xref: /openbmc/linux/drivers/thermal/mediatek/lvts_thermal.c (revision 2584e54502e1c77ce143d5874520f36240395e6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A				-250460
84 #define LVTS_COEFF_B				250460
85 
86 #define LVTS_MSR_IMMEDIATE_MODE		0
87 #define LVTS_MSR_FILTERED_MODE		1
88 
89 #define LVTS_MSR_READ_TIMEOUT_US	400
90 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
91 
92 #define LVTS_HW_SHUTDOWN_MT8195		105000
93 
94 #define LVTS_MINIMUM_THRESHOLD		20000
95 
96 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
97 static int coeff_b = LVTS_COEFF_B;
98 
99 struct lvts_sensor_data {
100 	int dt_id;
101 };
102 
103 struct lvts_ctrl_data {
104 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
105 	int cal_offset[LVTS_SENSOR_MAX];
106 	int hw_tshut_temp;
107 	int num_lvts_sensor;
108 	int offset;
109 	int mode;
110 };
111 
112 struct lvts_data {
113 	const struct lvts_ctrl_data *lvts_ctrl;
114 	int num_lvts_ctrl;
115 };
116 
117 struct lvts_sensor {
118 	struct thermal_zone_device *tz;
119 	void __iomem *msr;
120 	void __iomem *base;
121 	int id;
122 	int dt_id;
123 	int low_thresh;
124 	int high_thresh;
125 };
126 
127 struct lvts_ctrl {
128 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
129 	u32 calibration[LVTS_SENSOR_MAX];
130 	u32 hw_tshut_raw_temp;
131 	int num_lvts_sensor;
132 	int mode;
133 	void __iomem *base;
134 	int low_thresh;
135 	int high_thresh;
136 };
137 
138 struct lvts_domain {
139 	struct lvts_ctrl *lvts_ctrl;
140 	struct reset_control *reset;
141 	struct clk *clk;
142 	int num_lvts_ctrl;
143 	void __iomem *base;
144 	size_t calib_len;
145 	u8 *calib;
146 #ifdef CONFIG_DEBUG_FS
147 	struct dentry *dom_dentry;
148 #endif
149 };
150 
151 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
152 
153 #define LVTS_DEBUG_FS_REGS(__reg)		\
154 {						\
155 	.name = __stringify(__reg),		\
156 	.offset = __reg(0),			\
157 }
158 
159 static const struct debugfs_reg32 lvts_regs[] = {
160 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
161 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
162 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
163 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
164 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
165 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
166 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
167 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
169 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
170 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
171 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
172 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
173 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
174 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
175 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
176 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
177 	LVTS_DEBUG_FS_REGS(LVTS_ID),
178 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
179 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
180 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
181 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
182 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
183 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
184 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
185 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
186 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
187 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
188 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
189 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
190 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
191 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
192 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
193 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
194 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
195 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
196 };
197 
198 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
199 {
200 	struct debugfs_regset32 *regset;
201 	struct lvts_ctrl *lvts_ctrl;
202 	struct dentry *dentry;
203 	char name[64];
204 	int i;
205 
206 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
207 	if (IS_ERR(lvts_td->dom_dentry))
208 		return 0;
209 
210 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
211 
212 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
213 
214 		sprintf(name, "controller%d", i);
215 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
216 		if (!dentry)
217 			continue;
218 
219 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
220 		if (!regset)
221 			continue;
222 
223 		regset->base = lvts_ctrl->base;
224 		regset->regs = lvts_regs;
225 		regset->nregs = ARRAY_SIZE(lvts_regs);
226 
227 		debugfs_create_regset32("registers", 0400, dentry, regset);
228 	}
229 
230 	return 0;
231 }
232 
233 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
234 {
235 	debugfs_remove_recursive(lvts_td->dom_dentry);
236 }
237 
238 #else
239 
240 static inline int lvts_debugfs_init(struct device *dev,
241 				    struct lvts_domain *lvts_td)
242 {
243 	return 0;
244 }
245 
246 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
247 
248 #endif
249 
250 static int lvts_raw_to_temp(u32 raw_temp)
251 {
252 	int temperature;
253 
254 	temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
255 	temperature += coeff_b;
256 
257 	return temperature;
258 }
259 
260 static u32 lvts_temp_to_raw(int temperature)
261 {
262 	u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
263 
264 	raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
265 
266 	return raw_temp;
267 }
268 
269 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
270 {
271 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
272 	void __iomem *msr = lvts_sensor->msr;
273 	u32 value;
274 	int rc;
275 
276 	/*
277 	 * Measurement registers:
278 	 *
279 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
280 	 *
281 	 * Bits:
282 	 *
283 	 * 32-17: Unused
284 	 * 16	: Valid temperature
285 	 * 15-0	: Raw temperature
286 	 */
287 	rc = readl_poll_timeout(msr, value, value & BIT(16),
288 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
289 
290 	/*
291 	 * As the thermal zone temperature will read before the
292 	 * hardware sensor is fully initialized, we have to check the
293 	 * validity of the temperature returned when reading the
294 	 * measurement register. The thermal controller will set the
295 	 * valid bit temperature only when it is totally initialized.
