xref: /openbmc/linux/drivers/thermal/qcom/tsens.c (revision 0cb4228f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2019, 2020, Linaro Ltd.
5  */
6 
7 #include <linux/debugfs.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_platform.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21 #include "../thermal_hwmon.h"
22 #include "tsens.h"
23 
24 /**
25  * struct tsens_irq_data - IRQ status and temperature violations
26  * @up_viol:        upper threshold violated
27  * @up_thresh:      upper threshold temperature value
28  * @up_irq_mask:    mask register for upper threshold irqs
29  * @up_irq_clear:   clear register for uppper threshold irqs
30  * @low_viol:       lower threshold violated
31  * @low_thresh:     lower threshold temperature value
32  * @low_irq_mask:   mask register for lower threshold irqs
33  * @low_irq_clear:  clear register for lower threshold irqs
34  * @crit_viol:      critical threshold violated
35  * @crit_thresh:    critical threshold temperature value
36  * @crit_irq_mask:  mask register for critical threshold irqs
37  * @crit_irq_clear: clear register for critical threshold irqs
38  *
39  * Structure containing data about temperature threshold settings and
40  * irq status if they were violated.
41  */
42 struct tsens_irq_data {
43 	u32 up_viol;
44 	int up_thresh;
45 	u32 up_irq_mask;
46 	u32 up_irq_clear;
47 	u32 low_viol;
48 	int low_thresh;
49 	u32 low_irq_mask;
50 	u32 low_irq_clear;
51 	u32 crit_viol;
52 	u32 crit_thresh;
53 	u32 crit_irq_mask;
54 	u32 crit_irq_clear;
55 };
56 
57 char *qfprom_read(struct device *dev, const char *cname)
58 {
59 	struct nvmem_cell *cell;
60 	ssize_t data;
61 	char *ret;
62 
63 	cell = nvmem_cell_get(dev, cname);
64 	if (IS_ERR(cell))
65 		return ERR_CAST(cell);
66 
67 	ret = nvmem_cell_read(cell, &data);
68 	nvmem_cell_put(cell);
69 
70 	return ret;
71 }
72 
73 /*
74  * Use this function on devices where slope and offset calculations
75  * depend on calibration data read from qfprom. On others the slope
76  * and offset values are derived from tz->tzp->slope and tz->tzp->offset
77  * resp.
78  */
79 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
80 			     u32 *p2, u32 mode)
81 {
82 	int i;
83 	int num, den;
84 
85 	for (i = 0; i < priv->num_sensors; i++) {
86 		dev_dbg(priv->dev,
87 			"%s: sensor%d - data_point1:%#x data_point2:%#x\n",
88 			__func__, i, p1[i], p2[i]);
89 
90 		if (!priv->sensor[i].slope)
91 			priv->sensor[i].slope = SLOPE_DEFAULT;
92 		if (mode == TWO_PT_CALIB) {
93 			/*
94 			 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
95 			 *	temp_120_degc - temp_30_degc (x2 - x1)
96 			 */
97 			num = p2[i] - p1[i];
98 			num *= SLOPE_FACTOR;
99 			den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
100 			priv->sensor[i].slope = num / den;
101 		}
102 
103 		priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
104 				(CAL_DEGC_PT1 *
105 				priv->sensor[i].slope);
106 		dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
107 			priv->sensor[i].offset);
108 	}
109 }
110 
111 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
112 {
113 	u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
114 
115 	pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
116 	return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
117 }
118 
119 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
120 {
121 	int degc, num, den;
122 
123 	num = (adc_code * SLOPE_FACTOR) - s->offset;
124 	den = s->slope;
125 
126 	if (num > 0)
127 		degc = num + (den / 2);
128 	else if (num < 0)
129 		degc = num - (den / 2);
130 	else
131 		degc = num;
132 
133 	degc /= den;
134 
135 	return degc;
136 }
137 
138 /**
139  * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
140  * @s:     Pointer to sensor struct
141  * @field: Index into regmap_field array pointing to temperature data
142  *
143  * This function handles temperature returned in ADC code or deciCelsius
144  * depending on IP version.
145  *
146  * Return: Temperature in milliCelsius on success, a negative errno will
147  * be returned in error cases
148  */
149 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
150 {
151 	struct tsens_priv *priv = s->priv;
152 	u32 resolution;
153 	u32 temp = 0;
154 	int ret;
155 
156 	resolution = priv->fields[LAST_TEMP_0].msb -
157 		priv->fields[LAST_TEMP_0].lsb;
158 
159 	ret = regmap_field_read(priv->rf[field], &temp);
160 	if (ret)
161 		return ret;
162 
163 	/* Convert temperature from ADC code to milliCelsius */
164 	if (priv->feat->adc)
165 		return code_to_degc(temp, s) * 1000;
166 
167 	/* deciCelsius -> milliCelsius along with sign extension */
168 	return sign_extend32(temp, resolution) * 100;
169 }
170 
171 /**
172  * tsens_mC_to_hw - Convert temperature to hardware register value
173  * @s: Pointer to sensor struct
174  * @temp: temperature in milliCelsius to be programmed to hardware
175  *
176  * This function outputs the value to be written to hardware in ADC code
177  * or deciCelsius depending on IP version.
