1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Hanyi Wu <hanyi.wu@mediatek.com> 5 * Sascha Hauer <s.hauer@pengutronix.de> 6 * Dawei Chien <dawei.chien@mediatek.com> 7 * Louis Yu <louis.yu@mediatek.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/nvmem-consumer.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/platform_device.h> 19 #include <linux/slab.h> 20 #include <linux/io.h> 21 #include <linux/thermal.h> 22 #include <linux/reset.h> 23 #include <linux/types.h> 24 25 #include "../thermal_hwmon.h" 26 27 /* AUXADC Registers */ 28 #define AUXADC_CON1_SET_V 0x008 29 #define AUXADC_CON1_CLR_V 0x00c 30 #define AUXADC_CON2_V 0x010 31 #define AUXADC_DATA(channel) (0x14 + (channel) * 4) 32 33 #define APMIXED_SYS_TS_CON0 0x600 34 #define APMIXED_SYS_TS_CON1 0x604 35 36 /* Thermal Controller Registers */ 37 #define TEMP_MONCTL0 0x000 38 #define TEMP_MONCTL1 0x004 39 #define TEMP_MONCTL2 0x008 40 #define TEMP_MONIDET0 0x014 41 #define TEMP_MONIDET1 0x018 42 #define TEMP_MSRCTL0 0x038 43 #define TEMP_MSRCTL1 0x03c 44 #define TEMP_AHBPOLL 0x040 45 #define TEMP_AHBTO 0x044 46 #define TEMP_ADCPNP0 0x048 47 #define TEMP_ADCPNP1 0x04c 48 #define TEMP_ADCPNP2 0x050 49 #define TEMP_ADCPNP3 0x0b4 50 51 #define TEMP_ADCMUX 0x054 52 #define TEMP_ADCEN 0x060 53 #define TEMP_PNPMUXADDR 0x064 54 #define TEMP_ADCMUXADDR 0x068 55 #define TEMP_ADCENADDR 0x074 56 #define TEMP_ADCVALIDADDR 0x078 57 #define TEMP_ADCVOLTADDR 0x07c 58 #define TEMP_RDCTRL 0x080 59 #define TEMP_ADCVALIDMASK 0x084 60 #define TEMP_ADCVOLTAGESHIFT 0x088 61 #define TEMP_ADCWRITECTRL 0x08c 62 #define TEMP_MSR0 0x090 63 #define TEMP_MSR1 0x094 64 #define TEMP_MSR2 0x098 65 #define TEMP_MSR3 0x0B8 66 67 #define TEMP_SPARE0 0x0f0 68 69 #define TEMP_ADCPNP0_1 0x148 70 #define TEMP_ADCPNP1_1 0x14c 71 #define TEMP_ADCPNP2_1 0x150 72 #define TEMP_MSR0_1 0x190 73 #define TEMP_MSR1_1 0x194 74 #define TEMP_MSR2_1 0x198 75 #define TEMP_ADCPNP3_1 0x1b4 76 #define TEMP_MSR3_1 0x1B8 77 78 #define PTPCORESEL 0x400 79 80 #define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) 81 82 #define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) 83 #define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) 84 85 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) 86 87 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) 88 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) 89 90 #define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) 91 #define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) 92 93 /* MT8173 thermal sensors */ 94 #define MT8173_TS1 0 95 #define MT8173_TS2 1 96 #define MT8173_TS3 2 97 #define MT8173_TS4 3 98 #define MT8173_TSABB 4 99 100 /* AUXADC channel 11 is used for the temperature sensors */ 101 #define MT8173_TEMP_AUXADC_CHANNEL 11 102 103 /* The total number of temperature sensors in the MT8173 */ 104 #define MT8173_NUM_SENSORS 5 105 106 /* The number of banks in the MT8173 */ 107 #define MT8173_NUM_ZONES 4 108 109 /* The number of sensing points per bank */ 110 #define MT8173_NUM_SENSORS_PER_ZONE 4 111 112 /* The number of controller in the MT8173 */ 113 #define MT8173_NUM_CONTROLLER 1 114 115 /* The calibration coefficient of sensor */ 116 #define MT8173_CALIBRATION 165 117 118 /* Valid temperatures range */ 119 #define MT8173_TEMP_MIN -20000 120 #define MT8173_TEMP_MAX 150000 121 122 /* 123 * Layout of the fuses providing the calibration data 124 * These macros could be used for MT8183, MT8173, MT2701, and MT2712. 125 * MT8183 has 6 sensors and needs 6 VTS calibration data. 126 * MT8173 has 5 sensors and needs 5 VTS calibration data. 127 * MT2701 has 3 sensors and needs 3 VTS calibration data. 128 * MT2712 has 4 sensors and needs 4 VTS calibration data. 129 */ 130 #define CALIB_BUF0_VALID_V1 BIT(0) 131 #define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff) 132 #define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff) 133 #define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff) 134 #define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff) 135 #define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff) 136 #define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff) 137 #define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff) 138 #define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f) 139 #define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f) 140 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1) 141 #define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1) 142 143 /* 144 * Layout of the fuses providing the calibration data 145 * These macros could be used for MT7622. 146 */ 147 #define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff) 148 #define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff) 149 #define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f) 150 #define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f) 151 #define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff) 152 #define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff) 153 #define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff) 154 #define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1) 155 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1) 156 157 /* 158 * Layout of the fuses providing the calibration data 159 * These macros can be used for MT7981 and MT7986. 