296 	 *
297 	 * Otherwise, we may end up with garbage values out of the
298 	 * functionning temperature and directly jump to a system
299 	 * shutdown.
300 	 */
301 	if (rc)
302 		return -EAGAIN;
303 
304 	*temp = lvts_raw_to_temp(value & 0xFFFF);
305 
306 	return 0;
307 }
308 
309 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
310 {
311 	u32 masks[] = {
312 		LVTS_MONINT_OFFSET_SENSOR0,
313 		LVTS_MONINT_OFFSET_SENSOR1,
314 		LVTS_MONINT_OFFSET_SENSOR2,
315 		LVTS_MONINT_OFFSET_SENSOR3,
316 	};
317 	u32 value = 0;
318 	int i;
319 
320 	value = readl(LVTS_MONINT(lvts_ctrl->base));
321 
322 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
323 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
324 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
325 			value |= masks[i];
326 		else
327 			value &= ~masks[i];
328 	}
329 
330 	writel(value, LVTS_MONINT(lvts_ctrl->base));
331 }
332 
333 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
334 {
335 	int i;
336 
337 	if (high > lvts_ctrl->high_thresh)
338 		return true;
339 
340 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
341 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
342 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
343 			return false;
344 
345 	return true;
346 }
347 
348 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
349 {
350 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
351 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]);
352 	void __iomem *base = lvts_sensor->base;
353 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD);
354 	u32 raw_high = lvts_temp_to_raw(high);
355 	bool should_update_thresh;
356 
357 	lvts_sensor->low_thresh = low;
358 	lvts_sensor->high_thresh = high;
359 
360 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
361 	if (should_update_thresh) {
362 		lvts_ctrl->high_thresh = high;
363 		lvts_ctrl->low_thresh = low;
364 	}
365 	lvts_update_irq_mask(lvts_ctrl);
366 
367 	if (!should_update_thresh)
368 		return 0;
369 
370 	/*
371 	 * Low offset temperature threshold
372 	 *
373 	 * LVTS_OFFSETL
374 	 *
375 	 * Bits:
376 	 *
377 	 * 14-0 : Raw temperature for threshold
378 	 */
379 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
380 		 thermal_zone_device_type(tz), low);
381 	writel(raw_low, LVTS_OFFSETL(base));
382 
383 	/*
384 	 * High offset temperature threshold
385 	 *
386 	 * LVTS_OFFSETH
387 	 *
388 	 * Bits:
389 	 *
390 	 * 14-0 : Raw temperature for threshold
391 	 */
392 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
393 		 thermal_zone_device_type(tz), high);
394 	writel(raw_high, LVTS_OFFSETH(base));
395 
396 	return 0;
397 }
398 
399 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
400 {
401 	irqreturn_t iret = IRQ_NONE;
402 	u32 value;
403 	u32 masks[] = {
404 		LVTS_INT_SENSOR0,
405 		LVTS_INT_SENSOR1,
406 		LVTS_INT_SENSOR2,
407 		LVTS_INT_SENSOR3
408 	};
409 	int i;
410 
411 	/*
412 	 * Interrupt monitoring status
413 	 *
414 	 * LVTS_MONINTST
415 	 *
416 	 * Bits:
417 	 *
418 	 * 31 : Interrupt for stage 3
419 	 * 30 : Interrupt for stage 2
420 	 * 29 : Interrupt for state 1
421 	 * 28 : Interrupt using filter on sensor 3
422 	 *
423 	 * 27 : Interrupt using immediate on sensor 3
424 	 * 26 : Interrupt normal to hot on sensor 3
425 	 * 25 : Interrupt high offset on sensor 3
426 	 * 24 : Interrupt low offset on sensor 3
427 	 *
428 	 * 23 : Interrupt hot threshold on sensor 3
429 	 * 22 : Interrupt cold threshold on sensor 3
430 	 * 21 : Interrupt using filter on sensor 2
431 	 * 20 : Interrupt using filter on sensor 1
432 	 *
433 	 * 19 : Interrupt using filter on sensor 0
434 	 * 18 : Interrupt using immediate on sensor 2
435 	 * 17 : Interrupt using immediate on sensor 1
436 	 * 16 : Interrupt using immediate on sensor 0
437 	 *
438 	 * 15 : Interrupt device access timeout interrupt
439 	 * 14 : Interrupt normal to hot on sensor 2
440 	 * 13 : Interrupt high offset interrupt on sensor 2
441 	 * 12 : Interrupt low offset interrupt on sensor 2
442 	 *