178  *
179  * Return: ADC code or temperature in deciCelsius.
180  */
181 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
182 {
183 	struct tsens_priv *priv = s->priv;
184 
185 	/* milliC to adc code */
186 	if (priv->feat->adc)
187 		return degc_to_code(temp / 1000, s);
188 
189 	/* milliC to deciC */
190 	return temp / 100;
191 }
192 
193 static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
194 {
195 	return priv->feat->ver_major;
196 }
197 
198 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
199 				   enum tsens_irq_type irq_type, bool enable)
200 {
201 	u32 index = 0;
202 
203 	switch (irq_type) {
204 	case UPPER:
205 		index = UP_INT_CLEAR_0 + hw_id;
206 		break;
207 	case LOWER:
208 		index = LOW_INT_CLEAR_0 + hw_id;
209 		break;
210 	case CRITICAL:
211 		/* No critical interrupts before v2 */
212 		return;
213 	}
214 	regmap_field_write(priv->rf[index], enable ? 0 : 1);
215 }
216 
217 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
218 				   enum tsens_irq_type irq_type, bool enable)
219 {
220 	u32 index_mask = 0, index_clear = 0;
221 
222 	/*
223 	 * To enable the interrupt flag for a sensor:
224 	 *    - clear the mask bit
225 	 * To disable the interrupt flag for a sensor:
226 	 *    - Mask further interrupts for this sensor
227 	 *    - Write 1 followed by 0 to clear the interrupt
228 	 */
229 	switch (irq_type) {
230 	case UPPER:
231 		index_mask  = UP_INT_MASK_0 + hw_id;
232 		index_clear = UP_INT_CLEAR_0 + hw_id;
233 		break;
234 	case LOWER:
235 		index_mask  = LOW_INT_MASK_0 + hw_id;
236 		index_clear = LOW_INT_CLEAR_0 + hw_id;
237 		break;
238 	case CRITICAL:
239 		index_mask  = CRIT_INT_MASK_0 + hw_id;
240 		index_clear = CRIT_INT_CLEAR_0 + hw_id;
241 		break;
242 	}
243 
244 	if (enable) {
245 		regmap_field_write(priv->rf[index_mask], 0);
246 	} else {
247 		regmap_field_write(priv->rf[index_mask],  1);
248 		regmap_field_write(priv->rf[index_clear], 1);
249 		regmap_field_write(priv->rf[index_clear], 0);
250 	}
251 }
252 
253 /**
254  * tsens_set_interrupt - Set state of an interrupt
255  * @priv: Pointer to tsens controller private data
256  * @hw_id: Hardware ID aka. sensor number
257  * @irq_type: irq_type from enum tsens_irq_type
258  * @enable: false = disable, true = enable
259  *
260  * Call IP-specific function to set state of an interrupt
261  *
262  * Return: void
263  */
264 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
265 				enum tsens_irq_type irq_type, bool enable)
266 {
267 	dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
268 		irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
269 		enable ? "en" : "dis");
270 	if (tsens_version(priv) > VER_1_X)
271 		tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
272 	else
273 		tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
274 }
275 
276 /**
277  * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
278  * @priv: Pointer to tsens controller private data
279  * @hw_id: Hardware ID aka. sensor number
280  * @d: Pointer to irq state data
281  *
282  * Return: 0 if threshold was not violated, 1 if it was violated and negative
283  * errno in case of errors
284  */
285 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
286 				    struct tsens_irq_data *d)
287 {
288 	int ret;
289 
290 	ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
291 	if (ret)
292 		return ret;
293 	ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
294 	if (ret)
295 		return ret;
296 
297 	if (priv->feat->crit_int) {
298 		ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
299 					&d->crit_viol);
300 		if (ret)
301 			return ret;
302 	}
303 
304 	if (d->up_viol || d->low_viol || d->crit_viol)
305 		return 1;
306 
307 	return 0;
308 }
309 
310 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
311 				const struct tsens_sensor *s,
312 				struct tsens_irq_data *d)
313 {
314 	int ret;
315 
316 	ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
317 	if (ret)
318 		return ret;
319 	ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
320 	if (ret)
321 		return ret;
322 	if (tsens_version(priv) > VER_1_X) {
323 		ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
324 		if (ret)
325 			return ret;
326 		ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
327 		if (ret)
328 			return ret;
329 		ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
330 					&d->crit_irq_clear);
331 		if (ret)
332 			return ret;
333 		ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
334 					&d->crit_irq_mask);
335 		if (ret)
336 			return ret;
337 
338 		d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
339 	} else {
340 		/* No mask register on older TSENS */
341 		d->up_irq_mask = 0;
342 		d->low_irq_mask = 0;
343 		d->crit_irq_clear = 0;
344 		d->crit_irq_mask = 0;
345 		d->crit_thresh = 0;
346 	}
347 
348 	d->up_thresh  = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
349 	d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
350 
351 	dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
352 		hw_id, __func__,
353 		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
354 		d->low_viol, d->up_viol, d->crit_viol,
355 		d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
356 		d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
357 	dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
358 		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
359 		d->low_thresh, d->up_thresh, d->crit_thresh);
360 
361 	return 0;
362 }
363 
364 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
365 {
366 	if (ver > VER_1_X)
367 		return mask & (1 << hw_id);
368 
369 	/* v1, v0.1 don't have a irq mask register */
370 	return 0;
371 }
372 
373 /**
374  * tsens_critical_irq_thread() - Threaded handler for critical interrupts
375  * @irq: irq number
376  * @data: tsens controller private data
377  *
378  * Check FSM watchdog bark status and clear if needed.
