xref: /openbmc/linux/drivers/thermal/mediatek/lvts_thermal.c (revision 6887314f5356389fc219b8152e951ac084a10ef7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A				-250460
84 #define LVTS_COEFF_B				250460
85 
86 #define LVTS_MSR_IMMEDIATE_MODE		0
87 #define LVTS_MSR_FILTERED_MODE		1
88 
89 #define LVTS_MSR_READ_TIMEOUT_US	400
90 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
91 
92 #define LVTS_HW_SHUTDOWN_MT8195		105000
93 
94 #define LVTS_MINIMUM_THRESHOLD		20000
95 
96 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
97 static int coeff_b = LVTS_COEFF_B;
98 
99 struct lvts_sensor_data {
100 	int dt_id;
101 };
102 
103 struct lvts_ctrl_data {
104 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
105 	int cal_offset[LVTS_SENSOR_MAX];
106 	int hw_tshut_temp;
107 	int num_lvts_sensor;
108 	int offset;
109 	int mode;
110 };
111 
112 struct lvts_data {
113 	const struct lvts_ctrl_data *lvts_ctrl;
114 	int num_lvts_ctrl;
115 };
116 
117 struct lvts_sensor {
118 	struct thermal_zone_device *tz;
119 	void __iomem *msr;
120 	void __iomem *base;
121 	int id;
122 	int dt_id;
123 	int low_thresh;
124 	int high_thresh;
125 };
126 
127 struct lvts_ctrl {
128 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
129 	u32 calibration[LVTS_SENSOR_MAX];
130 	u32 hw_tshut_raw_temp;
131 	int num_lvts_sensor;
132 	int mode;
133 	void __iomem *base;
134 	int low_thresh;
135 	int high_thresh;
136 };
137 
138 struct lvts_domain {
139 	struct lvts_ctrl *lvts_ctrl;
140 	struct reset_control *reset;
141 	struct clk *clk;
142 	int num_lvts_ctrl;
143 	void __iomem *base;
144 	size_t calib_len;
145 	u8 *calib;
146 #ifdef CONFIG_DEBUG_FS
147 	struct dentry *dom_dentry;
148 #endif
149 };
150 
151 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
152 
153 #define LVTS_DEBUG_FS_REGS(__reg)		\
154 {						\
155 	.name = __stringify(__reg),		\
156 	.offset = __reg(0),			\
157 }
158 
159 static const struct debugfs_reg32 lvts_regs[] = {
160 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
161 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
162 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
163 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
164 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
165 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
166 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
167 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
169 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
170 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
171 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
172 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
173 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
174 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
175 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
176 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
177 	LVTS_DEBUG_FS_REGS(LVTS_ID),
178 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
179 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
180 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
181 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
182 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
183 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
184 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
185 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
186 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
187 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
188 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
189 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
190 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
191 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
192 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
193 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
194 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
195 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
196 };
197 
198 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
199 {
200 	struct debugfs_regset32 *regset;
201 	struct lvts_ctrl *lvts_ctrl;
202 	struct dentry *dentry;
203 	char name[64];
204 	int i;
205 
206 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
207 	if (IS_ERR(lvts_td->dom_dentry))
208 		return 0;
209 
210 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
211 
212 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
213 
214 		sprintf(name, "controller%d", i);
215 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
216 		if (!dentry)
217 			continue;
218 
219 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
220 		if (!regset)
221 			continue;
222 
223 		regset->base = lvts_ctrl->base;
224 		regset->regs = lvts_regs;
225 		regset->nregs = ARRAY_SIZE(lvts_regs);
226 
227 		debugfs_create_regset32("registers", 0400, dentry, regset);
228 	}
229 
230 	return 0;
231 }
232 
233 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
234 {
235 	debugfs_remove_recursive(lvts_td->dom_dentry);
236 }
237 
238 #else
239 
240 static inline int lvts_debugfs_init(struct device *dev,
241 				    struct lvts_domain *lvts_td)
242 {
243 	return 0;
244 }
245 
246 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
247 
248 #endif
249 
250 static int lvts_raw_to_temp(u32 raw_temp)
251 {
252 	int temperature;
253 
254 	temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
255 	temperature += coeff_b;
256 
257 	return temperature;
258 }
259 
260 static u32 lvts_temp_to_raw(int temperature)
261 {
262 	u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
263 
264 	raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
265 
266 	return raw_temp;
267 }
268 
269 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
270 {
271 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
272 	void __iomem *msr = lvts_sensor->msr;
273 	u32 value;
274 	int rc;
275 
276 	/*
277 	 * Measurement registers:
278 	 *
279 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
280 	 *
281 	 * Bits:
282 	 *
283 	 * 32-17: Unused
284 	 * 16	: Valid temperature
285 	 * 15-0	: Raw temperature
286 	 */
287 	rc = readl_poll_timeout(msr, value, value & BIT(16),
288 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
289 
290 	/*
291 	 * As the thermal zone temperature will read before the
292 	 * hardware sensor is fully initialized, we have to check the
293 	 * validity of the temperature returned when reading the
294 	 * measurement register. The thermal controller will set the
295 	 * valid bit temperature only when it is totally initialized.