443 	 * 11 : Interrupt hot threshold on sensor 2
444 	 * 10 : Interrupt cold threshold on sensor 2
445 	 *  9 : Interrupt normal to hot on sensor 1
446 	 *  8 : Interrupt high offset interrupt on sensor 1
447 	 *
448 	 *  7 : Interrupt low offset interrupt on sensor 1
449 	 *  6 : Interrupt hot threshold on sensor 1
450 	 *  5 : Interrupt cold threshold on sensor 1
451 	 *  4 : Interrupt normal to hot on sensor 0
452 	 *
453 	 *  3 : Interrupt high offset interrupt on sensor 0
454 	 *  2 : Interrupt low offset interrupt on sensor 0
455 	 *  1 : Interrupt hot threshold on sensor 0
456 	 *  0 : Interrupt cold threshold on sensor 0
457 	 *
458 	 * We are interested in the sensor(s) responsible of the
459 	 * interrupt event. We update the thermal framework with the
460 	 * thermal zone associated with the sensor. The framework will
461 	 * take care of the rest whatever the kind of interrupt, we
462 	 * are only interested in which sensor raised the interrupt.
463 	 *
464 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
465 	 *                  => 0x1FC00000
466 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
467 	 *                  => 0x00247C00
468 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
469 	 *                  => 0X001203E0
470 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
471 	 *                  => 0x0009001F
472 	 */
473 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
474 
475 	/*
476 	 * Let's figure out which sensors raised the interrupt
477 	 *
478 	 * NOTE: the masks array must be ordered with the index
479 	 * corresponding to the sensor id eg. index=0, mask for
480 	 * sensor0.
481 	 */
482 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
483 
484 		if (!(value & masks[i]))
485 			continue;
486 
487 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
488 					   THERMAL_TRIP_VIOLATED);
489 		iret = IRQ_HANDLED;
490 	}
491 
492 	/*
493 	 * Write back to clear the interrupt status (W1C)
494 	 */
495 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
496 
497 	return iret;
498 }
499 
500 /*
501  * Temperature interrupt handler. Even if the driver supports more
502  * interrupt modes, we use the interrupt when the temperature crosses
503  * the hot threshold the way up and the way down (modulo the
504  * hysteresis).
505  *
506  * Each thermal domain has a couple of interrupts, one for hardware
507  * reset and another one for all the thermal events happening on the
508  * different sensors.
509  *
510  * The interrupt is configured for thermal events when crossing the
511  * hot temperature limit. At each interrupt, we check in every
512  * controller if there is an interrupt pending.
513  */
514 static irqreturn_t lvts_irq_handler(int irq, void *data)
515 {
516 	struct lvts_domain *lvts_td = data;
517 	irqreturn_t aux, iret = IRQ_NONE;
518 	int i;
519 
520 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
521 
522 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
523 		if (aux != IRQ_HANDLED)
524 			continue;
525 
526 		iret = IRQ_HANDLED;
527 	}
528 
529 	return iret;
530 }
531 
532 static struct thermal_zone_device_ops lvts_ops = {
533 	.get_temp = lvts_get_temp,
534 	.set_trips = lvts_set_trips,
535 };
536 
537 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
538 					const struct lvts_ctrl_data *lvts_ctrl_data)
539 {
540 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
541 	void __iomem *msr_regs[] = {
542 		LVTS_MSR0(lvts_ctrl->base),
543 		LVTS_MSR1(lvts_ctrl->base),
544 		LVTS_MSR2(lvts_ctrl->base),
545 		LVTS_MSR3(lvts_ctrl->base)
546 	};
547 
548 	void __iomem *imm_regs[] = {
549 		LVTS_IMMD0(lvts_ctrl->base),
550 		LVTS_IMMD1(lvts_ctrl->base),
551 		LVTS_IMMD2(lvts_ctrl->base),
552 		LVTS_IMMD3(lvts_ctrl->base)
553 	};
554 
555 	int i;
556 
557 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
558 
559 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
560 
561 		/*
562 		 * At this point, we don't know which id matches which
563 		 * sensor. Let's set arbitrally the id from the index.
