1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Hanyi Wu <hanyi.wu@mediatek.com> 5 * Sascha Hauer <s.hauer@pengutronix.de> 6 * Dawei Chien <dawei.chien@mediatek.com> 7 * Louis Yu <louis.yu@mediatek.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/nvmem-consumer.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/io.h> 22 #include <linux/thermal.h> 23 #include <linux/reset.h> 24 #include <linux/types.h> 25 26 #include "../thermal_hwmon.h" 27 28 /* AUXADC Registers */ 29 #define AUXADC_CON1_SET_V 0x008 30 #define AUXADC_CON1_CLR_V 0x00c 31 #define AUXADC_CON2_V 0x010 32 #define AUXADC_DATA(channel) (0x14 + (channel) * 4) 33 34 #define APMIXED_SYS_TS_CON0 0x600 35 #define APMIXED_SYS_TS_CON1 0x604 36 37 /* Thermal Controller Registers */ 38 #define TEMP_MONCTL0 0x000 39 #define TEMP_MONCTL1 0x004 40 #define TEMP_MONCTL2 0x008 41 #define TEMP_MONIDET0 0x014 42 #define TEMP_MONIDET1 0x018 43 #define TEMP_MSRCTL0 0x038 44 #define TEMP_MSRCTL1 0x03c 45 #define TEMP_AHBPOLL 0x040 46 #define TEMP_AHBTO 0x044 47 #define TEMP_ADCPNP0 0x048 48 #define TEMP_ADCPNP1 0x04c 49 #define TEMP_ADCPNP2 0x050 50 #define TEMP_ADCPNP3 0x0b4 51 52 #define TEMP_ADCMUX 0x054 53 #define TEMP_ADCEN 0x060 54 #define TEMP_PNPMUXADDR 0x064 55 #define TEMP_ADCMUXADDR 0x068 56 #define TEMP_ADCENADDR 0x074 57 #define TEMP_ADCVALIDADDR 0x078 58 #define TEMP_ADCVOLTADDR 0x07c 59 #define TEMP_RDCTRL 0x080 60 #define TEMP_ADCVALIDMASK 0x084 61 #define TEMP_ADCVOLTAGESHIFT 0x088 62 #define TEMP_ADCWRITECTRL 0x08c 63 #define TEMP_MSR0 0x090 64 #define TEMP_MSR1 0x094 65 #define TEMP_MSR2 0x098 66 #define TEMP_MSR3 0x0B8 67 68 #define TEMP_SPARE0 0x0f0 69 70 #define TEMP_ADCPNP0_1 0x148 71 #define TEMP_ADCPNP1_1 0x14c 72 #define TEMP_ADCPNP2_1 0x150 73 #define TEMP_MSR0_1 0x190 74 #define TEMP_MSR1_1 0x194 75 #define TEMP_MSR2_1 0x198 76 #define TEMP_ADCPNP3_1 0x1b4 77 #define TEMP_MSR3_1 0x1B8 78 79 #define PTPCORESEL 0x400 80 81 #define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) 82 83 #define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) 84 #define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) 85 86 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) 87 88 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) 89 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) 90 91 #define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) 92 #define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) 93 94 /* MT8173 thermal sensors */ 95 #define MT8173_TS1 0 96 #define MT8173_TS2 1 97 #define MT8173_TS3 2 98 #define MT8173_TS4 3 99 #define MT8173_TSABB 4 100 101 /* AUXADC channel 11 is used for the temperature sensors */ 102 #define MT8173_TEMP_AUXADC_CHANNEL 11 103 104 /* The total number of temperature sensors in the MT8173 */ 105 #define MT8173_NUM_SENSORS 5 106 107 /* The number of banks in the MT8173 */ 108 #define MT8173_NUM_ZONES 4 109 110 /* The number of sensing points per bank */ 111 #define MT8173_NUM_SENSORS_PER_ZONE 4 112 113 /* The number of controller in the MT8173 */ 114 #define MT8173_NUM_CONTROLLER 1 115 116 /* The calibration coefficient of sensor */ 117 #define MT8173_CALIBRATION 165 118 119 /* Valid temperatures range */ 120 #define MT8173_TEMP_MIN -20000 121 #define MT8173_TEMP_MAX 150000 122 123 /* 124 * Layout of the fuses providing the calibration data 125 * These macros could be used for MT8183, MT8173, MT2701, and MT2712. 126 * MT8183 has 6 sensors and needs 6 VTS calibration data. 127 * MT8173 has 5 sensors and needs 5 VTS calibration data. 128 * MT2701 has 3 sensors and needs 3 VTS calibration data. 129 * MT2712 has 4 sensors and needs 4 VTS calibration data. 130 */ 131 #define CALIB_BUF0_VALID_V1 BIT(0) 132 #define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff) 133 #define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff) 134 #define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff) 135 #define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff) 136 #define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff) 137 #define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff) 138 #define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff) 139 #define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f) 140 #define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f) 141 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1) 142 #define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1) 143 144 /* 145 * Layout of the fuses providing the calibration data 146 * These macros could be used for MT7622. 147 */ 148 #define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff) 149 #define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff) 150 #define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f) 151 #define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f) 152 #define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff) 153 #define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff) 154 #define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff) 155 #define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1) 156 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1) 157 158 /* 159 * Layout of the fuses providing the calibration data 160 * These macros can be used for MT7981 and MT7986. 