379  * Check all sensors to find ones that violated their critical threshold limits.
380  * Clear and then re-enable the interrupt.
381  *
382  * The level-triggered interrupt might deassert if the temperature returned to
383  * within the threshold limits by the time the handler got scheduled. We
384  * consider the irq to have been handled in that case.
385  *
386  * Return: IRQ_HANDLED
387  */
388 static irqreturn_t tsens_critical_irq_thread(int irq, void *data)
389 {
390 	struct tsens_priv *priv = data;
391 	struct tsens_irq_data d;
392 	int temp, ret, i;
393 	u32 wdog_status, wdog_count;
394 
395 	if (priv->feat->has_watchdog) {
396 		ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
397 					&wdog_status);
398 		if (ret)
399 			return ret;
400 
401 		if (wdog_status) {
402 			/* Clear WDOG interrupt */
403 			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
404 			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
405 			ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
406 						&wdog_count);
407 			if (ret)
408 				return ret;
409 			if (wdog_count)
410 				dev_dbg(priv->dev, "%s: watchdog count: %d\n",
411 					__func__, wdog_count);
412 
413 			/* Fall through to handle critical interrupts if any */
414 		}
415 	}
416 
417 	for (i = 0; i < priv->num_sensors; i++) {
418 		const struct tsens_sensor *s = &priv->sensor[i];
419 		u32 hw_id = s->hw_id;
420 
421 		if (!s->tzd)
422 			continue;
423 		if (!tsens_threshold_violated(priv, hw_id, &d))
424 			continue;
425 		ret = get_temp_tsens_valid(s, &temp);
426 		if (ret) {
427 			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
428 				hw_id, __func__);
429 			continue;
430 		}
431 
432 		tsens_read_irq_state(priv, hw_id, s, &d);
433 		if (d.crit_viol &&
434 		    !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
435 			/* Mask critical interrupts, unused on Linux */
436 			tsens_set_interrupt(priv, hw_id, CRITICAL, false);
437 		}
438 	}
439 
440 	return IRQ_HANDLED;
441 }
442 
443 /**
444  * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
445  * @irq: irq number
446  * @data: tsens controller private data
447  *
448  * Check all sensors to find ones that violated their threshold limits. If the
449  * temperature is still outside the limits, call thermal_zone_device_update() to
450  * update the thresholds, else re-enable the interrupts.
451  *
452  * The level-triggered interrupt might deassert if the temperature returned to
453  * within the threshold limits by the time the handler got scheduled. We
454  * consider the irq to have been handled in that case.
455  *
456  * Return: IRQ_HANDLED
457  */
458 static irqreturn_t tsens_irq_thread(int irq, void *data)
459 {
460 	struct tsens_priv *priv = data;
461 	struct tsens_irq_data d;
462 	bool enable = true, disable = false;
463 	unsigned long flags;
464 	int temp, ret, i;
465 
466 	for (i = 0; i < priv->num_sensors; i++) {
467 		bool trigger = false;
468 		const struct tsens_sensor *s = &priv->sensor[i];
469 		u32 hw_id = s->hw_id;
470 
471 		if (!s->tzd)
472 			continue;
473 		if (!tsens_threshold_violated(priv, hw_id, &d))
474 			continue;
475 		ret = get_temp_tsens_valid(s, &temp);
476 		if (ret) {
477 			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
478 				hw_id, __func__);
479 			continue;
480 		}
481 
482 		spin_lock_irqsave(&priv->ul_lock, flags);
483 
484 		tsens_read_irq_state(priv, hw_id, s, &d);
485 
486 		if (d.up_viol &&
487 		    !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
488 			tsens_set_interrupt(priv, hw_id, UPPER, disable);
489 			if (d.up_thresh > temp) {
490 				dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
491 					hw_id, __func__);
492 				tsens_set_interrupt(priv, hw_id, UPPER, enable);
493 			} else {
494 				trigger = true;
495 				/* Keep irq masked */
496 			}
497 		} else if (d.low_viol &&
498 			   !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
499 			tsens_set_interrupt(priv, hw_id, LOWER, disable);
500 			if (d.low_thresh < temp) {
501 				dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
502 					hw_id, __func__);
503 				tsens_set_interrupt(priv, hw_id, LOWER, enable);
504 			} else {
505 				trigger = true;
506 				/* Keep irq masked */
507 			}
508 		}
509 
510 		spin_unlock_irqrestore(&priv->ul_lock, flags);
511 
512 		if (trigger) {
513 			dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
514 				hw_id, __func__, temp);
515 			thermal_zone_device_update(s->tzd,
516 						   THERMAL_EVENT_UNSPECIFIED);
517 		} else {
518 			dev_dbg(priv->dev, "[%u] %s: no violation:  %d\n",
519 				hw_id, __func__, temp);
520 		}
521 
522 		if (tsens_version(priv) < VER_0_1) {
523 			/* Constraint: There is only 1 interrupt control register for all
524 			 * 11 temperature sensor. So monitoring more than 1 sensor based
525 			 * on interrupts will yield inconsistent result. To overcome this
526 			 * issue we will monitor only sensor 0 which is the master sensor.