564 		 */
565 		lvts_sensor[i].id = i;
566 
567 		/*
568 		 * The thermal zone registration will set the trip
569 		 * point interrupt in the thermal controller
570 		 * register. But this one will be reset in the
571 		 * initialization after. So we need to post pone the
572 		 * thermal zone creation after the controller is
573 		 * setup. For this reason, we store the device tree
574 		 * node id from the data in the sensor structure
575 		 */
576 		lvts_sensor[i].dt_id = dt_id;
577 
578 		/*
579 		 * We assign the base address of the thermal
580 		 * controller as a back pointer. So it will be
581 		 * accessible from the different thermal framework ops
582 		 * as we pass the lvts_sensor pointer as thermal zone
583 		 * private data.
584 		 */
585 		lvts_sensor[i].base = lvts_ctrl->base;
586 
587 		/*
588 		 * Each sensor has its own register address to read from.
589 		 */
590 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
591 			imm_regs[i] : msr_regs[i];
592 
593 		lvts_sensor[i].low_thresh = INT_MIN;
594 		lvts_sensor[i].high_thresh = INT_MIN;
595 	};
596 
597 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
598 
599 	return 0;
600 }
601 
602 /*
603  * The efuse blob values follows the sensor enumeration per thermal
604  * controller. The decoding of the stream is as follow:
605  *
606  * stream index map for MCU Domain :
607  *
608  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
609  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
610  *
611  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
612  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
613  *
614  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
615  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
616  *
617  * stream index map for AP Domain :
618  *
619  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
620  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
621  *
622  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
623  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
624  *
625  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
626  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
627  *
628  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
629  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
630  *
631  * The data description gives the offset of the calibration data in
632  * this bytes stream for each sensor.
633  */
634 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
635 					const struct lvts_ctrl_data *lvts_ctrl_data,
636 					u8 *efuse_calibration)
637 {
638 	int i;
639 
640 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
641 		memcpy(&lvts_ctrl->calibration[i],
642 		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
643 
644 	return 0;
645 }
646 
647 /*
648  * The efuse bytes stream can be split into different chunk of
649  * nvmems. This function reads and concatenate those into a single
650  * buffer so it can be read sequentially when initializing the
651  * calibration data.
652  */
653 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
654 					const struct lvts_data *lvts_data)
655 {
656 	struct device_node *np = dev_of_node(dev);
657 	struct nvmem_cell *cell;
658 	struct property *prop;
659 	const char *cell_name;
660 
661 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
662 		size_t len;
663 		u8 *efuse;
664 
665 		cell = of_nvmem_cell_get(np, cell_name);
666 		if (IS_ERR(cell)) {
667 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
668 			return PTR_ERR(cell);
669 		}
670 
671 		efuse = nvmem_cell_read(cell, &len);
672 
673 		nvmem_cell_put(cell);
674 
675 		if (IS_ERR(efuse)) {
676 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
677 			return PTR_ERR(efuse);
678 		}
679 
680 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
681 					       lvts_td->calib_len + len, GFP_KERNEL);
682 		if (!lvts_td->calib)
683 			return -ENOMEM;
684 
685 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
686 
687 		lvts_td->calib_len += len;
688 
689 		kfree(efuse);
690 	}
691 
692 	return 0;
693 }
694 
695 static int lvts_golden_temp_init(struct device *dev, u32 *value)
696 {
697 	u32 gt;
698 
699 	gt = (*value) >> 24;
700 
701 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
702 		golden_temp = gt;
703 
704 	coeff_b = golden_temp * 500 + LVTS_COEFF_B;
705 
706 	return 0;
707 }
708 
709 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
710 					const struct lvts_data *lvts_data)
711 {
712 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
713 	struct lvts_ctrl *lvts_ctrl;
714 	int i, ret;
715 
716 	/*
717 	 * Create the calibration bytes stream from efuse data
718 	 */
719 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
720 	if (ret)
721 		return ret;
722 
723 	/*
724 	 * The golden temp information is contained in the first chunk
725 	 * of efuse data.