160 */ 161 #define CALIB_BUF0_ADC_GE_V3(x) (((x) >> 0) & 0x3ff) 162 #define CALIB_BUF0_DEGC_CALI_V3(x) (((x) >> 20) & 0x3f) 163 #define CALIB_BUF0_O_SLOPE_V3(x) (((x) >> 26) & 0x3f) 164 #define CALIB_BUF1_VTS_TS1_V3(x) (((x) >> 0) & 0x1ff) 165 #define CALIB_BUF1_VTS_TS2_V3(x) (((x) >> 21) & 0x1ff) 166 #define CALIB_BUF1_VTS_TSABB_V3(x) (((x) >> 9) & 0x1ff) 167 #define CALIB_BUF1_VALID_V3(x) (((x) >> 18) & 0x1) 168 #define CALIB_BUF1_O_SLOPE_SIGN_V3(x) (((x) >> 19) & 0x1) 169 #define CALIB_BUF1_ID_V3(x) (((x) >> 20) & 0x1) 170 171 enum { 172 VTS1, 173 VTS2, 174 VTS3, 175 VTS4, 176 VTS5, 177 VTSABB, 178 MAX_NUM_VTS, 179 }; 180 181 enum mtk_thermal_version { 182 MTK_THERMAL_V1 = 1, 183 MTK_THERMAL_V2, 184 MTK_THERMAL_V3, 185 }; 186 187 /* MT2701 thermal sensors */ 188 #define MT2701_TS1 0 189 #define MT2701_TS2 1 190 #define MT2701_TSABB 2 191 192 /* AUXADC channel 11 is used for the temperature sensors */ 193 #define MT2701_TEMP_AUXADC_CHANNEL 11 194 195 /* The total number of temperature sensors in the MT2701 */ 196 #define MT2701_NUM_SENSORS 3 197 198 /* The number of sensing points per bank */ 199 #define MT2701_NUM_SENSORS_PER_ZONE 3 200 201 /* The number of controller in the MT2701 */ 202 #define MT2701_NUM_CONTROLLER 1 203 204 /* The calibration coefficient of sensor */ 205 #define MT2701_CALIBRATION 165 206 207 /* MT2712 thermal sensors */ 208 #define MT2712_TS1 0 209 #define MT2712_TS2 1 210 #define MT2712_TS3 2 211 #define MT2712_TS4 3 212 213 /* AUXADC channel 11 is used for the temperature sensors */ 214 #define MT2712_TEMP_AUXADC_CHANNEL 11 215 216 /* The total number of temperature sensors in the MT2712 */ 217 #define MT2712_NUM_SENSORS 4 218 219 /* The number of sensing points per bank */ 220 #define MT2712_NUM_SENSORS_PER_ZONE 4 221 222 /* The number of controller in the MT2712 */ 223 #define MT2712_NUM_CONTROLLER 1 224 225 /* The calibration coefficient of sensor */ 226 #define MT2712_CALIBRATION 165 227 228 #define MT7622_TEMP_AUXADC_CHANNEL 11 229 #define MT7622_NUM_SENSORS 1 230 #define MT7622_NUM_ZONES 1 231 #define MT7622_NUM_SENSORS_PER_ZONE 1 232 #define MT7622_TS1 0 233 #define MT7622_NUM_CONTROLLER 1 234 235 /* The maximum number of banks */ 236 #define MAX_NUM_ZONES 8 237 238 /* The calibration coefficient of sensor */ 239 #define MT7622_CALIBRATION 165 240 241 /* MT8183 thermal sensors */ 242 #define MT8183_TS1 0 243 #define MT8183_TS2 1 244 #define MT8183_TS3 2 245 #define MT8183_TS4 3 246 #define MT8183_TS5 4 247 #define MT8183_TSABB 5 248 249 /* AUXADC channel is used for the temperature sensors */ 250 #define MT8183_TEMP_AUXADC_CHANNEL 11 251 252 /* The total number of temperature sensors in the MT8183 */ 253 #define MT8183_NUM_SENSORS 6 254 255 /* The number of banks in the MT8183 */ 256 #define MT8183_NUM_ZONES 1 257 258 /* The number of sensing points per bank */ 259 #define MT8183_NUM_SENSORS_PER_ZONE 6 260 261 /* The number of controller in the MT8183 */ 262 #define MT8183_NUM_CONTROLLER 2 263 264 /* The calibration coefficient of sensor */ 265 #define MT8183_CALIBRATION 153 266 267 /* AUXADC channel 11 is used for the temperature sensors */ 268 #define MT7986_TEMP_AUXADC_CHANNEL 11 269 270 /* The total number of temperature sensors in the MT7986 */ 271 #define MT7986_NUM_SENSORS 1 272 273 /* The number of banks in the MT7986 */ 274 #define MT7986_NUM_ZONES 1 275 276 /* The number of sensing points per bank */ 277 #define MT7986_NUM_SENSORS_PER_ZONE 1 278 279 /* MT7986 thermal sensors */ 280 #define MT7986_TS1 0 281 282 /* The number of controller in the MT7986 */ 283 #define MT7986_NUM_CONTROLLER 1 284 285 /* The calibration coefficient of sensor */ 286 #define MT7986_CALIBRATION 165 287 288 /* MT8365 */ 289 #define MT8365_TEMP_AUXADC_CHANNEL 11 290 #define MT8365_CALIBRATION 164 291 #define MT8365_NUM_CONTROLLER 1 292 #define MT8365_NUM_BANKS 1 293 #define MT8365_NUM_SENSORS 3 294 #define MT8365_NUM_SENSORS_PER_ZONE 3 295 #define MT8365_TS1 0 296 #define MT8365_TS2 1 297 #define MT8365_TS3 2 298 299 struct mtk_thermal; 300 301 struct thermal_bank_cfg { 302 unsigned int num_sensors; 303 const int *sensors; 304 }; 305 306 struct mtk_thermal_bank { 307 struct mtk_thermal *mt; 308 int id; 309 }; 310 311 struct mtk_thermal_data { 312 s32 num_banks; 313 s32 num_sensors; 314 s32 auxadc_channel; 315 const int *vts_index; 316 const int *sensor_mux_values; 317 const int *msr; 318 const int *adcpnp; 319 const int cali_val; 320 const int num_controller; 321 const int *controller_offset; 322 bool need_switch_bank; 323 struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; 324 enum mtk_thermal_version version; 325 u32 apmixed_buffer_ctl_reg; 326 u32 apmixed_buffer_ctl_mask; 327 u32 apmixed_buffer_ctl_set; 328 }; 329 330 struct mtk_thermal { 331 struct device *dev; 332 void __iomem *thermal_base; 333 334 struct clk *clk_peri_therm; 335 struct clk *clk_auxadc; 336 /* lock: for getting and putting banks */ 337 struct mutex lock; 338 339 /* Calibration values */ 340 s32 adc_ge; 341 s32 adc_oe; 342 s32 degc_cali; 343 s32 o_slope; 344 s32 o_slope_sign; 345 s32 vts[MAX_NUM_VTS]; 346 347 const struct mtk_thermal_data *conf; 348 struct mtk_thermal_bank banks[MAX_NUM_ZONES]; 349 350 int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw); 351 }; 352 353 /* MT8183 thermal sensor data */ 354 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { 355 MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB 356 }; 357 358 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { 359 TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 360 }; 361 362 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { 363 TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, 364 TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 365 }; 366 367 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; 368 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; 369 370 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { 371 VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB 372 }; 373 374 /* MT8173 thermal sensor data */ 375 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { 376 { MT8173_TS2, MT8173_TS3 }, 377 { MT8173_TS2, MT8173_TS4 }, 378 { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, 379 { MT8173_TS2 }, 380 }; 381 382 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { 383 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 384 }; 385 386 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { 387 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 388 }; 389 390 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; 391 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; 392 393 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { 394 VTS1, VTS2, VTS3, VTS4, VTSABB 395 }; 396 397 /* MT2701 thermal sensor data */ 398 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { 399 MT2701_TS1, MT2701_TS2, MT2701_TSABB 400 }; 401 402 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { 403 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 404 }; 405 406 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { 407 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 408 }; 409 410 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; 411 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; 412 413 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { 414 VTS1, VTS2, VTS3 415 }; 416 417 /* MT2712 thermal sensor data */ 418 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { 419 MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 420 }; 421 422 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { 423 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 424 }; 425 426 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { 427 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 428 }; 429 430 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; 431 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; 432 433 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { 434 VTS1, VTS2, VTS3, VTS4 435 }; 436 437 /* MT7622 thermal sensor data */ 438 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; 439 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 440 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 441 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; 442 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; 443 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; 444 445 /* MT7986 thermal sensor data */ 446 static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, }; 447 static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 448 static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 449 static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, }; 450 static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 }; 451 static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, }; 452 453 /* MT8365 thermal sensor data */ 454 static const int mt8365_bank_data[MT8365_NUM_SENSORS] = { 455 MT8365_TS1, MT8365_TS2, MT8365_TS3 456 }; 457 458 static const int mt8365_msr[MT8365_NUM_SENSORS_PER_ZONE] = { 459 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 460 }; 461 462 static const int mt8365_adcpnp[MT8365_NUM_SENSORS_PER_ZONE] = { 463 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 464 }; 465 466 static const int mt8365_mux_values[MT8365_NUM_SENSORS] = { 0, 1, 2 }; 467 static const int mt8365_tc_offset[MT8365_NUM_CONTROLLER] = { 0 }; 468 469 static const int mt8365_vts_index[MT8365_NUM_SENSORS] = { VTS1, VTS2, VTS3 }; 470 471 /* 472 * The MT8173 thermal controller has four banks. Each bank can read up to 473 * four temperature sensors simultaneously. The MT8173 has a total of 5 474 * temperature sensors. We use each bank to measure a certain area of the 475 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple 476 * areas, hence is used in different banks. 