296 	 *
297 	 * Otherwise, we may end up with garbage values out of the
298 	 * functionning temperature and directly jump to a system
299 	 * shutdown.
300 	 */
301 	if (rc)
302 		return -EAGAIN;
303 
304 	*temp = lvts_raw_to_temp(value & 0xFFFF);
305 
306 	return 0;
307 }
308 
309 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
310 {
311 	u32 masks[] = {
312 		LVTS_MONINT_OFFSET_SENSOR0,
313 		LVTS_MONINT_OFFSET_SENSOR1,
314 		LVTS_MONINT_OFFSET_SENSOR2,
315 		LVTS_MONINT_OFFSET_SENSOR3,
316 	};
317 	u32 value = 0;
318 	int i;
319 
320 	value = readl(LVTS_MONINT(lvts_ctrl->base));
321 
322 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
323 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
324 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
325 			value |= masks[i];
326 		else
327 			value &= ~masks[i];
328 	}
329 
330 	writel(value, LVTS_MONINT(lvts_ctrl->base));
331 }
332 
333 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
334 {
335 	int i;
336 
337 	if (high > lvts_ctrl->high_thresh)
338 		return true;
339 
340 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
341 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
342 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
343 			return false;
344 
345 	return true;
346 }
347 
348 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
349 {
350 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
351 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]);
352 	void __iomem *base = lvts_sensor->base;
353 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD);
354 	u32 raw_high = lvts_temp_to_raw(high);
355 	bool should_update_thresh;
356 
357 	lvts_sensor->low_thresh = low;
358 	lvts_sensor->high_thresh = high;
359 
360 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
361 	if (should_update_thresh) {
362 		lvts_ctrl->high_thresh = high;
363 		lvts_ctrl->low_thresh = low;
364 	}
365 	lvts_update_irq_mask(lvts_ctrl);
366 
367 	if (!should_update_thresh)
368 		return 0;
369 
370 	/*
371 	 * Low offset temperature threshold
372 	 *
373 	 * LVTS_OFFSETL
374 	 *
375 	 * Bits:
376 	 *
377 	 * 14-0 : Raw temperature for threshold
378 	 */
379 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
380 		 thermal_zone_device_type(tz), low);
381 	writel(raw_low, LVTS_OFFSETL(base));
382 
383 	/*
384 	 * High offset temperature threshold
385 	 *
386 	 * LVTS_OFFSETH
387 	 *
388 	 * Bits:
389 	 *
390 	 * 14-0 : Raw temperature for threshold
391 	 */
392 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
393 		 thermal_zone_device_type(tz), high);
394 	writel(raw_high, LVTS_OFFSETH(base));
395 
396 	return 0;
397 }
398 
399 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
400 {
401 	irqreturn_t iret = IRQ_NONE;
402 	u32 value;
403 	u32 masks[] = {
404 		LVTS_INT_SENSOR0,
405 		LVTS_INT_SENSOR1,
406 		LVTS_INT_SENSOR2,
407 		LVTS_INT_SENSOR3
408 	};
409 	int i;
410 
411 	/*
412 	 * Interrupt monitoring status
413 	 *
414 	 * LVTS_MONINTST
415 	 *
416 	 * Bits:
417 	 *
418 	 * 31 : Interrupt for stage 3
419 	 * 30 : Interrupt for stage 2
420 	 * 29 : Interrupt for state 1
421 	 * 28 : Interrupt using filter on sensor 3
422 	 *
423 	 * 27 : Interrupt using immediate on sensor 3
424 	 * 26 : Interrupt normal to hot on sensor 3
425 	 * 25 : Interrupt high offset on sensor 3
426 	 * 24 : Interrupt low offset on sensor 3
427 	 *
428 	 * 23 : Interrupt hot threshold on sensor 3
429 	 * 22 : Interrupt cold threshold on sensor 3
430 	 * 21 : Interrupt using filter on sensor 2
431 	 * 20 : Interrupt using filter on sensor 1
432 	 *
433 	 * 19 : Interrupt using filter on sensor 0
434 	 * 18 : Interrupt using immediate on sensor 2
435 	 * 17 : Interrupt using immediate on sensor 1
436 	 * 16 : Interrupt using immediate on sensor 0
437 	 *
438 	 * 15 : Interrupt device access timeout interrupt
439 	 * 14 : Interrupt normal to hot on sensor 2
440 	 * 13 : Interrupt high offset interrupt on sensor 2
441 	 * 12 : Interrupt low offset interrupt on sensor 2
442 	 *