726 	 */
727 	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
728 	if (ret)
729 		return ret;
730 
731 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
732 	if (!lvts_ctrl)
733 		return -ENOMEM;
734 
735 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
736 
737 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
738 
739 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
740 				       &lvts_data->lvts_ctrl[i]);
741 		if (ret)
742 			return ret;
743 
744 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
745 					    &lvts_data->lvts_ctrl[i],
746 					    lvts_td->calib);
747 		if (ret)
748 			return ret;
749 
750 		/*
751 		 * The mode the ctrl will use to read the temperature
752 		 * (filtered or immediate)
753 		 */
754 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
755 
756 		/*
757 		 * The temperature to raw temperature must be done
758 		 * after initializing the calibration.
759 		 */
760 		lvts_ctrl[i].hw_tshut_raw_temp =
761 			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
762 
763 		lvts_ctrl[i].low_thresh = INT_MIN;
764 		lvts_ctrl[i].high_thresh = INT_MIN;
765 	}
766 
767 	/*
768 	 * We no longer need the efuse bytes stream, let's free it
769 	 */
770 	devm_kfree(dev, lvts_td->calib);
771 
772 	lvts_td->lvts_ctrl = lvts_ctrl;
773 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
774 
775 	return 0;
776 }
777 
778 /*
779  * At this point the configuration register is the only place in the
780  * driver where we write multiple values. Per hardware constraint,
781  * each write in the configuration register must be separated by a
782  * delay of 2 us.
783  */
784 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
785 {
786 	int i;
787 
788 	/*
789 	 * Configuration register
790 	 */
791 	for (i = 0; i < nr_cmds; i++) {
792 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
793 		usleep_range(2, 4);
794 	}
795 }
796 
797 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
798 {
799 	/*
800 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
801 	 *
802 	 * Bits:
803 	 *
804 	 * 19-18 : Sensor to base the protection on
805 	 * 17-16 : Strategy:
806 	 *         00 : Average of 4 sensors
807 	 *         01 : Max of 4 sensors
808 	 *         10 : Selected sensor with bits 19-18
809 	 *         11 : Reserved
810 	 */
811 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
812 
813 	/*
814 	 * LVTS_PROTTA : Stage 1 temperature threshold
815 	 * LVTS_PROTTB : Stage 2 temperature threshold
816 	 * LVTS_PROTTC : Stage 3 temperature threshold
817 	 *
818 	 * Bits:
819 	 *
820 	 * 14-0: Raw temperature threshold
821 	 *
822 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
823 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
824 	 */
825 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
826 
827 	/*
828 	 * LVTS_MONINT : Interrupt configuration register
829 	 *
830 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
831 	 * register, except we set the bits to enable the interrupt.
832 	 */
833 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
834 
835 	return 0;
836 }
837 
838 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
839 {
840 	int ret;
841 
842 	ret = reset_control_assert(reset);
843 	if (ret)
844 		return ret;
845 
846 	return reset_control_deassert(reset);
847 }
848 
849 /*
850  * Enable or disable the clocks of a specified thermal controller
851  */
852 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
853 {
854 	/*
855 	 * LVTS_CLKEN : Internal LVTS clock
856 	 *
857 	 * Bits:
858 	 *
859 	 * 0 : enable / disable clock
860 	 */
861 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
862 
863 	return 0;
864 }
865 
866 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
867 {
868 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
869 
870 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
871 
872 	/*
873 	 * LVTS_ID : Get ID and status of the thermal controller
874 	 *
875 	 * Bits:
876 	 *
877 	 * 0-5	: thermal controller id
878 	 *   7	: thermal controller connection is valid
879 	 */
880 	id = readl(LVTS_ID(lvts_ctrl->base));
881 	if (!(id & BIT(7)))
882 		return -EIO;
883 
884 	return 0;
885 }
886 
887 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
888 {
889 	/*
890 	 * Write device mask: 0xC1030000
891 	 */
892 	u32 cmds[] = {
893 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
894 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
895 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
896 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
897 	};
898 
899 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
900 
901 	return 0;
902 }
903 
904 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
905 {
906 	int i;
907 	void __iomem *lvts_edata[] = {
908 		LVTS_EDATA00(lvts_ctrl->base),