161 */ 162 #define CALIB_BUF0_ADC_GE_V3(x) (((x) >> 0) & 0x3ff) 163 #define CALIB_BUF0_DEGC_CALI_V3(x) (((x) >> 20) & 0x3f) 164 #define CALIB_BUF0_O_SLOPE_V3(x) (((x) >> 26) & 0x3f) 165 #define CALIB_BUF1_VTS_TS1_V3(x) (((x) >> 0) & 0x1ff) 166 #define CALIB_BUF1_VTS_TS2_V3(x) (((x) >> 21) & 0x1ff) 167 #define CALIB_BUF1_VTS_TSABB_V3(x) (((x) >> 9) & 0x1ff) 168 #define CALIB_BUF1_VALID_V3(x) (((x) >> 18) & 0x1) 169 #define CALIB_BUF1_O_SLOPE_SIGN_V3(x) (((x) >> 19) & 0x1) 170 #define CALIB_BUF1_ID_V3(x) (((x) >> 20) & 0x1) 171 172 enum { 173 VTS1, 174 VTS2, 175 VTS3, 176 VTS4, 177 VTS5, 178 VTSABB, 179 MAX_NUM_VTS, 180 }; 181 182 enum mtk_thermal_version { 183 MTK_THERMAL_V1 = 1, 184 MTK_THERMAL_V2, 185 MTK_THERMAL_V3, 186 }; 187 188 /* MT2701 thermal sensors */ 189 #define MT2701_TS1 0 190 #define MT2701_TS2 1 191 #define MT2701_TSABB 2 192 193 /* AUXADC channel 11 is used for the temperature sensors */ 194 #define MT2701_TEMP_AUXADC_CHANNEL 11 195 196 /* The total number of temperature sensors in the MT2701 */ 197 #define MT2701_NUM_SENSORS 3 198 199 /* The number of sensing points per bank */ 200 #define MT2701_NUM_SENSORS_PER_ZONE 3 201 202 /* The number of controller in the MT2701 */ 203 #define MT2701_NUM_CONTROLLER 1 204 205 /* The calibration coefficient of sensor */ 206 #define MT2701_CALIBRATION 165 207 208 /* MT2712 thermal sensors */ 209 #define MT2712_TS1 0 210 #define MT2712_TS2 1 211 #define MT2712_TS3 2 212 #define MT2712_TS4 3 213 214 /* AUXADC channel 11 is used for the temperature sensors */ 215 #define MT2712_TEMP_AUXADC_CHANNEL 11 216 217 /* The total number of temperature sensors in the MT2712 */ 218 #define MT2712_NUM_SENSORS 4 219 220 /* The number of sensing points per bank */ 221 #define MT2712_NUM_SENSORS_PER_ZONE 4 222 223 /* The number of controller in the MT2712 */ 224 #define MT2712_NUM_CONTROLLER 1 225 226 /* The calibration coefficient of sensor */ 227 #define MT2712_CALIBRATION 165 228 229 #define MT7622_TEMP_AUXADC_CHANNEL 11 230 #define MT7622_NUM_SENSORS 1 231 #define MT7622_NUM_ZONES 1 232 #define MT7622_NUM_SENSORS_PER_ZONE 1 233 #define MT7622_TS1 0 234 #define MT7622_NUM_CONTROLLER 1 235 236 /* The maximum number of banks */ 237 #define MAX_NUM_ZONES 8 238 239 /* The calibration coefficient of sensor */ 240 #define MT7622_CALIBRATION 165 241 242 /* MT8183 thermal sensors */ 243 #define MT8183_TS1 0 244 #define MT8183_TS2 1 245 #define MT8183_TS3 2 246 #define MT8183_TS4 3 247 #define MT8183_TS5 4 248 #define MT8183_TSABB 5 249 250 /* AUXADC channel is used for the temperature sensors */ 251 #define MT8183_TEMP_AUXADC_CHANNEL 11 252 253 /* The total number of temperature sensors in the MT8183 */ 254 #define MT8183_NUM_SENSORS 6 255 256 /* The number of banks in the MT8183 */ 257 #define MT8183_NUM_ZONES 1 258 259 /* The number of sensing points per bank */ 260 #define MT8183_NUM_SENSORS_PER_ZONE 6 261 262 /* The number of controller in the MT8183 */ 263 #define MT8183_NUM_CONTROLLER 2 264 265 /* The calibration coefficient of sensor */ 266 #define MT8183_CALIBRATION 153 267 268 /* AUXADC channel 11 is used for the temperature sensors */ 269 #define MT7986_TEMP_AUXADC_CHANNEL 11 270 271 /* The total number of temperature sensors in the MT7986 */ 272 #define MT7986_NUM_SENSORS 1 273 274 /* The number of banks in the MT7986 */ 275 #define MT7986_NUM_ZONES 1 276 277 /* The number of sensing points per bank */ 278 #define MT7986_NUM_SENSORS_PER_ZONE 1 279 280 /* MT7986 thermal sensors */ 281 #define MT7986_TS1 0 282 283 /* The number of controller in the MT7986 */ 284 #define MT7986_NUM_CONTROLLER 1 285 286 /* The calibration coefficient of sensor */ 287 #define MT7986_CALIBRATION 165 288 289 /* MT8365 */ 290 #define MT8365_TEMP_AUXADC_CHANNEL 11 291 #define MT8365_CALIBRATION 164 292 #define MT8365_NUM_CONTROLLER 1 293 #define MT8365_NUM_BANKS 1 294 #define MT8365_NUM_SENSORS 3 295 #define MT8365_NUM_SENSORS_PER_ZONE 3 296 #define MT8365_TS1 0 297 #define MT8365_TS2 1 298 #define MT8365_TS3 2 299 300 struct mtk_thermal; 301 302 struct thermal_bank_cfg { 303 unsigned int num_sensors; 304 const int *sensors; 305 }; 306 307 struct mtk_thermal_bank { 308 struct mtk_thermal *mt; 309 int id; 310 }; 311 312 struct mtk_thermal_data { 313 s32 num_banks; 314 s32 num_sensors; 315 s32 auxadc_channel; 316 const int *vts_index; 317 const int *sensor_mux_values; 318 const int *msr; 319 const int *adcpnp; 320 const int cali_val; 321 const int num_controller; 322 const int *controller_offset; 323 bool need_switch_bank; 324 struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; 325 enum mtk_thermal_version version; 326 u32 apmixed_buffer_ctl_reg; 327 u32 apmixed_buffer_ctl_mask; 328 u32 apmixed_buffer_ctl_set; 329 }; 330 331 struct mtk_thermal { 332 struct device *dev; 333 void __iomem *thermal_base; 334 335 struct clk *clk_peri_therm; 336 struct clk *clk_auxadc; 337 /* lock: for getting and putting banks */ 338 struct mutex lock; 339 340 /* Calibration values */ 341 s32 adc_ge; 342 s32 adc_oe; 343 s32 degc_cali; 344 s32 o_slope; 345 s32 o_slope_sign; 346 s32 vts[MAX_NUM_VTS]; 347 348 const struct mtk_thermal_data *conf; 349 struct mtk_thermal_bank banks[MAX_NUM_ZONES]; 350 351 int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw); 352 }; 353 354 /* MT8183 thermal sensor data */ 355 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { 356 MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB 357 }; 358 359 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { 360 TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 361 }; 362 363 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { 364 TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, 365 TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 366 }; 367 368 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; 369 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; 370 371 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { 372 VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB 373 }; 374 375 /* MT8173 thermal sensor data */ 376 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { 377 { MT8173_TS2, MT8173_TS3 }, 378 { MT8173_TS2, MT8173_TS4 }, 379 { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, 380 { MT8173_TS2 }, 381 }; 382 383 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { 384 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 385 }; 386 387 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { 388 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 389 }; 390 391 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; 392 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; 393 394 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { 395 VTS1, VTS2, VTS3, VTS4, VTSABB 396 }; 397 398 /* MT2701 thermal sensor data */ 399 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { 400 MT2701_TS1, MT2701_TS2, MT2701_TSABB 401 }; 402 403 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { 404 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 405 }; 406 407 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { 408 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 409 }; 410 411 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; 412 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; 413 414 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { 415 VTS1, VTS2, VTS3 416 }; 417 418 /* MT2712 thermal sensor data */ 419 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { 420 MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 421 }; 422 423 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { 424 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 425 }; 426 427 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { 428 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 429 }; 430 431 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; 432 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; 433 434 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { 435 VTS1, VTS2, VTS3, VTS4 436 }; 437 438 /* MT7622 thermal sensor data */ 439 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; 440 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 441 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 442 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; 443 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; 444 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; 445 446 /* MT7986 thermal sensor data */ 447 static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, }; 448 static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 449 static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 450 static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, }; 451 static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 }; 452 static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, }; 453 454 /* MT8365 thermal sensor data */ 455 static const int mt8365_bank_data[MT8365_NUM_SENSORS] = { 456 MT8365_TS1, MT8365_TS2, MT8365_TS3 457 }; 458 459 static const int mt8365_msr[MT8365_NUM_SENSORS_PER_ZONE] = { 460 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 461 }; 462 463 static const int mt8365_adcpnp[MT8365_NUM_SENSORS_PER_ZONE] = { 464 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 465 }; 466 467 static const int mt8365_mux_values[MT8365_NUM_SENSORS] = { 0, 1, 2 }; 468 static const int mt8365_tc_offset[MT8365_NUM_CONTROLLER] = { 0 }; 469 470 static const int mt8365_vts_index[MT8365_NUM_SENSORS] = { VTS1, VTS2, VTS3 }; 471 472 /* 473 * The MT8173 thermal controller has four banks. Each bank can read up to 474 * four temperature sensors simultaneously. The MT8173 has a total of 5 475 * temperature sensors. We use each bank to measure a certain area of the 476 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple 477 * areas, hence is used in different banks. 