443 	 * 11 : Interrupt hot threshold on sensor 2
444 	 * 10 : Interrupt cold threshold on sensor 2
445 	 *  9 : Interrupt normal to hot on sensor 1
446 	 *  8 : Interrupt high offset interrupt on sensor 1
447 	 *
448 	 *  7 : Interrupt low offset interrupt on sensor 1
449 	 *  6 : Interrupt hot threshold on sensor 1
450 	 *  5 : Interrupt cold threshold on sensor 1
451 	 *  4 : Interrupt normal to hot on sensor 0
452 	 *
453 	 *  3 : Interrupt high offset interrupt on sensor 0
454 	 *  2 : Interrupt low offset interrupt on sensor 0
455 	 *  1 : Interrupt hot threshold on sensor 0
456 	 *  0 : Interrupt cold threshold on sensor 0
457 	 *
458 	 * We are interested in the sensor(s) responsible of the
459 	 * interrupt event. We update the thermal framework with the
460 	 * thermal zone associated with the sensor. The framework will
461 	 * take care of the rest whatever the kind of interrupt, we
462 	 * are only interested in which sensor raised the interrupt.
463 	 *
464 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
465 	 *                  => 0x1FC00000
466 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
467 	 *                  => 0x00247C00
468 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
469 	 *                  => 0X001203E0
470 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
471 	 *                  => 0x0009001F
472 	 */
473 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
474 
475 	/*
476 	 * Let's figure out which sensors raised the interrupt
477 	 *
478 	 * NOTE: the masks array must be ordered with the index
479 	 * corresponding to the sensor id eg. index=0, mask for
480 	 * sensor0.
481 	 */
482 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
483 
484 		if (!(value & masks[i]))
485 			continue;
486 
487 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
488 					   THERMAL_TRIP_VIOLATED);
489 		iret = IRQ_HANDLED;
490 	}
491 
492 	/*
493 	 * Write back to clear the interrupt status (W1C)
494 	 */
495 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
496 
497 	return iret;
498 }
499 
500 /*
501  * Temperature interrupt handler. Even if the driver supports more
502  * interrupt modes, we use the interrupt when the temperature crosses
503  * the hot threshold the way up and the way down (modulo the
504  * hysteresis).
505  *
506  * Each thermal domain has a couple of interrupts, one for hardware
507  * reset and another one for all the thermal events happening on the
508  * different sensors.
509  *
510  * The interrupt is configured for thermal events when crossing the
511  * hot temperature limit. At each interrupt, we check in every
512  * controller if there is an interrupt pending.
513  */
514 static irqreturn_t lvts_irq_handler(int irq, void *data)
515 {
516 	struct lvts_domain *lvts_td = data;
517 	irqreturn_t aux, iret = IRQ_NONE;
518 	int i;
519 
520 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
521 
522 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
523 		if (aux != IRQ_HANDLED)
524 			continue;
525 
526 		iret = IRQ_HANDLED;
527 	}
528 
529 	return iret;
530 }
531 
532 static struct thermal_zone_device_ops lvts_ops = {
533 	.get_temp = lvts_get_temp,
534 	.set_trips = lvts_set_trips,
535 };
536 
537 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
538 					const struct lvts_ctrl_data *lvts_ctrl_data)
539 {
540 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
541 	void __iomem *msr_regs[] = {
542 		LVTS_MSR0(lvts_ctrl->base),
543 		LVTS_MSR1(lvts_ctrl->base),
544 		LVTS_MSR2(lvts_ctrl->base),
545 		LVTS_MSR3(lvts_ctrl->base)
546 	};
547 
548 	void __iomem *imm_regs[] = {
549 		LVTS_IMMD0(lvts_ctrl->base),
550 		LVTS_IMMD1(lvts_ctrl->base),
551 		LVTS_IMMD2(lvts_ctrl->base),
552 		LVTS_IMMD3(lvts_ctrl->base)
553 	};
554 
555 	int i;
556 
557 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
558 
559 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
560 
561 		/*
562 		 * At this point, we don't know which id matches which
563 		 * sensor. Let's set arbitrally the id from the index.