909 		LVTS_EDATA01(lvts_ctrl->base),
910 		LVTS_EDATA02(lvts_ctrl->base),
911 		LVTS_EDATA03(lvts_ctrl->base)
912 	};
913 
914 	/*
915 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
916 	 *
917 	 * Bits:
918 	 *
919 	 * 20-0 : Efuse value for normalization data
920 	 */
921 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
922 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
923 
924 	return 0;
925 }
926 
927 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
928 {
929 	u32 value;
930 
931 	/*
932 	 * LVTS_TSSEL : Sensing point index numbering
933 	 *
934 	 * Bits:
935 	 *
936 	 * 31-24: ADC Sense 3
937 	 * 23-16: ADC Sense 2
938 	 * 15-8	: ADC Sense 1
939 	 * 7-0	: ADC Sense 0
940 	 */
941 	value = LVTS_TSSEL_CONF;
942 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
943 
944 	/*
945 	 * LVTS_CALSCALE : ADC voltage round
946 	 */
947 	value = 0x300;
948 	value = LVTS_CALSCALE_CONF;
949 
950 	/*
951 	 * LVTS_MSRCTL0 : Sensor filtering strategy
952 	 *
953 	 * Filters:
954 	 *
955 	 * 000 : One sample
956 	 * 001 : Avg 2 samples
957 	 * 010 : 4 samples, drop min and max, avg 2 samples
958 	 * 011 : 6 samples, drop min and max, avg 4 samples
959 	 * 100 : 10 samples, drop min and max, avg 8 samples
960 	 * 101 : 18 samples, drop min and max, avg 16 samples
961 	 *
962 	 * Bits:
963 	 *
964 	 * 0-2  : Sensor0 filter
965 	 * 3-5  : Sensor1 filter
966 	 * 6-8  : Sensor2 filter
967 	 * 9-11 : Sensor3 filter
968 	 */
969 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
970 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
971 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
972 
973 	/*
974 	 * LVTS_MONCTL1 : Period unit and group interval configuration
975 	 *
976 	 * The clock source of LVTS thermal controller is 26MHz.
977 	 *
978 	 * The period unit is a time base for all the interval delays
979 	 * specified in the registers. By default we use 12. The time
980 	 * conversion is done by multiplying by 256 and 1/26.10^6
981 	 *
982 	 * An interval delay multiplied by the period unit gives the
983 	 * duration in seconds.
984 	 *
985 	 * - Filter interval delay is a delay between two samples of
986 	 * the same sensor.
987 	 *
988 	 * - Sensor interval delay is a delay between two samples of
989 	 * different sensors.
990 	 *
991 	 * - Group interval delay is a delay between different rounds.
992 	 *
993 	 * For example:
994 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
995 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
996 	 *     and then
997 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
998 	 *     Filter interval delay = 1 * Period unit = 118.149us
999 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1000 	 *     Group interval delay = 1 * Period unit = 118.149us
1001 	 *
1002 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1003 	 *        <--> Filter interval delay
1004 	 *                       <--> Sensor interval delay
1005 	 *                                             <--> Group interval delay
1006 	 * Bits:
1007 	 *      29 - 20 : Group interval
1008 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1009 	 *                or an interrupt everytime the hot threshold is crossed (0)
1010 	 *       9 - 0  : Period unit
1011 	 *
1012 	 */
1013 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1014 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1015 
1016 	/*
1017 	 * LVTS_MONCTL2 : Filtering and sensor interval
1018 	 *
1019 	 * Bits:
1020 	 *
1021 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1022 	 *              the same sensor, filter interval
1023 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1024 	 *
1025 	 */
1026 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1027 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1028 
1029 	return lvts_irq_init(lvts_ctrl);
1030 }
1031 
1032 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1033 {
1034 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1035 	struct thermal_zone_device *tz;
1036 	u32 sensor_map = 0;
1037 	int i;
1038 	/*
1039 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1040 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1041 	 */
1042 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1043 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1044 
1045 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1046 			     sensor_imm_bitmap : sensor_filt_bitmap;
1047 
1048 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1049 
1050 		int dt_id = lvts_sensors[i].dt_id;
1051 
1052 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1053 						   &lvts_ops);
1054 		if (IS_ERR(tz)) {
1055 			/*
1056 			 * This thermal zone is not described in the
1057 			 * device tree. It is not an error from the
1058 			 * thermal OF code POV, we just continue.