477 * 478 * The thermal core only gets the maximum temperature of all banks, so 479 * the bank concept wouldn't be necessary here. However, the SVS (Smart 480 * Voltage Scaling) unit makes its decisions based on the same bank 481 * data, and this indeed needs the temperatures of the individual banks 482 * for making better decisions. 483 */ 484 static const struct mtk_thermal_data mt8173_thermal_data = { 485 .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, 486 .num_banks = MT8173_NUM_ZONES, 487 .num_sensors = MT8173_NUM_SENSORS, 488 .vts_index = mt8173_vts_index, 489 .cali_val = MT8173_CALIBRATION, 490 .num_controller = MT8173_NUM_CONTROLLER, 491 .controller_offset = mt8173_tc_offset, 492 .need_switch_bank = true, 493 .bank_data = { 494 { 495 .num_sensors = 2, 496 .sensors = mt8173_bank_data[0], 497 }, { 498 .num_sensors = 2, 499 .sensors = mt8173_bank_data[1], 500 }, { 501 .num_sensors = 3, 502 .sensors = mt8173_bank_data[2], 503 }, { 504 .num_sensors = 1, 505 .sensors = mt8173_bank_data[3], 506 }, 507 }, 508 .msr = mt8173_msr, 509 .adcpnp = mt8173_adcpnp, 510 .sensor_mux_values = mt8173_mux_values, 511 .version = MTK_THERMAL_V1, 512 }; 513 514 /* 515 * The MT2701 thermal controller has one bank, which can read up to 516 * three temperature sensors simultaneously. The MT2701 has a total of 3 517 * temperature sensors. 518 * 519 * The thermal core only gets the maximum temperature of this one bank, 520 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 521 * Voltage Scaling) unit makes its decisions based on the same bank 522 * data. 523 */ 524 static const struct mtk_thermal_data mt2701_thermal_data = { 525 .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, 526 .num_banks = 1, 527 .num_sensors = MT2701_NUM_SENSORS, 528 .vts_index = mt2701_vts_index, 529 .cali_val = MT2701_CALIBRATION, 530 .num_controller = MT2701_NUM_CONTROLLER, 531 .controller_offset = mt2701_tc_offset, 532 .need_switch_bank = true, 533 .bank_data = { 534 { 535 .num_sensors = 3, 536 .sensors = mt2701_bank_data, 537 }, 538 }, 539 .msr = mt2701_msr, 540 .adcpnp = mt2701_adcpnp, 541 .sensor_mux_values = mt2701_mux_values, 542 .version = MTK_THERMAL_V1, 543 }; 544 545 /* 546 * The MT8365 thermal controller has one bank, which can read up to 547 * four temperature sensors simultaneously. The MT8365 has a total of 3 548 * temperature sensors. 549 * 550 * The thermal core only gets the maximum temperature of this one bank, 551 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 552 * Voltage Scaling) unit makes its decisions based on the same bank 553 * data. 554 */ 555 static const struct mtk_thermal_data mt8365_thermal_data = { 556 .auxadc_channel = MT8365_TEMP_AUXADC_CHANNEL, 557 .num_banks = MT8365_NUM_BANKS, 558 .num_sensors = MT8365_NUM_SENSORS, 559 .vts_index = mt8365_vts_index, 560 .cali_val = MT8365_CALIBRATION, 561 .num_controller = MT8365_NUM_CONTROLLER, 562 .controller_offset = mt8365_tc_offset, 563 .need_switch_bank = false, 564 .bank_data = { 565 { 566 .num_sensors = MT8365_NUM_SENSORS, 567 .sensors = mt8365_bank_data 568 }, 569 }, 570 .msr = mt8365_msr, 571 .adcpnp = mt8365_adcpnp, 572 .sensor_mux_values = mt8365_mux_values, 573 .version = MTK_THERMAL_V1, 574 .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON0, 575 .apmixed_buffer_ctl_mask = (u32) ~GENMASK(29, 28), 576 .apmixed_buffer_ctl_set = 0, 577 }; 578 579 /* 580 * The MT2712 thermal controller has one bank, which can read up to 581 * four temperature sensors simultaneously. The MT2712 has a total of 4 582 * temperature sensors. 583 * 584 * The thermal core only gets the maximum temperature of this one bank, 585 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 586 * Voltage Scaling) unit makes its decisions based on the same bank 587 * data. 588 */ 589 static const struct mtk_thermal_data mt2712_thermal_data = { 590 .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, 591 .num_banks = 1, 592 .num_sensors = MT2712_NUM_SENSORS, 593 .vts_index = mt2712_vts_index, 594 .cali_val = MT2712_CALIBRATION, 595 .num_controller = MT2712_NUM_CONTROLLER, 596 .controller_offset = mt2712_tc_offset, 597 .need_switch_bank = true, 598 .bank_data = { 599 { 600 .num_sensors = 4, 601 .sensors = mt2712_bank_data, 602 }, 603 }, 604 .msr = mt2712_msr, 605 .adcpnp = mt2712_adcpnp, 606 .sensor_mux_values = mt2712_mux_values, 607 .version = MTK_THERMAL_V1, 608 }; 609 610 /* 611 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data 612 * access. 613 */ 614 static const struct mtk_thermal_data mt7622_thermal_data = { 615 .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, 616 .num_banks = MT7622_NUM_ZONES, 617 .num_sensors = MT7622_NUM_SENSORS, 618 .vts_index = mt7622_vts_index, 619 .cali_val = MT7622_CALIBRATION, 620 .num_controller = MT7622_NUM_CONTROLLER, 621 .controller_offset = mt7622_tc_offset, 622 .need_switch_bank = true, 623 .bank_data = { 624 { 625 .num_sensors = 1, 626 .sensors = mt7622_bank_data, 627 }, 628 }, 629 .msr = mt7622_msr, 630 .adcpnp = mt7622_adcpnp, 631 .sensor_mux_values = mt7622_mux_values, 632 .version = MTK_THERMAL_V2, 633 .