527 			 */
528 			break;
529 		}
530 	}
531 
532 	return IRQ_HANDLED;
533 }
534 
535 /**
536  * tsens_combined_irq_thread() - Threaded interrupt handler for combined interrupts
537  * @irq: irq number
538  * @data: tsens controller private data
539  *
540  * Handle the combined interrupt as if it were 2 separate interrupts, so call the
541  * critical handler first and then the up/low one.
542  *
543  * Return: IRQ_HANDLED
544  */
545 static irqreturn_t tsens_combined_irq_thread(int irq, void *data)
546 {
547 	irqreturn_t ret;
548 
549 	ret = tsens_critical_irq_thread(irq, data);
550 	if (ret != IRQ_HANDLED)
551 		return ret;
552 
553 	return tsens_irq_thread(irq, data);
554 }
555 
556 static int tsens_set_trips(struct thermal_zone_device *tz, int low, int high)
557 {
558 	struct tsens_sensor *s = tz->devdata;
559 	struct tsens_priv *priv = s->priv;
560 	struct device *dev = priv->dev;
561 	struct tsens_irq_data d;
562 	unsigned long flags;
563 	int high_val, low_val, cl_high, cl_low;
564 	u32 hw_id = s->hw_id;
565 
566 	if (tsens_version(priv) < VER_0_1) {
567 		/* Pre v0.1 IP had a single register for each type of interrupt
568 		 * and thresholds
569 		 */
570 		hw_id = 0;
571 	}
572 
573 	dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
574 		hw_id, __func__, low, high);
575 
576 	cl_high = clamp_val(high, priv->feat->trip_min_temp, priv->feat->trip_max_temp);
577 	cl_low  = clamp_val(low, priv->feat->trip_min_temp, priv->feat->trip_max_temp);
578 
579 	high_val = tsens_mC_to_hw(s, cl_high);
580 	low_val  = tsens_mC_to_hw(s, cl_low);
581 
582 	spin_lock_irqsave(&priv->ul_lock, flags);
583 
584 	tsens_read_irq_state(priv, hw_id, s, &d);
585 
586 	/* Write the new thresholds and clear the status */
587 	regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
588 	regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
589 	tsens_set_interrupt(priv, hw_id, LOWER, true);
590 	tsens_set_interrupt(priv, hw_id, UPPER, true);
591 
592 	spin_unlock_irqrestore(&priv->ul_lock, flags);
593 
594 	dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
595 		hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
596 
597 	return 0;
598 }
599 
600 static int tsens_enable_irq(struct tsens_priv *priv)
601 {
602 	int ret;
603 	int val = tsens_version(priv) > VER_1_X ? 7 : 1;
604 
605 	ret = regmap_field_write(priv->rf[INT_EN], val);
606 	if (ret < 0)
607 		dev_err(priv->dev, "%s: failed to enable interrupts\n",
608 			__func__);
609 
610 	return ret;
611 }
612 
613 static void tsens_disable_irq(struct tsens_priv *priv)
614 {
615 	regmap_field_write(priv->rf[INT_EN], 0);
616 }
617 
618 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
619 {
620 	struct tsens_priv *priv = s->priv;
621 	int hw_id = s->hw_id;
622 	u32 temp_idx = LAST_TEMP_0 + hw_id;
623 	u32 valid_idx = VALID_0 + hw_id;
624 	u32 valid;
625 	int ret;
626 
627 	/* VER_0 doesn't have VALID bit */
628 	if (tsens_version(priv) == VER_0)
629 		goto get_temp;
630 
631 	/* Valid bit is 0 for 6 AHB clock cycles.
632 	 * At 19.2MHz, 1 AHB clock is ~60ns.
633 	 * We should enter this loop very, very rarely.
634 	 * Wait 1 us since it's the min of poll_timeout macro.
635 	 * Old value was 400 ns.
