1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Hanyi Wu <hanyi.wu@mediatek.com> 5 * Sascha Hauer <s.hauer@pengutronix.de> 6 * Dawei Chien <dawei.chien@mediatek.com> 7 * Louis Yu <louis.yu@mediatek.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/nvmem-consumer.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/io.h> 22 #include <linux/thermal.h> 23 #include <linux/reset.h> 24 #include <linux/types.h> 25 26 #include "../thermal_hwmon.h" 27 28 /* AUXADC Registers */ 29 #define AUXADC_CON1_SET_V 0x008 30 #define AUXADC_CON1_CLR_V 0x00c 31 #define AUXADC_CON2_V 0x010 32 #define AUXADC_DATA(channel) (0x14 + (channel) * 4) 33 34 #define APMIXED_SYS_TS_CON1 0x604 35 36 /* Thermal Controller Registers */ 37 #define TEMP_MONCTL0 0x000 38 #define TEMP_MONCTL1 0x004 39 #define TEMP_MONCTL2 0x008 40 #define TEMP_MONIDET0 0x014 41 #define TEMP_MONIDET1 0x018 42 #define TEMP_MSRCTL0 0x038 43 #define TEMP_MSRCTL1 0x03c 44 #define TEMP_AHBPOLL 0x040 45 #define TEMP_AHBTO 0x044 46 #define TEMP_ADCPNP0 0x048 47 #define TEMP_ADCPNP1 0x04c 48 #define TEMP_ADCPNP2 0x050 49 #define TEMP_ADCPNP3 0x0b4 50 51 #define TEMP_ADCMUX 0x054 52 #define TEMP_ADCEN 0x060 53 #define TEMP_PNPMUXADDR 0x064 54 #define TEMP_ADCMUXADDR 0x068 55 #define TEMP_ADCENADDR 0x074 56 #define TEMP_ADCVALIDADDR 0x078 57 #define TEMP_ADCVOLTADDR 0x07c 58 #define TEMP_RDCTRL 0x080 59 #define TEMP_ADCVALIDMASK 0x084 60 #define TEMP_ADCVOLTAGESHIFT 0x088 61 #define TEMP_ADCWRITECTRL 0x08c 62 #define TEMP_MSR0 0x090 63 #define TEMP_MSR1 0x094 64 #define TEMP_MSR2 0x098 65 #define TEMP_MSR3 0x0B8 66 67 #define TEMP_SPARE0 0x0f0 68 69 #define TEMP_ADCPNP0_1 0x148 70 #define TEMP_ADCPNP1_1 0x14c 71 #define TEMP_ADCPNP2_1 0x150 72 #define TEMP_MSR0_1 0x190 73 #define TEMP_MSR1_1 0x194 74 #define TEMP_MSR2_1 0x198 75 #define TEMP_ADCPNP3_1 0x1b4 76 #define TEMP_MSR3_1 0x1B8 77 78 #define PTPCORESEL 0x400 79 80 #define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) 81 82 #define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) 83 #define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) 84 85 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) 86 87 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) 88 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) 89 90 #define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) 91 #define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) 92 93 /* MT8173 thermal sensors */ 94 #define MT8173_TS1 0 95 #define MT8173_TS2 1 96 #define MT8173_TS3 2 97 #define MT8173_TS4 3 98 #define MT8173_TSABB 4 99 100 /* AUXADC channel 11 is used for the temperature sensors */ 101 #define MT8173_TEMP_AUXADC_CHANNEL 11 102 103 /* The total number of temperature sensors in the MT8173 */ 104 #define MT8173_NUM_SENSORS 5 105 106 /* The number of banks in the MT8173 */ 107 #define MT8173_NUM_ZONES 4 108 109 /* The number of sensing points per bank */ 110 #define MT8173_NUM_SENSORS_PER_ZONE 4 111 112 /* The number of controller in the MT8173 */ 113 #define MT8173_NUM_CONTROLLER 1 114 115 /* The calibration coefficient of sensor */ 116 #define MT8173_CALIBRATION 165 117 118 /* 119 * Layout of the fuses providing the calibration data 120 * These macros could be used for MT8183, MT8173, MT2701, and MT2712. 121 * MT8183 has 6 sensors and needs 6 VTS calibration data. 122 * MT8173 has 5 sensors and needs 5 VTS calibration data. 123 * MT2701 has 3 sensors and needs 3 VTS calibration data. 124 * MT2712 has 4 sensors and needs 4 VTS calibration data. 125 */ 126 #define CALIB_BUF0_VALID_V1 BIT(0) 127 #define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff) 128 #define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff) 129 #define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff) 130 #define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff) 131 #define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff) 132 #define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff) 133 #define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff) 134 #define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f) 135 #define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f) 136 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1) 137 #define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1) 138 139 /* 140 * Layout of the fuses providing the calibration data 141 * These macros could be used for MT7622. 142 */ 143 #define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff) 144 #define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff) 145 #define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f) 146 #define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f) 147 #define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff) 148 #define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff) 149 #define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff) 150 #define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1) 151 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1) 152 153 /* 154 * Layout of the fuses providing the calibration data 155 * These macros can be used for MT7981 and MT7986. 