564 		 */
565 		lvts_sensor[i].id = i;
566 
567 		/*
568 		 * The thermal zone registration will set the trip
569 		 * point interrupt in the thermal controller
570 		 * register. But this one will be reset in the
571 		 * initialization after. So we need to post pone the
572 		 * thermal zone creation after the controller is
573 		 * setup. For this reason, we store the device tree
574 		 * node id from the data in the sensor structure
575 		 */
576 		lvts_sensor[i].dt_id = dt_id;
577 
578 		/*
579 		 * We assign the base address of the thermal
580 		 * controller as a back pointer. So it will be
581 		 * accessible from the different thermal framework ops
582 		 * as we pass the lvts_sensor pointer as thermal zone
583 		 * private data.
584 		 */
585 		lvts_sensor[i].base = lvts_ctrl->base;
586 
587 		/*
588 		 * Each sensor has its own register address to read from.
589 		 */
590 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
591 			imm_regs[i] : msr_regs[i];
592 
593 		lvts_sensor[i].low_thresh = INT_MIN;
594 		lvts_sensor[i].high_thresh = INT_MIN;
595 	};
596 
597 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
598 
599 	return 0;
600 }
601 
602 /*
603  * The efuse blob values follows the sensor enumeration per thermal
604  * controller. The decoding of the stream is as follow:
605  *
606  * stream index map for MCU Domain :
607  *
608  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
609  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
610  *
611  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
612  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
613  *
614  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
615  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
616  *
617  * stream index map for AP Domain :
618  *
619  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
620  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
621  *
622  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
623  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
624  *
625  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
626  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
627  *
628  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
629  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
630  *
631  * The data description gives the offset of the calibration data in
632  * this bytes stream for each sensor.
633  */
634 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
635 					const struct lvts_ctrl_data *lvts_ctrl_data,
636 					u8 *efuse_calibration)
637 {
638 	int i;
639 
640 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
641 		memcpy(&lvts_ctrl->calibration[i],
642 		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
643 
644 	return 0;
645 }
646 
647 /*
648  * The efuse bytes stream can be split into different chunk of
649  * nvmems. This function reads and concatenate those into a single
650  * buffer so it can be read sequentially when initializing the
651  * calibration data.
652  */
653 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
654 					const struct lvts_data *lvts_data)
655 {
656 	struct device_node *np = dev_of_node(dev);
657 	struct nvmem_cell *cell;
658 	struct property *prop;
659 	const char *cell_name;
660 
661 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
662 		size_t len;
663 		u8 *efuse;
664 
665 		cell = of_nvmem_cell_get(np, cell_name);
666 		if (IS_ERR(cell)) {
667 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
668 			return PTR_ERR(cell);
669 		}
670 
671 		efuse = nvmem_cell_read(cell, &len);
672 
673 		nvmem_cell_put(cell);
674 
675 		if (IS_ERR(efuse)) {
676 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
677 			return PTR_ERR(efuse);
678 		}
679 
680 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
681 					       lvts_td->calib_len + len, GFP_KERNEL);
682 		if (!lvts_td->calib) {
683 			kfree(efuse);
684 			return -ENOMEM;
685 		}
686 
687 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
688 
689 		lvts_td->calib_len += len;
690 
691 		kfree(efuse);
692 	}
693 
694 	return 0;
695 }
696 
697 static int lvts_golden_temp_init(struct device *dev, u32 *value)
698 {
699 	u32 gt;
700 
701 	gt = (*value) >> 24;
702 
703 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
704 		golden_temp = gt;
705 
706 	coeff_b = golden_temp * 500 + LVTS_COEFF_B;
707 
708 	return 0;
709 }
710 
711 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
712 					const struct lvts_data *lvts_data)
713 {
714 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
715 	struct lvts_ctrl *lvts_ctrl;
716 	int i, ret;
717 
718 	/*
719 	 * Create the calibration bytes stream from efuse data
720 	 */
721 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
722 	if (ret)
723 		return ret;
724 
725 	/*
726 	 * The golden temp information is contained in the first chunk
727 	 * of efuse data.