1059 			 */
1060 			if (PTR_ERR(tz) == -ENODEV)
1061 				continue;
1062 
1063 			return PTR_ERR(tz);
1064 		}
1065 
1066 		devm_thermal_add_hwmon_sysfs(dev, tz);
1067 
1068 		/*
1069 		 * The thermal zone pointer will be needed in the
1070 		 * interrupt handler, we store it in the sensor
1071 		 * structure. The thermal domain structure will be
1072 		 * passed to the interrupt handler private data as the
1073 		 * interrupt is shared for all the controller
1074 		 * belonging to the thermal domain.
1075 		 */
1076 		lvts_sensors[i].tz = tz;
1077 
1078 		/*
1079 		 * This sensor was correctly associated with a thermal
1080 		 * zone, let's set the corresponding bit in the sensor
1081 		 * map, so we can enable the temperature monitoring in
1082 		 * the hardware thermal controller.
1083 		 */
1084 		sensor_map |= sensor_bitmap[i];
1085 	}
1086 
1087 	/*
1088 	 * The initialization of the thermal zones give us
1089 	 * which sensor point to enable. If any thermal zone
1090 	 * was not described in the device tree, it won't be
1091 	 * enabled here in the sensor map.
1092 	 */
1093 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1094 		/*
1095 		 * LVTS_MSRCTL1 : Measurement control
1096 		 *
1097 		 * Bits:
1098 		 *
1099 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1100 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1101 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1102 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1103 		 *
1104 		 * That configuration will ignore the filtering and the delays
1105 		 * introduced in MONCTL1 and MONCTL2
1106 		 */
1107 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1108 	} else {
1109 		/*
1110 		 * Bits:
1111 		 *      9: Single point access flow
1112 		 *    0-3: Enable sensing point 0-3
1113 		 */
1114 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1121 					const struct lvts_data *lvts_data)
1122 {
1123 	struct lvts_ctrl *lvts_ctrl;
1124 	int i, ret;
1125 
1126 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = lvts_domain_reset(dev, lvts_td->reset);
1131 	if (ret) {
1132 		dev_dbg(dev, "Failed to reset domain");
1133 		return ret;
1134 	}
1135 
1136 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1137 
1138 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1139 
1140 		/*
1141 		 * Initialization steps:
1142 		 *
1143 		 * - Enable the clock
1144 		 * - Connect to the LVTS
1145 		 * - Initialize the LVTS
1146 		 * - Prepare the calibration data
1147 		 * - Select monitored sensors
1148 		 * [ Configure sampling ]
1149 		 * [ Configure the interrupt ]
1150 		 * - Start measurement
1151 		 */
1152 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1153 		if (ret) {
1154 			dev_dbg(dev, "Failed to enable LVTS clock");
1155 			return ret;
1156 		}
1157 
1158 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1159 		if (ret) {
1160 			dev_dbg(dev, "Failed to connect to LVTS controller");
1161 			return ret;
1162 		}
1163 
1164 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1165 		if (ret) {
1166 			dev_dbg(dev, "Failed to initialize controller");
1167 			return ret;
1168 		}
1169 
1170 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1171 		if (ret) {
1172 			dev_dbg(dev, "Failed to calibrate controller");
1173 			return ret;
1174 		}
1175 
1176 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1177 		if (ret) {
1178 			dev_dbg(dev, "Failed to configure controller");
1179 			return ret;
1180 		}
1181 
1182 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1183 		if (ret) {
1184 			dev_dbg(dev, "Failed to start controller");
1185 			return ret;
1186 		}
1187 	}
1188 
1189 	return lvts_debugfs_init(dev, lvts_td);
1190 }
1191 
1192 static int lvts_probe(struct platform_device *pdev)
1193 {
1194 	const struct lvts_data *lvts_data;
1195 	struct lvts_domain *lvts_td;
1196 	struct device *dev = &pdev->dev;
1197 	struct resource *res;
1198 	int irq, ret;
1199 
1200 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1201 	if (!lvts_td)
1202 		return -ENOMEM;
1203 
1204 	lvts_data = of_device_get_match_data(dev);
1205 
1206 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1207 	if (IS_ERR(lvts_td->clk))
1208 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1209 
1210 	res = platform_get_mem_or_io(pdev, 0);
1211 	if (!res)
1212 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1213 
1214 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1215 	if (IS_ERR(lvts_td->base))
1216 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1217 
1218 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1219 	if (IS_ERR(lvts_td->reset))
1220 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1221 
1222 	irq = platform_get_irq(pdev, 0);
1223 	if (irq < 0)
1224 		return irq;
1225 
1226 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1227 	if (ret)
1228 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1229 
1230 	/*
1231 	 * At this point the LVTS is initialized and enabled. We can
1232 	 * safely enable the interrupt.
