "qcom,msm8939-tsens",
1103 		.data = &data_8939,
1104 	}, {
1105 		.compatible = "qcom,msm8956-tsens",
1106 		.data = &data_8956,
1107 	}, {
1108 		.compatible = "qcom,msm8960-tsens",
1109 		.data = &data_8960,
1110 	}, {
1111 		.compatible = "qcom,msm8974-tsens",
1112 		.data = &data_8974,
1113 	}, {
1114 		.compatible = "qcom,msm8976-tsens",
1115 		.data = &data_8976,
1116 	}, {
1117 		.compatible = "qcom,msm8996-tsens",
1118 		.data = &data_8996,
1119 	}, {
1120 		.compatible = "qcom,tsens-v1",
1121 		.data = &data_tsens_v1,
1122 	}, {
1123 		.compatible = "qcom,tsens-v2",
1124 		.data = &data_tsens_v2,
1125 	},
1126 	{}
1127 };
1128 MODULE_DEVICE_TABLE(of, tsens_table);
1129 
1130 static const struct thermal_zone_device_ops tsens_of_ops = {
1131 	.get_temp = tsens_get_temp,
1132 	.set_trips = tsens_set_trips,
1133 };
1134 
1135 static int tsens_register_irq(struct tsens_priv *priv, char *irqname,
1136 			      irq_handler_t thread_fn)
1137 {
1138 	struct platform_device *pdev;
1139 	int ret, irq;
1140 
1141 	pdev = of_find_device_by_node(priv->dev->of_node);
1142 	if (!pdev)
1143 		return -ENODEV;
1144 
1145 	irq = platform_get_irq_byname(pdev, irqname);
1146 	if (irq < 0) {
1147 		ret = irq;
1148 		/* For old DTs with no IRQ defined */
1149 		if (irq == -ENXIO)
1150 			ret = 0;
1151 	} else {
1152 		/* VER_0 interrupt is TRIGGER_RISING, VER_0_1 and up is ONESHOT */
1153 		if (tsens_version(priv) == VER_0)
1154 			ret = devm_request_threaded_irq(&pdev->dev, irq,
1155 							thread_fn, NULL,
1156 							IRQF_TRIGGER_RISING,
1157 							dev_name(&pdev->dev),
1158 							priv);
1159 		else
1160 			ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
1161 							thread_fn, IRQF_ONESHOT,
1162 							dev_name(&pdev->dev),
1163 							priv);
1164 
1165 		if (ret)
1166 			dev_err(&pdev->dev, "%s: failed to get irq\n",
1167 				__func__);
1168 		else
1169 			enable_irq_wake(irq);
1170 	}
1171 
1172 	put_device(&pdev->dev);
1173 	return ret;
1174 }
1175 
1176 static int tsens_register(struct tsens_priv *priv)
1177 {
1178 	int i, ret;
1179 	struct thermal_zone_device *tzd;
1180 
1181 	for (i = 0;  i < priv->num_sensors; i++) {
1182 		priv->sensor[i].priv = priv;
1183 		tzd = devm_thermal_of_zone_register(priv->dev, priv->sensor[i].hw_id,
1184 						    &priv->sensor[i],
1185 						    &tsens_of_ops);
1186 		if (IS_ERR(tzd))
1187 			continue;
1188 		priv->sensor[i].tzd = tzd;
1189 		if (priv->ops->enable)
1190 			priv->ops->enable(priv, i);
1191 
1192 		if (devm_thermal_add_hwmon_sysfs(priv->dev, tzd))
1193 			dev_warn(priv->dev,
1194 				 "Failed to add hwmon sysfs attributes\n");
1195 	}
1196 
1197 	/* VER_0 require to set MIN and MAX THRESH
1198 	 * These 2 regs are set using the:
1199 	 * - CRIT_THRESH_0 for MAX THRESH hardcoded to 120°C
1200 	 * - CRIT_THRESH_1 for MIN THRESH hardcoded to   0°C
1201 	 */
1202 	if (tsens_version(priv) < VER_0_1) {
1203 		regmap_field_write(priv->rf[CRIT_THRESH_0],
1204 				   tsens_mC_to_hw(priv->sensor, 120000));
1205 
1206 		regmap_field_write(priv->rf[CRIT_THRESH_1],
1207 				   tsens_mC_to_hw(priv->sensor, 0));