728 	 */
729 	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
730 	if (ret)
731 		return ret;
732 
733 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
734 	if (!lvts_ctrl)
735 		return -ENOMEM;
736 
737 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
738 
739 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
740 
741 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
742 				       &lvts_data->lvts_ctrl[i]);
743 		if (ret)
744 			return ret;
745 
746 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
747 					    &lvts_data->lvts_ctrl[i],
748 					    lvts_td->calib);
749 		if (ret)
750 			return ret;
751 
752 		/*
753 		 * The mode the ctrl will use to read the temperature
754 		 * (filtered or immediate)
755 		 */
756 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
757 
758 		/*
759 		 * The temperature to raw temperature must be done
760 		 * after initializing the calibration.
761 		 */
762 		lvts_ctrl[i].hw_tshut_raw_temp =
763 			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
764 
765 		lvts_ctrl[i].low_thresh = INT_MIN;
766 		lvts_ctrl[i].high_thresh = INT_MIN;
767 	}
768 
769 	/*
770 	 * We no longer need the efuse bytes stream, let's free it
771 	 */
772 	devm_kfree(dev, lvts_td->calib);
773 
774 	lvts_td->lvts_ctrl = lvts_ctrl;
775 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
776 
777 	return 0;
778 }
779 
780 /*
781  * At this point the configuration register is the only place in the
782  * driver where we write multiple values. Per hardware constraint,
783  * each write in the configuration register must be separated by a
784  * delay of 2 us.
785  */
786 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
787 {
788 	int i;
789 
790 	/*
791 	 * Configuration register
792 	 */
793 	for (i = 0; i < nr_cmds; i++) {
794 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
795 		usleep_range(2, 4);
796 	}
797 }
798 
799 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
800 {
801 	/*
802 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
803 	 *
804 	 * Bits:
805 	 *
806 	 * 19-18 : Sensor to base the protection on
807 	 * 17-16 : Strategy:
808 	 *         00 : Average of 4 sensors
809 	 *         01 : Max of 4 sensors
810 	 *         10 : Selected sensor with bits 19-18
811 	 *         11 : Reserved
812 	 */
813 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
814 
815 	/*
816 	 * LVTS_PROTTA : Stage 1 temperature threshold
817 	 * LVTS_PROTTB : Stage 2 temperature threshold
818 	 * LVTS_PROTTC : Stage 3 temperature threshold
819 	 *
820 	 * Bits:
821 	 *
822 	 * 14-0: Raw temperature threshold
823 	 *
824 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
825 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
826 	 */
827 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
828 
829 	/*
830 	 * LVTS_MONINT : Interrupt configuration register
831 	 *
832 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
833 	 * register, except we set the bits to enable the interrupt.
834 	 */
835 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
836 
837 	return 0;
838 }
839 
840 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
841 {
842 	int ret;
843 
844 	ret = reset_control_assert(reset);
845 	if (ret)
846 		return ret;
847 
848 	return reset_control_deassert(reset);
849 }
850 
851 /*
852  * Enable or disable the clocks of a specified thermal controller
853  */
854 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
855 {
856 	/*
857 	 * LVTS_CLKEN : Internal LVTS clock
858 	 *
859 	 * Bits:
860 	 *
861 	 * 0 : enable / disable clock
862 	 */
863 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
864 
865 	return 0;
866 }
867 
868 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
869 {
870 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
871 
872 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
873 
874 	/*
875 	 * LVTS_ID : Get ID and status of the thermal controller
876 	 *
877 	 * Bits:
878 	 *
879 	 * 0-5	: thermal controller id
880 	 *   7	: thermal controller connection is valid
881 	 */
882 	id = readl(LVTS_ID(lvts_ctrl->base));
883 	if (!(id & BIT(7)))
884 		return -EIO;
885 
886 	return 0;
887 }
888 
889 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
890 {
891 	/*
892 	 * Write device mask: 0xC1030000
893 	 */
894 	u32 cmds[] = {
895 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
896 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
897 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
898 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
899 	};
900 
901 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
902 
903 	return 0;
904 }
905 
906 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
907 {
908 	int i;
909 	void __iomem *lvts_edata[] = {
910 		LVTS_EDATA00(lvts_ctrl->base),