1233 	 */
1234 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1235 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1236 	if (ret)
1237 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1238 
1239 	platform_set_drvdata(pdev, lvts_td);
1240 
1241 	return 0;
1242 }
1243 
1244 static int lvts_remove(struct platform_device *pdev)
1245 {
1246 	struct lvts_domain *lvts_td;
1247 	int i;
1248 
1249 	lvts_td = platform_get_drvdata(pdev);
1250 
1251 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1252 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1253 
1254 	lvts_debugfs_exit(lvts_td);
1255 
1256 	return 0;
1257 }
1258 
1259 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1260 	{
1261 		.cal_offset = { 0x04, 0x07 },
1262 		.lvts_sensor = {
1263 			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1264 			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1265 		},
1266 		.num_lvts_sensor = 2,
1267 		.offset = 0x0,
1268 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1269 	},
1270 	{
1271 		.cal_offset = { 0x0d, 0x10 },
1272 		.lvts_sensor = {
1273 			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1274 			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1275 		},
1276 		.num_lvts_sensor = 2,
1277 		.offset = 0x100,
1278 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1279 	},
1280 	{
1281 		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1282 		.lvts_sensor = {
1283 			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1284 			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1285 			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1286 			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1287 		},
1288 		.num_lvts_sensor = 4,
1289 		.offset = 0x200,
1290 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1291 	}
1292 };
1293 
1294 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1295 		{
1296 		.cal_offset = { 0x25, 0x28 },
1297 		.lvts_sensor = {
1298 			{ .dt_id = MT8195_AP_VPU0 },
1299 			{ .dt_id = MT8195_AP_VPU1 }
1300 		},
1301 		.num_lvts_sensor = 2,
1302 		.offset = 0x0,
1303 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1304 	},
1305 	{
1306 		.cal_offset = { 0x2e, 0x31 },
1307 		.lvts_sensor = {
1308 			{ .dt_id = MT8195_AP_GPU0 },
1309 			{ .dt_id = MT8195_AP_GPU1 }
1310 		},
1311 		.num_lvts_sensor = 2,
1312 		.offset = 0x100,
1313 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1314 	},
1315 	{
1316 		.cal_offset = { 0x37, 0x3a, 0x3d },
1317 		.lvts_sensor = {
1318 			{ .dt_id = MT8195_AP_VDEC },
1319 			{ .dt_id = MT8195_AP_IMG },
1320 			{ .dt_id = MT8195_AP_INFRA },
1321 		},
1322 		.num_lvts_sensor = 3,
1323 		.offset = 0x200,
1324 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1325 	},
1326 	{
1327 		.cal_offset = { 0x43, 0x46 },
1328 		.lvts_sensor = {
1329 			{ .dt_id = MT8195_AP_CAM0 },
1330 			{ .dt_id = MT8195_AP_CAM1 }
1331 		},
1332 		.num_lvts_sensor = 2,
1333 		.offset = 0x300,
1334 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1335 	}
1336 };
1337 
1338 static const struct lvts_data mt8195_lvts_mcu_data = {
1339 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1340 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1341 };
1342 
1343 static const struct lvts_data mt8195_lvts_ap_data = {
1344 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1345 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1346 };
1347 
1348 static const struct of_device_id lvts_of_match[] = {
1349 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1350 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1351 	{},
1352 };
1353 MODULE_DEVICE_TABLE(of, lvts_of_match);
1354 
1355 static struct platform_driver lvts_driver = {
1356 	.probe = lvts_probe,
1357 	.remove = lvts_remove,
1358 	.driver = {
1359 		.name = "mtk-lvts-thermal",
1360 		.of_match_table = lvts_of_match,
1361 	},
1362 };
1363 module_platform_driver(lvts_driver);
1364 
1365 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1366 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1367 MODULE_LICENSE("GPL");
1368