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1, 634 .apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3), 635 .apmixed_buffer_ctl_set = BIT(0), 636 }; 637 638 /* 639 * The MT8183 thermal controller has one bank for the current SW framework. 640 * The MT8183 has a total of 6 temperature sensors. 641 * There are two thermal controller to control the six sensor. 642 * The first one bind 2 sensor, and the other bind 4 sensors. 643 * The thermal core only gets the maximum temperature of all sensor, so 644 * the bank concept wouldn't be necessary here. However, the SVS (Smart 645 * Voltage Scaling) unit makes its decisions based on the same bank 646 * data, and this indeed needs the temperatures of the individual banks 647 * for making better decisions. 648 */ 649 static const struct mtk_thermal_data mt8183_thermal_data = { 650 .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, 651 .num_banks = MT8183_NUM_ZONES, 652 .num_sensors = MT8183_NUM_SENSORS, 653 .vts_index = mt8183_vts_index, 654 .cali_val = MT8183_CALIBRATION, 655 .num_controller = MT8183_NUM_CONTROLLER, 656 .controller_offset = mt8183_tc_offset, 657 .need_switch_bank = false, 658 .bank_data = { 659 { 660 .num_sensors = 6, 661 .sensors = mt8183_bank_data, 662 }, 663 }, 664 665 .msr = mt8183_msr, 666 .adcpnp = mt8183_adcpnp, 667 .sensor_mux_values = mt8183_mux_values, 668 .version = MTK_THERMAL_V1, 669 }; 670 671 /* 672 * MT7986 uses AUXADC Channel 11 for raw data access. 673 */ 674 static const struct mtk_thermal_data mt7986_thermal_data = { 675 .auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL, 676 .num_banks = MT7986_NUM_ZONES, 677 .num_sensors = MT7986_NUM_SENSORS, 678 .vts_index = mt7986_vts_index, 679 .cali_val = MT7986_CALIBRATION, 680 .num_controller = MT7986_NUM_CONTROLLER, 681 .controller_offset = mt7986_tc_offset, 682 .need_switch_bank = true, 683 .bank_data = { 684 { 685 .num_sensors = 1, 686 .sensors = mt7986_bank_data, 687 }, 688 }, 689 .msr = mt7986_msr, 690 .adcpnp = mt7986_adcpnp, 691 .sensor_mux_values = mt7986_mux_values, 692 .version = MTK_THERMAL_V3, 693 .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1, 694 .apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3), 695 .apmixed_buffer_ctl_set = BIT(0), 696 }; 697 698 static bool mtk_thermal_temp_is_valid(int temp) 699 { 700 return (temp >= MT8173_TEMP_MIN) && (temp <= MT8173_TEMP_MAX); 701 } 702 703 /** 704 * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius 705 * @mt: The thermal controller 706 * @sensno: sensor number 707 * @raw: raw ADC value 708 * 709 * This converts the raw ADC value to mcelsius using the SoC specific 710 * calibration constants 711 */ 712 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw) 713 { 714 s32 tmp; 715 716 raw &= 0xfff; 717 718 tmp = 203450520 << 3; 719 tmp /= mt->conf->cali_val + mt->o_slope; 720 tmp /= 10000 + mt->adc_ge; 721 tmp *= raw - mt->vts[sensno] - 3350; 722 tmp >>= 3; 723 724 return mt->degc_cali * 500 - tmp; 725 } 726 727 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw) 728 { 729 s32 format_1; 730 s32 format_2; 731 s32 g_oe; 732 s32 g_gain; 733 s32 g_x_roomt; 734 s32 tmp; 735 736 if (raw == 0) 737 return 0; 738 739 raw &= 0xfff; 740 g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12); 741 g_oe = mt->adc_oe - 512; 742 format_1 = mt->vts[VTS2] + 3105 - g_oe; 743 format_2 = (mt->degc_cali * 10) >> 1; 744 g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain; 745 746 tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt; 747 tmp = tmp * 10 * 100 / 11; 748 749 if (mt->o_slope_sign == 0) 750 tmp = tmp / (165 - mt->o_slope); 751 else 752 tmp = tmp / (165 + mt->o_slope); 753 754 return (format_2 - tmp) * 100; 755 } 756 757 static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw) 758 { 759 s32 tmp; 760 761 if (raw == 0) 762 return 0; 763 764 raw &= 0xfff; 765 tmp = 100000 * 15 / 16 * 10000; 766 tmp /= 4096 - 512 + mt->adc_ge; 767 tmp /= 1490; 768 tmp *= raw - mt->vts[sensno] - 2900; 769 770 return mt->degc_cali * 500 - tmp; 771 } 772 773 /** 774 * mtk_thermal_get_bank - get bank 775 * @bank: The bank 776 * 777 * The bank registers are banked, we have to select a bank in the 778 * PTPCORESEL register to access it. 779 */ 780 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) 781 { 782 struct mtk_thermal *mt = bank->mt; 783 u32 val; 784 785 if (mt->conf->need_switch_bank) { 786 mutex_lock(&mt->lock); 787 788 val = readl(mt->thermal_base + PTPCORESEL); 789 val &= ~0xf; 790 val |= bank->id; 791 writel(val, mt->thermal_base + PTPCORESEL); 792 } 793 } 794 795 /** 796 * mtk_thermal_put_bank - release bank 797 * @bank: The bank 798 * 799 * release a bank previously taken with mtk_thermal_get_bank, 800 */ 801 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) 802 { 803 struct mtk_thermal *mt = bank->mt; 804 805 if (mt->conf->need_switch_bank) 806 mutex_unlock(&mt->lock); 807 } 808 809 /** 810 * mtk_thermal_bank_temperature - get the temperature of a bank 811 * @bank: The bank 812 * 813 * The temperature of a bank is considered the maximum temperature of 814 * the sensors associated to the bank. 815 */ 816 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) 817 { 818 struct mtk_thermal *mt = bank->mt; 819 const struct mtk_thermal_data *conf = mt->conf; 820 int i, temp = INT_MIN, max = INT_MIN; 821 u32 raw; 822 823 for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { 824 raw = readl(mt->thermal_base + conf->msr[i]); 825 826 temp = mt->raw_to_mcelsius( 827 mt, conf->bank_data[bank->id].sensors[i], raw); 828 829 /* 830 * Depending on the filt/sen intervals and ADC polling time, 831 * we may need up to 60 milliseconds after initialization: this 832 * will result in the first reading containing an out of range 833 * temperature value. 834 * Validate the reading to both address the aforementioned issue 835 * and to eventually avoid bogus readings during runtime in the 836 * event that the AUXADC gets unstable due to high EMI, etc. 837 */ 838 if (!mtk_thermal_temp_is_valid(temp)) 839 temp = THERMAL_TEMP_INVALID; 840 841 if (temp > max) 842 max = temp; 843 } 844 845 return max; 846 } 847 848 static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature) 849 { 850 struct mtk_thermal *mt = thermal_zone_device_priv(tz); 851 int i; 852 int tempmax = INT_MIN; 853 854 for (i = 0; i < mt->conf->num_banks; i++) { 855 struct mtk_thermal_bank *bank = &mt->banks[i]; 856 857 mtk_thermal_get_bank(bank); 858 859 tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); 860 861 mtk_thermal_put_bank(bank); 862 } 863 864 *temperature = tempmax; 865 866 return 0; 867 } 868 869 static const struct thermal_zone_device_ops mtk_thermal_ops = { 870 .get_temp = mtk_read_temp, 871 }; 872 873 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, 874 u32 apmixed_phys_base, u32 auxadc_phys_base, 875 int ctrl_id) 876 { 877 struct mtk_thermal_bank *bank = &mt->banks[num]; 878 const struct mtk_thermal_data *conf = mt->conf; 879 int i; 880 881 int offset = mt->conf->controller_offset[ctrl_id]; 882 void __iomem *controller_base = mt->thermal_base + offset; 883 884 bank->id = num; 885 bank->mt = mt; 886 887 mtk_thermal_get_bank(bank); 888 889 /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ 890 writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); 891 892 /* 893 * filt interval is 1 * 46.540us = 46.54us, 894 * sen interval is 429 * 46.540us = 19.96ms 895 */ 896 writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | 897 TEMP_MONCTL2_SENSOR_INTERVAL(429), 898 controller_base + TEMP_MONCTL2); 899 900 /* poll is set to 10u */ 901 writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), 902 controller_base + TEMP_AHBPOLL); 903 904 /* temperature sampling control, 1 sample */ 905 writel(0x0, controller_base + TEMP_MSRCTL0); 906 907 /* exceed this polling time, IRQ would be inserted */ 908 writel(0xffffffff, controller_base + TEMP_AHBTO); 909 910 /* number of interrupts per event, 1 is enough */ 911 writel(0x0, controller_base + TEMP_MONIDET0); 912 writel(0x0, controller_base + TEMP_MONIDET1); 913 914 /* 915 * The MT8173 thermal controller does not have its own ADC. Instead it 916 * uses AHB bus accesses to control the AUXADC. To do this the thermal 917 * controller has to be programmed with the physical addresses of the 918 * AUXADC registers and with the various bit positions in the AUXADC. 919 * Also the thermal controller controls a mux in the APMIXEDSYS register 920 * space. 921 */ 922 923 /* 924 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) 925 * automatically by hw 926 */ 927 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); 928 929 /* AHB address for auxadc mux selection */ 930 writel(auxadc_phys_base + AUXADC_CON1_CLR_V, 931 controller_base + TEMP_ADCMUXADDR); 932 933 if (mt->conf->version == MTK_THERMAL_V1) { 934 /* AHB address for pnp sensor mux selection */ 935 writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, 936 controller_base + TEMP_PNPMUXADDR); 937 } 938 939 /* AHB value for auxadc enable */ 940 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); 941 942 /* AHB address for auxadc enable (channel 0 immediate mode selected) */ 943 writel(auxadc_phys_base + AUXADC_CON1_SET_V, 944 controller_base + TEMP_ADCENADDR); 945 946 /* AHB address for auxadc valid bit */ 947 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 948 controller_base + TEMP_ADCVALIDADDR); 949 950 /* AHB address for auxadc voltage output */ 951 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 952 controller_base + TEMP_ADCVOLTADDR); 953 954 /* read valid & voltage are at the same register */ 955 writel(0x0, controller_base + TEMP_RDCTRL); 956 957 /* indicate where the valid bit is */ 958 writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), 959 controller_base + TEMP_ADCVALIDMASK); 960 961 /* no shift */ 962 writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); 963 964 /* enable auxadc mux write transaction */ 965 writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 966 controller_base + TEMP_ADCWRITECTRL); 