911 		LVTS_EDATA01(lvts_ctrl->base),
912 		LVTS_EDATA02(lvts_ctrl->base),
913 		LVTS_EDATA03(lvts_ctrl->base)
914 	};
915 
916 	/*
917 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
918 	 *
919 	 * Bits:
920 	 *
921 	 * 20-0 : Efuse value for normalization data
922 	 */
923 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
924 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
925 
926 	return 0;
927 }
928 
929 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
930 {
931 	u32 value;
932 
933 	/*
934 	 * LVTS_TSSEL : Sensing point index numbering
935 	 *
936 	 * Bits:
937 	 *
938 	 * 31-24: ADC Sense 3
939 	 * 23-16: ADC Sense 2
940 	 * 15-8	: ADC Sense 1
941 	 * 7-0	: ADC Sense 0
942 	 */
943 	value = LVTS_TSSEL_CONF;
944 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
945 
946 	/*
947 	 * LVTS_CALSCALE : ADC voltage round
948 	 */
949 	value = 0x300;
950 	value = LVTS_CALSCALE_CONF;
951 
952 	/*
953 	 * LVTS_MSRCTL0 : Sensor filtering strategy
954 	 *
955 	 * Filters:
956 	 *
957 	 * 000 : One sample
958 	 * 001 : Avg 2 samples
959 	 * 010 : 4 samples, drop min and max, avg 2 samples
960 	 * 011 : 6 samples, drop min and max, avg 4 samples
961 	 * 100 : 10 samples, drop min and max, avg 8 samples
962 	 * 101 : 18 samples, drop min and max, avg 16 samples
963 	 *
964 	 * Bits:
965 	 *
966 	 * 0-2  : Sensor0 filter
967 	 * 3-5  : Sensor1 filter
968 	 * 6-8  : Sensor2 filter
969 	 * 9-11 : Sensor3 filter
970 	 */
971 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
972 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
973 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
974 
975 	/*
976 	 * LVTS_MONCTL1 : Period unit and group interval configuration
977 	 *
978 	 * The clock source of LVTS thermal controller is 26MHz.
979 	 *
980 	 * The period unit is a time base for all the interval delays
981 	 * specified in the registers. By default we use 12. The time
982 	 * conversion is done by multiplying by 256 and 1/26.10^6
983 	 *
984 	 * An interval delay multiplied by the period unit gives the
985 	 * duration in seconds.
986 	 *
987 	 * - Filter interval delay is a delay between two samples of
988 	 * the same sensor.
989 	 *
990 	 * - Sensor interval delay is a delay between two samples of
991 	 * different sensors.
992 	 *
993 	 * - Group interval delay is a delay between different rounds.
994 	 *
995 	 * For example:
996 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
997 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
998 	 *     and then
999 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1000 	 *     Filter interval delay = 1 * Period unit = 118.149us
1001 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1002 	 *     Group interval delay = 1 * Period unit = 118.149us
1003 	 *
1004 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1005 	 *        <--> Filter interval delay
1006 	 *                       <--> Sensor interval delay
1007 	 *                                             <--> Group interval delay
1008 	 * Bits:
1009 	 *      29 - 20 : Group interval
1010 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1011 	 *                or an interrupt everytime the hot threshold is crossed (0)
1012 	 *       9 - 0  : Period unit
1013 	 *
1014 	 */
1015 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1016 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1017 
1018 	/*
1019 	 * LVTS_MONCTL2 : Filtering and sensor interval
1020 	 *
1021 	 * Bits:
1022 	 *
1023 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1024 	 *              the same sensor, filter interval
1025 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1026 	 *
1027 	 */
1028 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1029 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1030 
1031 	return lvts_irq_init(lvts_ctrl);
1032 }
1033 
1034 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1035 {
1036 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1037 	struct thermal_zone_device *tz;
1038 	u32 sensor_map = 0;
1039 	int i;
1040 	/*
1041 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1042 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1043 	 */
1044 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1045 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1046 
1047 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1048 			     sensor_imm_bitmap : sensor_filt_bitmap;
1049 
1050 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1051 
1052 		int dt_id = lvts_sensors[i].dt_id;
1053 
1054 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1055 						   &lvts_ops);
1056 		if (IS_ERR(tz)) {
1057 			/*
1058 			 * This thermal zone is not described in the
1059 			 * device tree. It is not an error from the
1060 			 * thermal OF code POV, we just continue.