478 * 479 * The thermal core only gets the maximum temperature of all banks, so 480 * the bank concept wouldn't be necessary here. However, the SVS (Smart 481 * Voltage Scaling) unit makes its decisions based on the same bank 482 * data, and this indeed needs the temperatures of the individual banks 483 * for making better decisions. 484 */ 485 static const struct mtk_thermal_data mt8173_thermal_data = { 486 .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, 487 .num_banks = MT8173_NUM_ZONES, 488 .num_sensors = MT8173_NUM_SENSORS, 489 .vts_index = mt8173_vts_index, 490 .cali_val = MT8173_CALIBRATION, 491 .num_controller = MT8173_NUM_CONTROLLER, 492 .controller_offset = mt8173_tc_offset, 493 .need_switch_bank = true, 494 .bank_data = { 495 { 496 .num_sensors = 2, 497 .sensors = mt8173_bank_data[0], 498 }, { 499 .num_sensors = 2, 500 .sensors = mt8173_bank_data[1], 501 }, { 502 .num_sensors = 3, 503 .sensors = mt8173_bank_data[2], 504 }, { 505 .num_sensors = 1, 506 .sensors = mt8173_bank_data[3], 507 }, 508 }, 509 .msr = mt8173_msr, 510 .adcpnp = mt8173_adcpnp, 511 .sensor_mux_values = mt8173_mux_values, 512 .version = MTK_THERMAL_V1, 513 }; 514 515 /* 516 * The MT2701 thermal controller has one bank, which can read up to 517 * three temperature sensors simultaneously. The MT2701 has a total of 3 518 * temperature sensors. 519 * 520 * The thermal core only gets the maximum temperature of this one bank, 521 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 522 * Voltage Scaling) unit makes its decisions based on the same bank 523 * data. 524 */ 525 static const struct mtk_thermal_data mt2701_thermal_data = { 526 .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, 527 .num_banks = 1, 528 .num_sensors = MT2701_NUM_SENSORS, 529 .vts_index = mt2701_vts_index, 530 .cali_val = MT2701_CALIBRATION, 531 .num_controller = MT2701_NUM_CONTROLLER, 532 .controller_offset = mt2701_tc_offset, 533 .need_switch_bank = true, 534 .bank_data = { 535 { 536 .num_sensors = 3, 537 .sensors = mt2701_bank_data, 538 }, 539 }, 540 .msr = mt2701_msr, 541 .adcpnp = mt2701_adcpnp, 542 .sensor_mux_values = mt2701_mux_values, 543 .version = MTK_THERMAL_V1, 544 }; 545 546 /* 547 * The MT8365 thermal controller has one bank, which can read up to 548 * four temperature sensors simultaneously. The MT8365 has a total of 3 549 * temperature sensors. 550 * 551 * The thermal core only gets the maximum temperature of this one bank, 552 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 553 * Voltage Scaling) unit makes its decisions based on the same bank 554 * data. 555 */ 556 static const struct mtk_thermal_data mt8365_thermal_data = { 557 .auxadc_channel = MT8365_TEMP_AUXADC_CHANNEL, 558 .num_banks = MT8365_NUM_BANKS, 559 .num_sensors = MT8365_NUM_SENSORS, 560 .vts_index = mt8365_vts_index, 561 .cali_val = MT8365_CALIBRATION, 562 .num_controller = MT8365_NUM_CONTROLLER, 563 .controller_offset = mt8365_tc_offset, 564 .need_switch_bank = false, 565 .bank_data = { 566 { 567 .num_sensors = MT8365_NUM_SENSORS, 568 .sensors = mt8365_bank_data 569 }, 570 }, 571 .msr = mt8365_msr, 572 .adcpnp = mt8365_adcpnp, 573 .sensor_mux_values = mt8365_mux_values, 574 .version = MTK_THERMAL_V1, 575 .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON0, 576 .apmixed_buffer_ctl_mask = (u32) ~GENMASK(29, 28), 577 .apmixed_buffer_ctl_set = 0, 578 }; 579 580 /* 581 * The MT2712 thermal controller has one bank, which can read up to 582 * four temperature sensors simultaneously. The MT2712 has a total of 4 583 * temperature sensors. 584 * 585 * The thermal core only gets the maximum temperature of this one bank, 586 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 587 * Voltage Scaling) unit makes its decisions based on the same bank 588 * data. 589 */ 590 static const struct mtk_thermal_data mt2712_thermal_data = { 591 .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, 592 .num_banks = 1, 593 .num_sensors = MT2712_NUM_SENSORS, 594 .vts_index = mt2712_vts_index, 595 .cali_val = MT2712_CALIBRATION, 596 .num_controller = MT2712_NUM_CONTROLLER, 597 .controller_offset = mt2712_tc_offset, 598 .need_switch_bank = true, 599 .bank_data = { 600 { 601 .num_sensors = 4, 602 .sensors = mt2712_bank_data, 603 }, 604 }, 605 .msr = mt2712_msr, 606 .adcpnp = mt2712_adcpnp, 607 .sensor_mux_values = mt2712_mux_values, 608 .version = MTK_THERMAL_V1, 609 }; 610 611 /* 612 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data 613 * access. 614 */ 615 static const struct mtk_thermal_data mt7622_thermal_data = { 616 .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, 617 .num_banks = MT7622_NUM_ZONES, 618 .num_sensors = MT7622_NUM_SENSORS, 619 .vts_index = mt7622_vts_index, 620 .cali_val = MT7622_CALIBRATION, 621 .num_controller = MT7622_NUM_CONTROLLER, 622 .controller_offset = mt7622_tc_offset, 623 .need_switch_bank = true, 624 .bank_data = { 625 { 626 .num_sensors = 1, 627 .sensors = mt7622_bank_data, 628 }, 629 }, 630 .msr = mt7622_msr, 631 .adcpnp = mt7622_adcpnp, 632 .sensor_mux_values = mt7622_mux_values, 633 .version = MTK_THERMAL_V2, 634 .