636 	 */
637 	ret = regmap_field_read_poll_timeout(priv->rf[valid_idx], valid,
638 					     valid, 1, 20 * USEC_PER_MSEC);
639 	if (ret)
640 		return ret;
641 
642 get_temp:
643 	/* Valid bit is set, OK to read the temperature */
644 	*temp = tsens_hw_to_mC(s, temp_idx);
645 
646 	return 0;
647 }
648 
649 int get_temp_common(const struct tsens_sensor *s, int *temp)
650 {
651 	struct tsens_priv *priv = s->priv;
652 	int hw_id = s->hw_id;
653 	int last_temp = 0, ret, trdy;
654 	unsigned long timeout;
655 
656 	timeout = jiffies + usecs_to_jiffies(TIMEOUT_US);
657 	do {
658 		if (tsens_version(priv) == VER_0) {
659 			ret = regmap_field_read(priv->rf[TRDY], &trdy);
660 			if (ret)
661 				return ret;
662 			if (!trdy)
663 				continue;
664 		}
665 
666 		ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
667 		if (ret)
668 			return ret;
669 
670 		*temp = code_to_degc(last_temp, s) * 1000;
671 
672 		return 0;
673 	} while (time_before(jiffies, timeout));
674 
675 	return -ETIMEDOUT;
676 }
677 
678 #ifdef CONFIG_DEBUG_FS
679 static int dbg_sensors_show(struct seq_file *s, void *data)
680 {
681 	struct platform_device *pdev = s->private;
682 	struct tsens_priv *priv = platform_get_drvdata(pdev);
683 	int i;
684 
685 	seq_printf(s, "max: %2d\nnum: %2d\n\n",
686 		   priv->feat->max_sensors, priv->num_sensors);
687 
688 	seq_puts(s, "      id    slope   offset\n--------------------------\n");
689 	for (i = 0;  i < priv->num_sensors; i++) {
690 		seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
691 			   priv->sensor[i].slope, priv->sensor[i].offset);
692 	}
693 
694 	return 0;
695 }
696 
697 static int dbg_version_show(struct seq_file *s, void *data)
698 {
699 	struct platform_device *pdev = s->private;
700 	struct tsens_priv *priv = platform_get_drvdata(pdev);
701 	u32 maj_ver, min_ver, step_ver;
702 	int ret;
703 
704 	if (tsens_version(priv) > VER_0_1) {
705 		ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
706 		if (ret)
707 			return ret;
708 		ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
709 		if (ret)
710 			return ret;
711 		ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
712 		if (ret)
713 			return ret;
714 		seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
715 	} else {
716 		seq_printf(s, "0.%d.0\n", priv->feat->ver_major);
717 	}
718 
719 	return 0;
720 }
721 
722 DEFINE_SHOW_ATTRIBUTE(dbg_version);
723 DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
724 
725 static void tsens_debug_init(struct platform_device *pdev)
726 {
727 	struct tsens_priv *priv = platform_get_drvdata(pdev);
728 
729 	priv->debug_root = debugfs_lookup("tsens", NULL);
730 	if (!priv->debug_root)
731 		priv->debug_root = debugfs_create_dir("tsens", NULL);
732 
733 	/* A directory for each instance of the TSENS IP */
734 	priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
735 	debugfs_create_file("version", 0444, priv->debug, pdev, &dbg_version_fops);
736 	debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
737 }
738 #else
739 static inline void tsens_debug_init(struct platform_device *pdev) {}
740 #endif
741 
742 static const struct regmap_config tsens_config = {
743 	.name		= "tm",
744 	.reg_bits	= 32,
745 	.val_bits	= 32,
746 	.reg_stride	= 4,
747 };
748 
749 static const struct regmap_config tsens_srot_config = {
750 	.name		= "srot",
751 	.reg_bits	= 32,
752 	.val_bits	= 32,
753 	.reg_stride	= 4,
754 };
755 
756 int __init init_common(struct tsens_priv *priv)
757 {
758 	void __iomem *tm_base, *srot_base;
759 	struct device *dev = priv->dev;
760 	u32 ver_minor;
761 	struct resource *res;
762 	u32 enabled;
763 	int ret, i, j;
764 	struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
765 
766 	if (!op)
767 		return -EINVAL;
768 
769 	if (op->num_resources > 1) {
770 		/* DT with separate SROT and TM address space */
771 		priv->tm_offset = 0;
772 		res = platform_get_resource(op, IORESOURCE_MEM, 1);
773 		srot_base = devm_ioremap_resource(dev, res);
774 		if (IS_ERR(srot_base)) {
775 			ret = PTR_ERR(srot_base);
776 			goto err_put_device;
777 		}
778 
779 		priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
780 						       &tsens_srot_config);
781 		if (IS_ERR(priv->srot_map)) {
782 			ret = PTR_ERR(priv->srot_map);
783 			goto err_put_device;
784 		}
785 	} else {