967 968 for (i = 0; i < conf->bank_data[num].num_sensors; i++) 969 writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], 970 mt->thermal_base + conf->adcpnp[i]); 971 972 writel((1 << conf->bank_data[num].num_sensors) - 1, 973 controller_base + TEMP_MONCTL0); 974 975 writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | 976 TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 977 controller_base + TEMP_ADCWRITECTRL); 978 979 mtk_thermal_put_bank(bank); 980 } 981 982 static u64 of_get_phys_base(struct device_node *np) 983 { 984 struct resource res; 985 986 if (of_address_to_resource(np, 0, &res)) 987 return OF_BAD_ADDR; 988 989 return res.start; 990 } 991 992 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf) 993 { 994 int i; 995 996 if (!(buf[0] & CALIB_BUF0_VALID_V1)) 997 return -EINVAL; 998 999 mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]); 1000 1001 for (i = 0; i < mt->conf->num_sensors; i++) { 1002 switch (mt->conf->vts_index[i]) { 1003 case VTS1: 1004 mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]); 1005 break; 1006 case VTS2: 1007 mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]); 1008 break; 1009 case VTS3: 1010 mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]); 1011 break; 1012 case VTS4: 1013 mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]); 1014 break; 1015 case VTS5: 1016 mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]); 1017 break; 1018 case VTSABB: 1019 mt->vts[VTSABB] = 1020 CALIB_BUF2_VTS_TSABB_V1(buf[2]); 1021 break; 1022 default: 1023 break; 1024 } 1025 } 1026 1027 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]); 1028 if (CALIB_BUF1_ID_V1(buf[1]) & 1029 CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0])) 1030 mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]); 1031 else 1032 mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]); 1033 1034 return 0; 1035 } 1036 1037 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf) 1038 { 1039 if (!CALIB_BUF1_VALID_V2(buf[1])) 1040 return -EINVAL; 1041 1042 mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]); 1043 mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]); 1044 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]); 1045 mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]); 1046 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]); 1047 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]); 1048 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]); 1049 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]); 1050 1051 return 0; 1052 } 1053 1054 static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf) 1055 { 1056 if (!CALIB_BUF1_VALID_V3(buf[1])) 1057 return -EINVAL; 1058 1059 mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]); 1060 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]); 1061 mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]); 1062 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]); 1063 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]); 1064 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]); 1065 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]); 1066 1067 if (CALIB_BUF1_ID_V3(buf[1]) == 0) 1068 mt->o_slope = 0; 1069 1070 return 0; 1071 } 1072 1073 static int mtk_thermal_get_calibration_data(struct device *dev, 1074 struct mtk_thermal *mt) 1075 { 1076 struct nvmem_cell *cell; 1077 u32 *buf; 1078 size_t len; 1079 int i, ret = 0; 1080 1081 /* Start with default values */ 1082 mt->adc_ge = 512; 1083 mt->adc_oe = 512; 1084 for (i = 0; i < mt->conf->num_sensors; i++) 1085 mt->vts[i] = 260; 1086 mt->degc_cali = 40; 1087 mt->o_slope = 0; 1088 1089 cell = nvmem_cell_get(dev, "calibration-data"); 1090 if (IS_ERR(cell)) { 1091 if (PTR_ERR(cell) == -EPROBE_DEFER) 1092 return PTR_ERR(cell); 1093 return 0; 1094 } 1095 1096 buf = (u32 *)nvmem_cell_read(cell, &len); 1097 1098 nvmem_cell_put(cell); 1099 1100 if (IS_ERR(buf)) 1101 return PTR_ERR(buf); 1102 1103 if (len < 3 * sizeof(u32)) { 1104 dev_warn(dev, "invalid calibration data\n"); 1105 ret = -EINVAL; 1106 goto out; 1107 } 1108 1109 switch (mt->conf->version) { 1110 case MTK_THERMAL_V1: 1111 ret = mtk_thermal_extract_efuse_v1(mt, buf); 1112 break; 1113 case MTK_THERMAL_V2: 1114 ret = mtk_thermal_extract_efuse_v2(mt, buf); 1115 break; 1116 case MTK_THERMAL_V3: 1117 ret = mtk_thermal_extract_efuse_v3(mt, buf); 1118 break; 1119 default: 1120 ret = -EINVAL; 1121 break; 1122 } 1123 1124 if (ret) { 1125 dev_info(dev, "Device not calibrated, using default calibration values\n"); 1126 ret = 0; 1127 } 1128 1129 out: 1130 kfree(buf); 1131 1132 return ret; 1133 } 1134 1135 static const struct of_device_id mtk_thermal_of_match[] = { 1136 { 1137 .compatible = "mediatek,mt8173-thermal", 1138 .data = (void *)&mt8173_thermal_data, 1139 }, 1140 { 1141 .compatible = "mediatek,mt2701-thermal", 1142 .data = (void *)&mt2701_thermal_data, 1143 }, 1144 { 1145 .compatible = "mediatek,mt2712-thermal", 1146 .data = (void *)&mt2712_thermal_data, 1147 }, 1148 { 1149 .compatible = "mediatek,mt7622-thermal", 