1061 			 */
1062 			if (PTR_ERR(tz) == -ENODEV)
1063 				continue;
1064 
1065 			return PTR_ERR(tz);
1066 		}
1067 
1068 		devm_thermal_add_hwmon_sysfs(dev, tz);
1069 
1070 		/*
1071 		 * The thermal zone pointer will be needed in the
1072 		 * interrupt handler, we store it in the sensor
1073 		 * structure. The thermal domain structure will be
1074 		 * passed to the interrupt handler private data as the
1075 		 * interrupt is shared for all the controller
1076 		 * belonging to the thermal domain.
1077 		 */
1078 		lvts_sensors[i].tz = tz;
1079 
1080 		/*
1081 		 * This sensor was correctly associated with a thermal
1082 		 * zone, let's set the corresponding bit in the sensor
1083 		 * map, so we can enable the temperature monitoring in
1084 		 * the hardware thermal controller.
1085 		 */
1086 		sensor_map |= sensor_bitmap[i];
1087 	}
1088 
1089 	/*
1090 	 * The initialization of the thermal zones give us
1091 	 * which sensor point to enable. If any thermal zone
1092 	 * was not described in the device tree, it won't be
1093 	 * enabled here in the sensor map.
1094 	 */
1095 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1096 		/*
1097 		 * LVTS_MSRCTL1 : Measurement control
1098 		 *
1099 		 * Bits:
1100 		 *
1101 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1102 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1103 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1104 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1105 		 *
1106 		 * That configuration will ignore the filtering and the delays
1107 		 * introduced in MONCTL1 and MONCTL2
1108 		 */
1109 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1110 	} else {
1111 		/*
1112 		 * Bits:
1113 		 *      9: Single point access flow
1114 		 *    0-3: Enable sensing point 0-3
1115 		 */
1116 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1123 					const struct lvts_data *lvts_data)
1124 {
1125 	struct lvts_ctrl *lvts_ctrl;
1126 	int i, ret;
1127 
1128 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = lvts_domain_reset(dev, lvts_td->reset);
1133 	if (ret) {
1134 		dev_dbg(dev, "Failed to reset domain");
1135 		return ret;
1136 	}
1137 
1138 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1139 
1140 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1141 
1142 		/*
1143 		 * Initialization steps:
1144 		 *
1145 		 * - Enable the clock
1146 		 * - Connect to the LVTS
1147 		 * - Initialize the LVTS
1148 		 * - Prepare the calibration data
1149 		 * - Select monitored sensors
1150 		 * [ Configure sampling ]
1151 		 * [ Configure the interrupt ]
1152 		 * - Start measurement
1153 		 */
1154 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1155 		if (ret) {
1156 			dev_dbg(dev, "Failed to enable LVTS clock");
1157 			return ret;
1158 		}
1159 
1160 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1161 		if (ret) {
1162 			dev_dbg(dev, "Failed to connect to LVTS controller");
1163 			return ret;
1164 		}
1165 
1166 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1167 		if (ret) {
1168 			dev_dbg(dev, "Failed to initialize controller");
1169 			return ret;
1170 		}
1171 
1172 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1173 		if (ret) {
1174 			dev_dbg(dev, "Failed to calibrate controller");
1175 			return ret;
1176 		}
1177 
1178 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1179 		if (ret) {
1180 			dev_dbg(dev, "Failed to configure controller");
1181 			return ret;
1182 		}
1183 
1184 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1185 		if (ret) {
1186 			dev_dbg(dev, "Failed to start controller");
1187 			return ret;
1188 		}
1189 	}
1190 
1191 	return lvts_debugfs_init(dev, lvts_td);
1192 }
1193 
1194 static int lvts_probe(struct platform_device *pdev)
1195 {
1196 	const struct lvts_data *lvts_data;
1197 	struct lvts_domain *lvts_td;
1198 	struct device *dev = &pdev->dev;
1199 	struct resource *res;
1200 	int irq, ret;
1201 
1202 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1203 	if (!lvts_td)
1204 		return -ENOMEM;
1205 
1206 	lvts_data = of_device_get_match_data(dev);
1207 
1208 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1209 	if (IS_ERR(lvts_td->clk))
1210 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1211 
1212 	res = platform_get_mem_or_io(pdev, 0);
1213 	if (!res)
1214 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1215 
1216 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1217 	if (IS_ERR(lvts_td->base))
1218 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1219 
1220 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1221 	if (IS_ERR(lvts_td->reset))
1222 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1223 
1224 	irq = platform_get_irq(pdev, 0);
1225 	if (irq < 0)
1226 		return irq;
1227 
1228 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1229 	if (ret)
1230 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1231 
1232 	/*
1233 	 * At this point the LVTS is initialized and enabled. We can
1234 	 * safely enable the interrupt.