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1, 635 .apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3), 636 .apmixed_buffer_ctl_set = BIT(0), 637 }; 638 639 /* 640 * The MT8183 thermal controller has one bank for the current SW framework. 641 * The MT8183 has a total of 6 temperature sensors. 642 * There are two thermal controller to control the six sensor. 643 * The first one bind 2 sensor, and the other bind 4 sensors. 644 * The thermal core only gets the maximum temperature of all sensor, so 645 * the bank concept wouldn't be necessary here. However, the SVS (Smart 646 * Voltage Scaling) unit makes its decisions based on the same bank 647 * data, and this indeed needs the temperatures of the individual banks 648 * for making better decisions. 649 */ 650 static const struct mtk_thermal_data mt8183_thermal_data = { 651 .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, 652 .num_banks = MT8183_NUM_ZONES, 653 .num_sensors = MT8183_NUM_SENSORS, 654 .vts_index = mt8183_vts_index, 655 .cali_val = MT8183_CALIBRATION, 656 .num_controller = MT8183_NUM_CONTROLLER, 657 .controller_offset = mt8183_tc_offset, 658 .need_switch_bank = false, 659 .bank_data = { 660 { 661 .num_sensors = 6, 662 .sensors = mt8183_bank_data, 663 }, 664 }, 665 666 .msr = mt8183_msr, 667 .adcpnp = mt8183_adcpnp, 668 .sensor_mux_values = mt8183_mux_values, 669 .version = MTK_THERMAL_V1, 670 }; 671 672 /* 673 * MT7986 uses AUXADC Channel 11 for raw data access. 674 */ 675 static const struct mtk_thermal_data mt7986_thermal_data = { 676 .auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL, 677 .num_banks = MT7986_NUM_ZONES, 678 .num_sensors = MT7986_NUM_SENSORS, 679 .vts_index = mt7986_vts_index, 680 .cali_val = MT7986_CALIBRATION, 681 .num_controller = MT7986_NUM_CONTROLLER, 682 .controller_offset = mt7986_tc_offset, 683 .need_switch_bank = true, 684 .bank_data = { 685 { 686 .num_sensors = 1, 687 .sensors = mt7986_bank_data, 688 }, 689 }, 690 .msr = mt7986_msr, 691 .adcpnp = mt7986_adcpnp, 692 .sensor_mux_values = mt7986_mux_values, 693 .version = MTK_THERMAL_V3, 694 }; 695 696 static bool mtk_thermal_temp_is_valid(int temp) 697 { 698 return (temp >= MT8173_TEMP_MIN) && (temp <= MT8173_TEMP_MAX); 699 } 700 701 /** 702 * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius 703 * @mt: The thermal controller 704 * @sensno: sensor number 705 * @raw: raw ADC value 706 * 707 * This converts the raw ADC value to mcelsius using the SoC specific 708 * calibration constants 709 */ 710 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw) 711 { 712 s32 tmp; 713 714 raw &= 0xfff; 715 716 tmp = 203450520 << 3; 717 tmp /= mt->conf->cali_val + mt->o_slope; 718 tmp /= 10000 + mt->adc_ge; 719 tmp *= raw - mt->vts[sensno] - 3350; 720 tmp >>= 3; 721 722 return mt->degc_cali * 500 - tmp; 723 } 724 725 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw) 726 { 727 s32 format_1; 728 s32 format_2; 729 s32 g_oe; 730 s32 g_gain; 731 s32 g_x_roomt; 732 s32 tmp; 733 734 if (raw == 0) 735 return 0; 736 737 raw &= 0xfff; 738 g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12); 739 g_oe = mt->adc_oe - 512; 740 format_1 = mt->vts[VTS2] + 3105 - g_oe; 741 format_2 = (mt->degc_cali * 10) >> 1; 742 g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain; 743 744 tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt; 745 tmp = tmp * 10 * 100 / 11; 746 747 if (mt->o_slope_sign == 0) 748 tmp = tmp / (165 - mt->o_slope); 749 else 750 tmp = tmp / (165 + mt->o_slope); 751 752 return (format_2 - tmp) * 100; 753 } 754 755 static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw) 756 { 757 s32 tmp; 758 759 if (raw == 0) 760 return 0; 761 762 raw &= 0xfff; 763 tmp = 100000 * 15 / 16 * 10000; 764 tmp /= 4096 - 512 + mt->adc_ge; 765 tmp /= 1490; 766 tmp *= raw - mt->vts[sensno] - 2900; 767 768 return mt->degc_cali * 500 - tmp; 769 } 770 771 /** 772 * mtk_thermal_get_bank - get bank 773 * @bank: The bank 774 * 775 * The bank registers are banked, we have to select a bank in the 776 * PTPCORESEL register to access it. 777 */ 778 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) 779 { 780 struct mtk_thermal *mt = bank->mt; 781 u32 val; 782 783 if (mt->conf->need_switch_bank) { 784 mutex_lock(&mt->lock); 785 786 val = readl(mt->thermal_base + PTPCORESEL); 787 val &= ~0xf; 788 val |= bank->id; 789 writel(val, mt->thermal_base + PTPCORESEL); 790 } 791 } 792 793 /** 794 * mtk_thermal_put_bank - release bank 795 * @bank: The bank 796 * 797 * release a bank previously taken with mtk_thermal_get_bank, 798 */ 799 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) 800 { 801 struct mtk_thermal *mt = bank->mt; 802 803 if (mt->conf->need_switch_bank) 804 mutex_unlock(&mt->lock); 805 } 806 807 /** 808 * mtk_thermal_bank_temperature - get the temperature of a bank 809 * @bank: The bank 810 * 811 * The temperature of a bank is considered the maximum temperature of 812 * the sensors associated to the bank. 813 */ 814 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) 815 { 816 struct mtk_thermal *mt = bank->mt; 817 const struct mtk_thermal_data *conf = mt->conf; 818 int i, temp = INT_MIN, max = INT_MIN; 819 u32 raw; 820 821 for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { 822 raw = readl(mt->thermal_base + conf->msr[i]); 823 824 temp = mt->raw_to_mcelsius( 825 mt, conf->bank_data[bank->id].sensors[i], raw); 826 827 /* 828 * Depending on the filt/sen intervals and ADC polling time, 829 * we may need up to 60 milliseconds after initialization: this 830 * will result in the first reading containing an out of range 831 * temperature value. 