1208 	}
1209 
1210 	if (priv->feat->combo_int) {
1211 		ret = tsens_register_irq(priv, "combined",
1212 					 tsens_combined_irq_thread);
1213 	} else {
1214 		ret = tsens_register_irq(priv, "uplow", tsens_irq_thread);
1215 		if (ret < 0)
1216 			return ret;
1217 
1218 		if (priv->feat->crit_int)
1219 			ret = tsens_register_irq(priv, "critical",
1220 						 tsens_critical_irq_thread);
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 static int tsens_probe(struct platform_device *pdev)
1227 {
1228 	int ret, i;
1229 	struct device *dev;
1230 	struct device_node *np;
1231 	struct tsens_priv *priv;
1232 	const struct tsens_plat_data *data;
1233 	const struct of_device_id *id;
1234 	u32 num_sensors;
1235 
1236 	if (pdev->dev.of_node)
1237 		dev = &pdev->dev;
1238 	else
1239 		dev = pdev->dev.parent;
1240 
1241 	np = dev->of_node;
1242 
1243 	id = of_match_node(tsens_table, np);
1244 	if (id)
1245 		data = id->data;
1246 	else
1247 		data = &data_8960;
1248 
1249 	num_sensors = data->num_sensors;
1250 
1251 	if (np)
1252 		of_property_read_u32(np, "#qcom,sensors", &num_sensors);
1253 
1254 	if (num_sensors <= 0) {
1255 		dev_err(dev, "%s: invalid number of sensors\n", __func__);
1256 		return -EINVAL;
1257 	}
1258 
1259 	priv = devm_kzalloc(dev,
1260 			     struct_size(priv, sensor, num_sensors),
1261 			     GFP_KERNEL);
1262 	if (!priv)
1263 		return -ENOMEM;
1264 
1265 	priv->dev = dev;
1266 	priv->num_sensors = num_sensors;
1267 	priv->ops = data->ops;
1268 	for (i = 0;  i < priv->num_sensors; i++) {
1269 		if (data->hw_ids)
1270 			priv->sensor[i].hw_id = data->hw_ids[i];
1271 		else
1272 			priv->sensor[i].hw_id = i;
1273 	}
1274 	priv->feat = data->feat;
1275 	priv->fields = data->fields;
1276 
1277 	platform_set_drvdata(pdev, priv);
1278 
1279 	if (!priv->ops || !priv->ops->init || !priv->ops->get_temp)
1280 		return -EINVAL;
1281 
1282 	ret = priv->ops->init(priv);
1283 	if (ret < 0) {
1284 		dev_err(dev, "%s: init failed\n", __func__);
1285 		return ret;
1286 	}
1287 
1288 	if (priv->ops->calibrate) {
1289 		ret = priv->ops->calibrate(priv);
1290 		if (ret < 0) {
1291 			if (ret != -EPROBE_DEFER)
1292 				dev_err(dev, "%s: calibration failed\n", __func__);
1293 			return ret;
1294 		}
1295 	}
1296 
1297 	ret = tsens_register(priv);
1298 	if (!ret)
1299 		tsens_debug_init(pdev);
1300 
1301 	return ret;
1302 }
1303 
1304 static int tsens_remove(struct platform_device *pdev)
1305 {
1306 	struct tsens_priv *priv = platform_get_drvdata(pdev);
1307 
1308 	debugfs_remove_recursive(priv->debug_root);
1309 	tsens_disable_irq(priv);
1310 	if (priv->ops->disable)
1311 		priv->ops->disable(priv);
1312 
1313 	return 0;
1314 }
1315 
1316 static struct platform_driver tsens_driver = {
1317 	.probe = tsens_probe,
1318 	.remove = tsens_remove,
1319 	.driver = {
1320 		.name = "qcom-tsens",
1321 		.pm	= &tsens_pm_ops,
1322 		.of_match_table = tsens_table,
1323 	},
1324 };
1325 module_platform_driver(tsens_driver);
1326 
1327 MODULE_LICENSE("GPL v2");
1328 MODULE_DESCRIPTION("QCOM Temperature Sensor driver");
1329 MODULE_ALIAS("platform:qcom-tsens");
1330