1235 	 */
1236 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1237 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1238 	if (ret)
1239 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1240 
1241 	platform_set_drvdata(pdev, lvts_td);
1242 
1243 	return 0;
1244 }
1245 
1246 static int lvts_remove(struct platform_device *pdev)
1247 {
1248 	struct lvts_domain *lvts_td;
1249 	int i;
1250 
1251 	lvts_td = platform_get_drvdata(pdev);
1252 
1253 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1254 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1255 
1256 	lvts_debugfs_exit(lvts_td);
1257 
1258 	return 0;
1259 }
1260 
1261 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1262 	{
1263 		.cal_offset = { 0x04, 0x07 },
1264 		.lvts_sensor = {
1265 			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1266 			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1267 		},
1268 		.num_lvts_sensor = 2,
1269 		.offset = 0x0,
1270 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1271 	},
1272 	{
1273 		.cal_offset = { 0x0d, 0x10 },
1274 		.lvts_sensor = {
1275 			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1276 			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1277 		},
1278 		.num_lvts_sensor = 2,
1279 		.offset = 0x100,
1280 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1281 	},
1282 	{
1283 		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1284 		.lvts_sensor = {
1285 			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1286 			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1287 			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1288 			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1289 		},
1290 		.num_lvts_sensor = 4,
1291 		.offset = 0x200,
1292 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1293 	}
1294 };
1295 
1296 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1297 		{
1298 		.cal_offset = { 0x25, 0x28 },
1299 		.lvts_sensor = {
1300 			{ .dt_id = MT8195_AP_VPU0 },
1301 			{ .dt_id = MT8195_AP_VPU1 }
1302 		},
1303 		.num_lvts_sensor = 2,
1304 		.offset = 0x0,
1305 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1306 	},
1307 	{
1308 		.cal_offset = { 0x2e, 0x31 },
1309 		.lvts_sensor = {
1310 			{ .dt_id = MT8195_AP_GPU0 },
1311 			{ .dt_id = MT8195_AP_GPU1 }
1312 		},
1313 		.num_lvts_sensor = 2,
1314 		.offset = 0x100,
1315 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1316 	},
1317 	{
1318 		.cal_offset = { 0x37, 0x3a, 0x3d },
1319 		.lvts_sensor = {
1320 			{ .dt_id = MT8195_AP_VDEC },
1321 			{ .dt_id = MT8195_AP_IMG },
1322 			{ .dt_id = MT8195_AP_INFRA },
1323 		},
1324 		.num_lvts_sensor = 3,
1325 		.offset = 0x200,
1326 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1327 	},
1328 	{
1329 		.cal_offset = { 0x43, 0x46 },
1330 		.lvts_sensor = {
1331 			{ .dt_id = MT8195_AP_CAM0 },
1332 			{ .dt_id = MT8195_AP_CAM1 }
1333 		},
1334 		.num_lvts_sensor = 2,
1335 		.offset = 0x300,
1336 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1337 	}
1338 };
1339 
1340 static const struct lvts_data mt8195_lvts_mcu_data = {
1341 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1342 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1343 };
1344 
1345 static const struct lvts_data mt8195_lvts_ap_data = {
1346 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1347 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1348 };
1349 
1350 static const struct of_device_id lvts_of_match[] = {
1351 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1352 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1353 	{},
1354 };
1355 MODULE_DEVICE_TABLE(of, lvts_of_match);
1356 
1357 static struct platform_driver lvts_driver = {
1358 	.probe = lvts_probe,
1359 	.remove = lvts_remove,
1360 	.driver = {
1361 		.name = "mtk-lvts-thermal",
1362 		.of_match_table = lvts_of_match,
1363 	},
1364 };
1365 module_platform_driver(lvts_driver);
1366 
1367 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1368 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1369 MODULE_LICENSE("GPL");
1370