786 		/* old DTs where SROT and TM were in a contiguous 2K block */
787 		priv->tm_offset = 0x1000;
788 	}
789 
790 	if (tsens_version(priv) >= VER_0_1) {
791 		res = platform_get_resource(op, IORESOURCE_MEM, 0);
792 		tm_base = devm_ioremap_resource(dev, res);
793 		if (IS_ERR(tm_base)) {
794 			ret = PTR_ERR(tm_base);
795 			goto err_put_device;
796 		}
797 
798 		priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
799 	} else { /* VER_0 share the same gcc regs using a syscon */
800 		struct device *parent = priv->dev->parent;
801 
802 		if (parent)
803 			priv->tm_map = syscon_node_to_regmap(parent->of_node);
804 	}
805 
806 	if (IS_ERR_OR_NULL(priv->tm_map)) {
807 		if (!priv->tm_map)
808 			ret = -ENODEV;
809 		else
810 			ret = PTR_ERR(priv->tm_map);
811 		goto err_put_device;
812 	}
813 
814 	/* VER_0 have only tm_map */
815 	if (!priv->srot_map)
816 		priv->srot_map = priv->tm_map;
817 
818 	if (tsens_version(priv) > VER_0_1) {
819 		for (i = VER_MAJOR; i <= VER_STEP; i++) {
820 			priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
821 							      priv->fields[i]);
822 			if (IS_ERR(priv->rf[i])) {
823 				ret = PTR_ERR(priv->rf[i]);
824 				goto err_put_device;
825 			}
826 		}
827 		ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
828 		if (ret)
829 			goto err_put_device;
830 	}
831 
832 	priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
833 						     priv->fields[TSENS_EN]);
834 	if (IS_ERR(priv->rf[TSENS_EN])) {
835 		ret = PTR_ERR(priv->rf[TSENS_EN]);
836 		goto err_put_device;
837 	}
838 	/* in VER_0 TSENS need to be explicitly enabled */
839 	if (tsens_version(priv) == VER_0)
840 		regmap_field_write(priv->rf[TSENS_EN], 1);
841 
842 	ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
843 	if (ret)
844 		goto err_put_device;
845 	if (!enabled) {
846 		dev_err(dev, "%s: device not enabled\n", __func__);
847 		ret = -ENODEV;
848 		goto err_put_device;
849 	}
850 
851 	priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
852 						      priv->fields[SENSOR_EN]);
853 	if (IS_ERR(priv->rf[SENSOR_EN])) {
854 		ret = PTR_ERR(priv->rf[SENSOR_EN]);
855 		goto err_put_device;
856 	}
857 	priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
858 						   priv->fields[INT_EN]);
859 	if (IS_ERR(priv->rf[INT_EN])) {
860 		ret = PTR_ERR(priv->rf[INT_EN]);
861 		goto err_put_device;
862 	}
863 
864 	priv->rf[TSENS_SW_RST] =
865 		devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_SW_RST]);
866 	if (IS_ERR(priv->rf[TSENS_SW_RST])) {
867 		ret = PTR_ERR(priv->rf[TSENS_SW_RST]);
868 		goto err_put_device;
869 	}
870 
871 	priv->rf[TRDY] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[TRDY]);
872 	if (IS_ERR(priv->rf[TRDY])) {
873 		ret = PTR_ERR(priv->rf[TRDY]);
874 		goto err_put_device;
875 	}
876 
877 	/* This loop might need changes if enum regfield_ids is reordered */
878 	for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
879 		for (i = 0; i < priv->feat->max_sensors; i++) {
880 			int idx = j + i;
881 
882 			priv->rf[idx] = devm_regmap_field_alloc(dev,
883 								priv->tm_map,
884 								priv->fields[idx]);
885 			if (IS_ERR(priv->rf[idx])) {
886 				ret = PTR_ERR(priv->rf[idx]);
887 				goto err_put_device;
888 			}
889 		}
890 	}
891 
892 	if (priv->feat->crit_int || tsens_version(priv) < VER_0_1) {
893 		/* Loop might need changes if enum regfield_ids is reordered */
894 		for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
895 			for (i = 0; i < priv->feat->max_sensors; i++) {
896 				int idx = j + i;
897 
898 				priv->rf[idx] =
899 					devm_regmap_field_alloc(dev,
900 								priv->tm_map,
901 								priv->fields[idx]);
902 				if (IS_ERR(priv->rf[idx])) {
903 					ret = PTR_ERR(priv->rf[idx]);
904 					goto err_put_device;
905 				}
906 			}
907 		}
908 	}
909 
910 	if (tsens_version(priv) > VER_1_X &&  ver_minor > 2) {
911 		/* Watchdog is present only on v2.3+ */
912 		priv->feat->has_watchdog = 1;
913 		for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
914 			priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
915 							      priv->fields[i]);
916 			if (IS_ERR(priv->rf[i])) {
917 				ret = PTR_ERR(priv->rf[i]);
918 				goto err_put_device;
919 			}
920 		}
921 		/*
922 		 * Watchdog is already enabled, unmask the bark.