832 * Validate the reading to both address the aforementioned issue 833 * and to eventually avoid bogus readings during runtime in the 834 * event that the AUXADC gets unstable due to high EMI, etc. 835 */ 836 if (!mtk_thermal_temp_is_valid(temp)) 837 temp = THERMAL_TEMP_INVALID; 838 839 if (temp > max) 840 max = temp; 841 } 842 843 return max; 844 } 845 846 static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature) 847 { 848 struct mtk_thermal *mt = thermal_zone_device_priv(tz); 849 int i; 850 int tempmax = INT_MIN; 851 852 for (i = 0; i < mt->conf->num_banks; i++) { 853 struct mtk_thermal_bank *bank = &mt->banks[i]; 854 855 mtk_thermal_get_bank(bank); 856 857 tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); 858 859 mtk_thermal_put_bank(bank); 860 } 861 862 *temperature = tempmax; 863 864 return 0; 865 } 866 867 static const struct thermal_zone_device_ops mtk_thermal_ops = { 868 .get_temp = mtk_read_temp, 869 }; 870 871 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, 872 u32 apmixed_phys_base, u32 auxadc_phys_base, 873 int ctrl_id) 874 { 875 struct mtk_thermal_bank *bank = &mt->banks[num]; 876 const struct mtk_thermal_data *conf = mt->conf; 877 int i; 878 879 int offset = mt->conf->controller_offset[ctrl_id]; 880 void __iomem *controller_base = mt->thermal_base + offset; 881 882 bank->id = num; 883 bank->mt = mt; 884 885 mtk_thermal_get_bank(bank); 886 887 /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ 888 writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); 889 890 /* 891 * filt interval is 1 * 46.540us = 46.54us, 892 * sen interval is 429 * 46.540us = 19.96ms 893 */ 894 writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | 895 TEMP_MONCTL2_SENSOR_INTERVAL(429), 896 controller_base + TEMP_MONCTL2); 897 898 /* poll is set to 10u */ 899 writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), 900 controller_base + TEMP_AHBPOLL); 901 902 /* temperature sampling control, 1 sample */ 903 writel(0x0, controller_base + TEMP_MSRCTL0); 904 905 /* exceed this polling time, IRQ would be inserted */ 906 writel(0xffffffff, controller_base + TEMP_AHBTO); 907 908 /* number of interrupts per event, 1 is enough */ 909 writel(0x0, controller_base + TEMP_MONIDET0); 910 writel(0x0, controller_base + TEMP_MONIDET1); 911 912 /* 913 * The MT8173 thermal controller does not have its own ADC. Instead it 914 * uses AHB bus accesses to control the AUXADC. To do this the thermal 915 * controller has to be programmed with the physical addresses of the 916 * AUXADC registers and with the various bit positions in the AUXADC. 917 * Also the thermal controller controls a mux in the APMIXEDSYS register 918 * space. 919 */ 920 921 /* 922 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) 923 * automatically by hw 924 */ 925 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); 926 927 /* AHB address for auxadc mux selection */ 928 writel(auxadc_phys_base + AUXADC_CON1_CLR_V, 929 controller_base + TEMP_ADCMUXADDR); 930 931 if (mt->conf->version == MTK_THERMAL_V1) { 932 /* AHB address for pnp sensor mux selection */ 933 writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, 934 controller_base + TEMP_PNPMUXADDR); 935 } 936 937 /* AHB value for auxadc enable */ 938 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); 939 940 /* AHB address for auxadc enable (channel 0 immediate mode selected) */ 941 writel(auxadc_phys_base + AUXADC_CON1_SET_V, 942 controller_base + TEMP_ADCENADDR); 943 944 /* AHB address for auxadc valid bit */ 945 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 946 controller_base + TEMP_ADCVALIDADDR); 947 948 /* AHB address for auxadc voltage output */ 949 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 950 controller_base + TEMP_ADCVOLTADDR); 951 952 /* read valid & voltage are at the same register */ 953 writel(0x0, controller_base + TEMP_RDCTRL); 954 955 /* indicate where the valid bit is */ 956 writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), 957 controller_base + TEMP_ADCVALIDMASK); 958 959 /* no shift */ 960 writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); 961 962 /* enable auxadc mux write transaction */ 963 writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 964 controller_base + TEMP_ADCWRITECTRL); 965 966 for (i = 0; i < conf->bank_data[num].num_sensors; i++) 967 writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], 968 mt->thermal_base + conf->adcpnp[i]); 969 970 writel((1 << conf->bank_data[num].num_sensors) - 1, 971 controller_base + TEMP_MONCTL0); 972 973 writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | 974 TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 975 controller_base + TEMP_ADCWRITECTRL); 976 977 mtk_thermal_put_bank(bank); 978 } 979 980 static u64 of_get_phys_base(struct device_node *np) 981 { 982 struct resource res; 983 984 if (of_address_to_resource(np, 0, &res)) 985 return OF_BAD_ADDR; 986 987 return res.start; 988 } 989 990 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf) 991 { 992 int i; 993 994 if (!