1150 .data = (void *)&mt7622_thermal_data, 1151 }, 1152 { 1153 .compatible = "mediatek,mt7986-thermal", 1154 .data = (void *)&mt7986_thermal_data, 1155 }, 1156 { 1157 .compatible = "mediatek,mt8183-thermal", 1158 .data = (void *)&mt8183_thermal_data, 1159 }, 1160 { 1161 .compatible = "mediatek,mt8365-thermal", 1162 .data = (void *)&mt8365_thermal_data, 1163 }, { 1164 }, 1165 }; 1166 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); 1167 1168 static void mtk_thermal_turn_on_buffer(struct mtk_thermal *mt, 1169 void __iomem *apmixed_base) 1170 { 1171 u32 tmp; 1172 1173 if (!mt->conf->apmixed_buffer_ctl_reg) 1174 return; 1175 1176 tmp = readl(apmixed_base + mt->conf->apmixed_buffer_ctl_reg); 1177 tmp &= mt->conf->apmixed_buffer_ctl_mask; 1178 tmp |= mt->conf->apmixed_buffer_ctl_set; 1179 writel(tmp, apmixed_base + mt->conf->apmixed_buffer_ctl_reg); 1180 udelay(200); 1181 } 1182 1183 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt, 1184 void __iomem *auxadc_base) 1185 { 1186 int tmp; 1187 1188 writel(0x800, auxadc_base + AUXADC_CON1_SET_V); 1189 writel(0x1, mt->thermal_base + TEMP_MONCTL0); 1190 tmp = readl(mt->thermal_base + TEMP_MSRCTL1); 1191 writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1); 1192 } 1193 1194 static int mtk_thermal_probe(struct platform_device *pdev) 1195 { 1196 int ret, i, ctrl_id; 1197 struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; 1198 struct mtk_thermal *mt; 1199 u64 auxadc_phys_base, apmixed_phys_base; 1200 struct thermal_zone_device *tzdev; 1201 void __iomem *apmixed_base, *auxadc_base; 1202 1203 mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); 1204 if (!mt) 1205 return -ENOMEM; 1206 1207 mt->conf = of_device_get_match_data(&pdev->dev); 1208 1209 mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); 1210 if (IS_ERR(mt->thermal_base)) 1211 return PTR_ERR(mt->thermal_base); 1212 1213 ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); 1214 if (ret) 1215 return ret; 1216 1217 mutex_init(&mt->lock); 1218 1219 mt->dev = &pdev->dev; 1220 1221 auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); 1222 if (!auxadc) { 1223 dev_err(&pdev->dev, "missing auxadc node\n"); 1224 return -ENODEV; 1225 } 1226 1227 auxadc_base = of_iomap(auxadc, 0); 1228 auxadc_phys_base = of_get_phys_base(auxadc); 1229 1230 of_node_put(auxadc); 1231 1232 if (auxadc_phys_base == OF_BAD_ADDR) { 1233 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1234 return -EINVAL; 1235 } 1236 1237 apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); 1238 if (!apmixedsys) { 1239 dev_err(&pdev->dev, "missing apmixedsys node\n"); 1240 return -ENODEV; 1241 } 1242 1243 apmixed_base = of_iomap(apmixedsys, 0); 1244 apmixed_phys_base = of_get_phys_base(apmixedsys); 1245 1246 of_node_put(apmixedsys); 1247 1248 if (apmixed_phys_base == OF_BAD_ADDR) { 1249 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1250 return -EINVAL; 1251 } 1252 1253 ret = device_reset_optional(&pdev->dev); 1254 if (ret) 1255 return ret; 1256 1257 mt->clk_auxadc = devm_clk_get_enabled(&pdev->dev, "auxadc"); 1258 if (IS_ERR(mt->clk_auxadc)) { 1259 ret = PTR_ERR(mt->clk_auxadc); 1260 dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); 1261 return ret; 1262 } 1263 1264 mt->clk_peri_therm = devm_clk_get_enabled(&pdev->dev, "therm"); 1265 if (IS_ERR(mt->clk_peri_therm)) { 1266 ret = PTR_ERR(mt->clk_peri_therm); 1267 dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); 1268 return ret; 1269 } 1270 1271 mtk_thermal_turn_on_buffer(mt, apmixed_base); 1272 1273 if (mt->conf->version != MTK_THERMAL_V1) 1274 mtk_thermal_release_periodic_ts(mt, auxadc_base); 1275 1276 if (mt->conf->version == MTK_THERMAL_V1) 1277 mt->raw_to_mcelsius = raw_to_mcelsius_v1; 1278 else if (mt->conf->version == MTK_THERMAL_V2) 1279 mt->raw_to_mcelsius = raw_to_mcelsius_v2; 1280 else 1281 mt->raw_to_mcelsius = raw_to_mcelsius_v3; 1282 1283 for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) 1284 for (i = 0; i < mt->conf->num_banks; i++) 1285 mtk_thermal_init_bank(mt, i, apmixed_phys_base, 1286 auxadc_phys_base, ctrl_id); 1287 1288 tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt, 1289 &mtk_thermal_ops); 1290 if (IS_ERR(tzdev)) 1291 return PTR_ERR(tzdev); 1292 1293 ret = devm_thermal_add_hwmon_sysfs(&pdev->dev, tzdev); 1294 if (ret) 1295 dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs"); 1296 1297 return 0; 1298 } 1299 1300 static struct platform_driver mtk_thermal_driver = { 1301 .probe = mtk_thermal_probe, 1302 .driver = { 1303 .name = "mtk-thermal", 1304 .of_match_table = mtk_thermal_of_match, 1305 }, 1306 }; 1307 1308 module_platform_driver(mtk_thermal_driver); 1309 1310 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>"); 1311 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>"); 1312 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>"); 1313 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); 1314 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>"); 1315 MODULE_DESCRIPTION("Mediatek thermal driver"); 1316 MODULE_LICENSE("GPL v2"); 1317