923 		 * Disable cycle completion monitoring
924 		 */
925 		regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
926 		regmap_field_write(priv->rf[CC_MON_MASK], 1);
927 	}
928 
929 	spin_lock_init(&priv->ul_lock);
930 
931 	/* VER_0 interrupt doesn't need to be enabled */
932 	if (tsens_version(priv) >= VER_0_1)
933 		tsens_enable_irq(priv);
934 
935 err_put_device:
936 	put_device(&op->dev);
937 	return ret;
938 }
939 
940 static int tsens_get_temp(struct thermal_zone_device *tz, int *temp)
941 {
942 	struct tsens_sensor *s = tz->devdata;
943 	struct tsens_priv *priv = s->priv;
944 
945 	return priv->ops->get_temp(s, temp);
946 }
947 
948 static int  __maybe_unused tsens_suspend(struct device *dev)
949 {
950 	struct tsens_priv *priv = dev_get_drvdata(dev);
951 
952 	if (priv->ops && priv->ops->suspend)
953 		return priv->ops->suspend(priv);
954 
955 	return 0;
956 }
957 
958 static int __maybe_unused tsens_resume(struct device *dev)
959 {
960 	struct tsens_priv *priv = dev_get_drvdata(dev);
961 
962 	if (priv->ops && priv->ops->resume)
963 		return priv->ops->resume(priv);
964 
965 	return 0;
966 }
967 
968 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume);
969 
970 static const struct of_device_id tsens_table[] = {
971 	{
972 		.compatible = "qcom,ipq8064-tsens",
973 		.data = &data_8960,
974 	}, {
975 		.compatible = "qcom,ipq8074-tsens",
976 		.data = &data_ipq8074,
977 	}, {
978 		.compatible = "qcom,mdm9607-tsens",
979 		.data = &data_9607,
980 	}, {
981 		.compatible = "qcom,msm8916-tsens",
982 		.data = &data_8916,
983 	}, {
984 		.compatible = "qcom,msm8939-tsens",
985 		.data = &data_8939,
986 	}, {
987 		.compatible = "qcom,msm8960-tsens",
988 		.data = &data_8960,
989 	}, {
990 		.compatible = "qcom,msm8974-tsens",
991 		.data = &data_8974,
992 	}, {
993 		.compatible = "qcom,msm8976-tsens",
994 		.data = &data_8976,
995 	}, {
996 		.compatible = "qcom,msm8996-tsens",
997 		.data = &data_8996,
998 	}, {
999 		.compatible = "qcom,tsens-v1",
1000 		.data = &data_tsens_v1,
1001 	}, {
1002 		.compatible = "qcom,tsens-v2",
1003 		.data = &data_tsens_v2,
1004 	},
1005 	{}
1006 };
1007 MODULE_DEVICE_TABLE(of, tsens_table);
1008 
1009 static const struct thermal_zone_device_ops tsens_of_ops = {
1010 	.get_temp = tsens_get_temp,
1011 	.set_trips = tsens_set_trips,
1012 };
1013 
1014 static int tsens_register_irq(struct tsens_priv *priv, char *irqname,
1015 			      irq_handler_t thread_fn)
1016 {
1017 	struct platform_device *pdev;
1018 	int ret, irq;
1019 
1020 	pdev = of_find_device_by_node(priv->dev->of_node);
1021 	if (!pdev)
1022 		return -ENODEV;
1023 
1024 	irq = platform_get_irq_byname(pdev, irqname);
1025 	if (irq < 0) {
1026 		ret = irq;
1027 		/* For old DTs with no IRQ defined */
1028 		if (irq == -ENXIO)
1029 			ret = 0;
1030 	} else {
1031 		/* VER_0 interrupt is TRIGGER_RISING, VER_0_1 and up is ONESHOT */
1032 		if (tsens_version(priv) == VER_0)
1033 			ret = devm_request_threaded_irq(&pdev->dev, irq,
1034 							thread_fn, NULL,
1035 							IRQF_TRIGGER_RISING,
1036 							dev_name(&pdev->dev),
1037 							priv);
1038 		else
1039 			ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
1040 							thread_fn, IRQF_ONESHOT,
1041 							dev_name(&pdev->dev),
1042 							priv);
1043 
1044 		if (ret)
1045 			dev_err(&pdev->dev, "%s: failed to get irq\n",
1046 				__func__);
1047 		else
1048 			enable_irq_wake(irq);
1049 	}
1050 
1051 	put_device(&pdev->dev);
1052 	return ret;
1053 }
1054 
1055 static int tsens_register(struct tsens_priv *priv)
1056 {
1057 	int i, ret;
1058 	struct thermal_zone_device *tzd;
1059 
1060 	for (i = 0;  i < priv->num_sensors; i++) {
1061 		priv->sensor[i].priv = priv;
1062 		tzd = devm_thermal_of_zone_register(priv->dev, priv->sensor[i].hw_id,
1063 						    &priv->sensor[i],
1064 						    &tsens_of_ops);