(buf[0] & CALIB_BUF0_VALID_V1)) 995 return -EINVAL; 996 997 mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]); 998 999 for (i = 0; i < mt->conf->num_sensors; i++) { 1000 switch (mt->conf->vts_index[i]) { 1001 case VTS1: 1002 mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]); 1003 break; 1004 case VTS2: 1005 mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]); 1006 break; 1007 case VTS3: 1008 mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]); 1009 break; 1010 case VTS4: 1011 mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]); 1012 break; 1013 case VTS5: 1014 mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]); 1015 break; 1016 case VTSABB: 1017 mt->vts[VTSABB] = 1018 CALIB_BUF2_VTS_TSABB_V1(buf[2]); 1019 break; 1020 default: 1021 break; 1022 } 1023 } 1024 1025 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]); 1026 if (CALIB_BUF1_ID_V1(buf[1]) & 1027 CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0])) 1028 mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]); 1029 else 1030 mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]); 1031 1032 return 0; 1033 } 1034 1035 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf) 1036 { 1037 if (!CALIB_BUF1_VALID_V2(buf[1])) 1038 return -EINVAL; 1039 1040 mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]); 1041 mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]); 1042 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]); 1043 mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]); 1044 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]); 1045 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]); 1046 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]); 1047 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]); 1048 1049 return 0; 1050 } 1051 1052 static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf) 1053 { 1054 if (!CALIB_BUF1_VALID_V3(buf[1])) 1055 return -EINVAL; 1056 1057 mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]); 1058 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]); 1059 mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]); 1060 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]); 1061 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]); 1062 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]); 1063 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]); 1064 1065 if (CALIB_BUF1_ID_V3(buf[1]) == 0) 1066 mt->o_slope = 0; 1067 1068 return 0; 1069 } 1070 1071 static int mtk_thermal_get_calibration_data(struct device *dev, 1072 struct mtk_thermal *mt) 1073 { 1074 struct nvmem_cell *cell; 1075 u32 *buf; 1076 size_t len; 1077 int i, ret = 0; 1078 1079 /* Start with default values */ 1080 mt->adc_ge = 512; 1081 mt->adc_oe = 512; 1082 for (i = 0; i < mt->conf->num_sensors; i++) 1083 mt->vts[i] = 260; 1084 mt->degc_cali = 40; 1085 mt->o_slope = 0; 1086 1087 cell = nvmem_cell_get(dev, "calibration-data"); 1088 if (IS_ERR(cell)) { 1089 if (PTR_ERR(cell) == -EPROBE_DEFER) 1090 return PTR_ERR(cell); 1091 return 0; 1092 } 1093 1094 buf = (u32 *)nvmem_cell_read(cell, &len); 1095 1096 nvmem_cell_put(cell); 1097 1098 if (IS_ERR(buf)) 1099 return PTR_ERR(buf); 1100 1101 if (len < 3 * sizeof(u32)) { 1102 dev_warn(dev, "invalid calibration data\n"); 1103 ret = -EINVAL; 1104 goto out; 1105 } 1106 1107 switch (mt->conf->version) { 1108 case MTK_THERMAL_V1: 1109 ret = mtk_thermal_extract_efuse_v1(mt, buf); 1110 break; 1111 case MTK_THERMAL_V2: 1112 ret = mtk_thermal_extract_efuse_v2(mt, buf); 1113 break; 1114 case MTK_THERMAL_V3: 1115 ret = mtk_thermal_extract_efuse_v3(mt, buf); 1116 break; 1117 default: 1118 ret = -EINVAL; 1119 break; 1120 } 1121 1122 if (ret) { 1123 dev_info(dev, "Device not calibrated, using default calibration values\n"); 1124 ret = 0; 1125 } 1126 1127 out: 1128 kfree(buf); 1129 1130 return ret; 1131 } 1132 1133 static const struct of_device_id mtk_thermal_of_match[] = { 1134 { 1135 .compatible = "mediatek,mt8173-thermal", 1136 .data = (void *)&mt8173_thermal_data, 1137 }, 1138 { 1139 .compatible = "mediatek,mt2701-thermal", 1140 .data = (void *)&mt2701_thermal_data, 1141 }, 1142 { 1143 .compatible = "mediatek,mt2712-thermal", 1144 .data = (void *)&mt2712_thermal_data, 1145 }, 1146 { 1147 .compatible = "mediatek,mt7622-thermal", 1148 .data = (void *)&mt7622_thermal_data, 1149 }, 1150 { 1151 .compatible = "mediatek,mt7986-thermal", 1152 .data = (void *)&mt7986_thermal_data, 1153 }, 1154 { 1155 .compatible = "mediatek,mt8183-thermal", 1156 .data = (void *)&mt8183_thermal_data, 1157 }, 1158 { 1159 .compatible = "mediatek,mt8365-thermal", 1160 .data = (void *)&mt8365_thermal_data, 1161 }, { 1162 }, 1163 }; 1164 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); 1165 1166 static void mtk_thermal_turn_on_buffer(struct mtk_thermal *mt, 1167 void __iomem *apmixed_base) 1168 { 1169 u32 tmp; 1170 1171 if (!mt->conf->apmixed_buffer_ctl_reg) 1172 return; 1173 1174 tmp = readl(apmixed_base + mt->conf->apmixed_buffer_ctl_reg); 1175 tmp &= mt->conf->apmixed_buffer_ctl_mask; 1176 tmp |= mt->conf->apmixed_buffer_ctl_set; 1177 writel(tmp, apmixed_base + mt->conf->apmixed_buffer_ctl_reg); 1178 udelay(200); 1179 } 1180 1181 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt, 1182 void __iomem *auxadc_base) 1183 { 1184 int tmp; 1185 1186 writel(0x800, auxadc_base + AUXADC_CON1_SET_V); 1187 writel(0x1, mt->thermal_base + TEMP_MONCTL0); 1188 tmp = readl(mt->thermal_base + TEMP_MSRCTL1); 1189 writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1); 1190 } 1191 1192 static int mtk_thermal_probe(struct platform_device *pdev) 1193 { 1194 int ret, i, ctrl_id; 1195 struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; 1196 struct mtk_thermal *mt; 1197 u64 auxadc_phys_base, apmixed_phys_base; 1198 struct thermal_zone_device *tzdev; 1199 void __iomem *apmixed_base, *auxadc_base; 1200 1201 mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); 1202 if (!mt) 1203 return -ENOMEM; 1204 1205 mt->conf = of_device_get_match_data(&pdev->dev); 1206 1207 mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); 1208 if (IS_ERR(mt->thermal_base)) 1209 return PTR_ERR(mt->thermal_base); 1210 1211 ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); 1212 if (ret) 1213 return ret; 1214 1215 mutex_init(&mt->lock); 1216 1217 mt->dev = &pdev->dev; 1218 1219 auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); 1220 if (!auxadc) { 1221 dev_err(&pdev->dev, "missing auxadc node\n"); 1222 return -ENODEV; 1223 } 1224 1225 auxadc_base = devm_of_iomap(&pdev->dev, auxadc, 0, NULL); 1226 if (IS_ERR(auxadc_base)) { 1227 of_node_put(auxadc); 1228 return PTR_ERR(auxadc_base); 1229 } 1230 1231 auxadc_phys_base = of_get_phys_base(auxadc); 1232 1233 of_node_put(auxadc); 1234 1235 if (auxadc_phys_base == OF_BAD_ADDR) { 1236 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1237 return -EINVAL; 1238 } 1239 1240 apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); 1241 if (!apmixedsys) { 1242 dev_err(&pdev->dev, "missing apmixedsys node\n"); 1243 return -ENODEV; 1244 } 1245 1246 apmixed_base = devm_of_iomap(&pdev->dev, apmixedsys, 0, NULL); 1247 if (IS_ERR(apmixed_base)) { 1248 of_node_put(apmixedsys); 1249 return PTR_ERR(apmixed_base); 1250 } 1251 1252 apmixed_phys_base = of_get_phys_base(apmixedsys); 1253 1254 of_node_put(apmixedsys); 1255 1256 if (apmixed_phys_base == OF_BAD_ADDR) { 1257 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1258 return -EINVAL; 1259 } 1260 1261 ret = device_reset_optional(&pdev->dev); 1262 if (ret) 1263 return ret; 1264 1265 mt->clk_auxadc = devm_clk_get_enabled(&pdev->dev, "auxadc"); 1266 if (IS_ERR(mt->clk_auxadc)) { 1267 ret = PTR_ERR(mt->clk_auxadc); 1268 dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); 1269 return ret; 1270 } 1271 1272 mt->clk_peri_therm = devm_clk_get_enabled(&pdev->dev, "therm"); 1273 if (IS_ERR(mt->clk_peri_therm)) { 1274 ret = PTR_ERR(mt->clk_peri_therm); 1275 dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); 1276 return ret; 1277 } 1278 1279 mtk_thermal_turn_on_buffer(mt, apmixed_base); 1280 1281 if (mt->conf->version != MTK_THERMAL_V2) 1282 mtk_thermal_release_periodic_ts(mt, auxadc_base); 1283 1284 if (mt->conf->version == MTK_THERMAL_V1) 1285 mt->raw_to_mcelsius = raw_to_mcelsius_v1; 1286 else if (mt->conf->version == MTK_THERMAL_V2) 1287 mt->raw_to_mcelsius = raw_to_mcelsius_v2; 1288 else 1289 mt->raw_to_mcelsius = raw_to_mcelsius_v3; 1290 1291 for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) 1292 for (i = 0; i < mt->conf->num_banks; i++) 1293 mtk_thermal_init_bank(mt, i, apmixed_phys_base, 1294 auxadc_phys_base, ctrl_id); 1295 1296 platform_set_drvdata(pdev, mt); 1297 1298 tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt, 1299 &mtk_thermal_ops); 1300 if (IS_ERR(tzdev)) 1301 return PTR_ERR(tzdev); 1302 1303 ret = devm_thermal_add_hwmon_sysfs(&pdev->dev, tzdev); 1304 if (ret) 1305 dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs"); 1306 1307 return 0; 1308 } 1309 1310 static struct platform_driver mtk_thermal_driver = { 1311 .probe = mtk_thermal_probe, 1312 .driver = { 1313 .name = "mtk-thermal", 1314 .of_match_table = mtk_thermal_of_match, 1315 }, 1316 }; 1317 1318 module_platform_driver(mtk_thermal_driver); 1319 1320 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>"); 1321 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>"); 1322 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>"); 1323 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); 1324 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>"); 1325 MODULE_DESCRIPTION("Mediatek thermal driver"); 1326 MODULE_LICENSE("GPL v2"); 1327