1065 		if (IS_ERR(tzd))
1066 			continue;
1067 		priv->sensor[i].tzd = tzd;
1068 		if (priv->ops->enable)
1069 			priv->ops->enable(priv, i);
1070 
1071 		if (devm_thermal_add_hwmon_sysfs(tzd))
1072 			dev_warn(priv->dev,
1073 				 "Failed to add hwmon sysfs attributes\n");
1074 	}
1075 
1076 	/* VER_0 require to set MIN and MAX THRESH
1077 	 * These 2 regs are set using the:
1078 	 * - CRIT_THRESH_0 for MAX THRESH hardcoded to 120°C
1079 	 * - CRIT_THRESH_1 for MIN THRESH hardcoded to   0°C
1080 	 */
1081 	if (tsens_version(priv) < VER_0_1) {
1082 		regmap_field_write(priv->rf[CRIT_THRESH_0],
1083 				   tsens_mC_to_hw(priv->sensor, 120000));
1084 
1085 		regmap_field_write(priv->rf[CRIT_THRESH_1],
1086 				   tsens_mC_to_hw(priv->sensor, 0));
1087 	}
1088 
1089 	if (priv->feat->combo_int) {
1090 		ret = tsens_register_irq(priv, "combined",
1091 					 tsens_combined_irq_thread);
1092 	} else {
1093 		ret = tsens_register_irq(priv, "uplow", tsens_irq_thread);
1094 		if (ret < 0)
1095 			return ret;
1096 
1097 		if (priv->feat->crit_int)
1098 			ret = tsens_register_irq(priv, "critical",
1099 						 tsens_critical_irq_thread);
1100 	}
1101 
1102 	return ret;
1103 }
1104 
1105 static int tsens_probe(struct platform_device *pdev)
1106 {
1107 	int ret, i;
1108 	struct device *dev;
1109 	struct device_node *np;
1110 	struct tsens_priv *priv;
1111 	const struct tsens_plat_data *data;
1112 	const struct of_device_id *id;
1113 	u32 num_sensors;
1114 
1115 	if (pdev->dev.of_node)
1116 		dev = &pdev->dev;
1117 	else
1118 		dev = pdev->dev.parent;
1119 
1120 	np = dev->of_node;
1121 
1122 	id = of_match_node(tsens_table, np);
1123 	if (id)
1124 		data = id->data;
1125 	else
1126 		data = &data_8960;
1127 
1128 	num_sensors = data->num_sensors;
1129 
1130 	if (np)
1131 		of_property_read_u32(np, "#qcom,sensors", &num_sensors);
1132 
1133 	if (num_sensors <= 0) {
1134 		dev_err(dev, "%s: invalid number of sensors\n", __func__);
1135 		return -EINVAL;
1136 	}
1137 
1138 	priv = devm_kzalloc(dev,
1139 			     struct_size(priv, sensor, num_sensors),
1140 			     GFP_KERNEL);
1141 	if (!priv)
1142 		return -ENOMEM;
1143 
1144 	priv->dev = dev;
1145 	priv->num_sensors = num_sensors;
1146 	priv->ops = data->ops;
1147 	for (i = 0;  i < priv->num_sensors; i++) {
1148 		if (data->hw_ids)
1149 			priv->sensor[i].hw_id = data->hw_ids[i];
1150 		else
1151 			priv->sensor[i].hw_id = i;
1152 	}
1153 	priv->feat = data->feat;
1154 	priv->fields = data->fields;
1155 
1156 	platform_set_drvdata(pdev, priv);
1157 
1158 	if (!priv->ops || !priv->ops->init || !priv->ops->get_temp)
1159 		return -EINVAL;
1160 
1161 	ret = priv->ops->init(priv);
1162 	if (ret < 0) {
1163 		dev_err(dev, "%s: init failed\n", __func__);
1164 		return ret;
1165 	}
1166 
1167 	if (priv->ops->calibrate) {
1168 		ret = priv->ops->calibrate(priv);
1169 		if (ret < 0) {
1170 			if (ret != -EPROBE_DEFER)
1171 				dev_err(dev, "%s: calibration failed\n", __func__);
1172 			return ret;
1173 		}
1174 	}
1175 
1176 	ret = tsens_register(priv);
1177 	if (!ret)
1178 		tsens_debug_init(pdev);
1179 
1180 	return ret;
1181 }
1182 
1183 static int tsens_remove(struct platform_device *pdev)
1184 {
1185 	struct tsens_priv *priv = platform_get_drvdata(pdev);
1186 
1187 	debugfs_remove_recursive(priv->debug_root);
1188 	tsens_disable_irq(priv);
1189 	if (priv->ops->disable)
1190 		priv->ops->disable(priv);
1191 
1192 	return 0;
1193 }
1194 
1195 static struct platform_driver tsens_driver = {
1196 	.probe = tsens_probe,
1197 	.remove = tsens_remove,
1198 	.driver = {
1199 		.name = "qcom-tsens",
1200 		.pm	= &tsens_pm_ops,
1201 		.of_match_table = tsens_table,
1202 	},
1203 };
1204 module_platform_driver(tsens_driver);
1205 
1206 MODULE_LICENSE("GPL v2");
1207 MODULE_DESCRIPTION("QCOM Temperature Sensor driver");
1208 MODULE_ALIAS("platform:qcom-tsens");
1209