156 */ 157 #define CALIB_BUF0_ADC_GE_V3(x) (((x) >> 0) & 0x3ff) 158 #define CALIB_BUF0_DEGC_CALI_V3(x) (((x) >> 20) & 0x3f) 159 #define CALIB_BUF0_O_SLOPE_V3(x) (((x) >> 26) & 0x3f) 160 #define CALIB_BUF1_VTS_TS1_V3(x) (((x) >> 0) & 0x1ff) 161 #define CALIB_BUF1_VTS_TS2_V3(x) (((x) >> 21) & 0x1ff) 162 #define CALIB_BUF1_VTS_TSABB_V3(x) (((x) >> 9) & 0x1ff) 163 #define CALIB_BUF1_VALID_V3(x) (((x) >> 18) & 0x1) 164 #define CALIB_BUF1_O_SLOPE_SIGN_V3(x) (((x) >> 19) & 0x1) 165 #define CALIB_BUF1_ID_V3(x) (((x) >> 20) & 0x1) 166 167 enum { 168 VTS1, 169 VTS2, 170 VTS3, 171 VTS4, 172 VTS5, 173 VTSABB, 174 MAX_NUM_VTS, 175 }; 176 177 enum mtk_thermal_version { 178 MTK_THERMAL_V1 = 1, 179 MTK_THERMAL_V2, 180 MTK_THERMAL_V3, 181 }; 182 183 /* MT2701 thermal sensors */ 184 #define MT2701_TS1 0 185 #define MT2701_TS2 1 186 #define MT2701_TSABB 2 187 188 /* AUXADC channel 11 is used for the temperature sensors */ 189 #define MT2701_TEMP_AUXADC_CHANNEL 11 190 191 /* The total number of temperature sensors in the MT2701 */ 192 #define MT2701_NUM_SENSORS 3 193 194 /* The number of sensing points per bank */ 195 #define MT2701_NUM_SENSORS_PER_ZONE 3 196 197 /* The number of controller in the MT2701 */ 198 #define MT2701_NUM_CONTROLLER 1 199 200 /* The calibration coefficient of sensor */ 201 #define MT2701_CALIBRATION 165 202 203 /* MT2712 thermal sensors */ 204 #define MT2712_TS1 0 205 #define MT2712_TS2 1 206 #define MT2712_TS3 2 207 #define MT2712_TS4 3 208 209 /* AUXADC channel 11 is used for the temperature sensors */ 210 #define MT2712_TEMP_AUXADC_CHANNEL 11 211 212 /* The total number of temperature sensors in the MT2712 */ 213 #define MT2712_NUM_SENSORS 4 214 215 /* The number of sensing points per bank */ 216 #define MT2712_NUM_SENSORS_PER_ZONE 4 217 218 /* The number of controller in the MT2712 */ 219 #define MT2712_NUM_CONTROLLER 1 220 221 /* The calibration coefficient of sensor */ 222 #define MT2712_CALIBRATION 165 223 224 #define MT7622_TEMP_AUXADC_CHANNEL 11 225 #define MT7622_NUM_SENSORS 1 226 #define MT7622_NUM_ZONES 1 227 #define MT7622_NUM_SENSORS_PER_ZONE 1 228 #define MT7622_TS1 0 229 #define MT7622_NUM_CONTROLLER 1 230 231 /* The maximum number of banks */ 232 #define MAX_NUM_ZONES 8 233 234 /* The calibration coefficient of sensor */ 235 #define MT7622_CALIBRATION 165 236 237 /* MT8183 thermal sensors */ 238 #define MT8183_TS1 0 239 #define MT8183_TS2 1 240 #define MT8183_TS3 2 241 #define MT8183_TS4 3 242 #define MT8183_TS5 4 243 #define MT8183_TSABB 5 244 245 /* AUXADC channel is used for the temperature sensors */ 246 #define MT8183_TEMP_AUXADC_CHANNEL 11 247 248 /* The total number of temperature sensors in the MT8183 */ 249 #define MT8183_NUM_SENSORS 6 250 251 /* The number of banks in the MT8183 */ 252 #define MT8183_NUM_ZONES 1 253 254 /* The number of sensing points per bank */ 255 #define MT8183_NUM_SENSORS_PER_ZONE 6 256 257 /* The number of controller in the MT8183 */ 258 #define MT8183_NUM_CONTROLLER 2 259 260 /* The calibration coefficient of sensor */ 261 #define MT8183_CALIBRATION 153 262 263 /* AUXADC channel 11 is used for the temperature sensors */ 264 #define MT7986_TEMP_AUXADC_CHANNEL 11 265 266 /* The total number of temperature sensors in the MT7986 */ 267 #define MT7986_NUM_SENSORS 1 268 269 /* The number of banks in the MT7986 */ 270 #define MT7986_NUM_ZONES 1 271 272 /* The number of sensing points per bank */ 273 #define MT7986_NUM_SENSORS_PER_ZONE 1 274 275 /* MT7986 thermal sensors */ 276 #define MT7986_TS1 0 277 278 /* The number of controller in the MT7986 */ 279 #define MT7986_NUM_CONTROLLER 1 280 281 /* The calibration coefficient of sensor */ 282 #define MT7986_CALIBRATION 165 283 284 struct mtk_thermal; 285 286 struct thermal_bank_cfg { 287 unsigned int num_sensors; 288 const int *sensors; 289 }; 290 291 struct mtk_thermal_bank { 292 struct mtk_thermal *mt; 293 int id; 294 }; 295 296 struct mtk_thermal_data { 297 s32 num_banks; 298 s32 num_sensors; 299 s32 auxadc_channel; 300 const int *vts_index; 301 const int *sensor_mux_values; 302 const int *msr; 303 const int *adcpnp; 304 const int cali_val; 305 const int num_controller; 306 const int *controller_offset; 307 bool need_switch_bank; 308 struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; 309 enum mtk_thermal_version version; 310 }; 311 312 struct mtk_thermal { 313 struct device *dev; 314 void __iomem *thermal_base; 315 316 struct clk *clk_peri_therm; 317 struct clk *clk_auxadc; 318 /* lock: for getting and putting banks */ 319 struct mutex lock; 320 321 /* Calibration values */ 322 s32 adc_ge; 323 s32 adc_oe; 324 s32 degc_cali; 325 s32 o_slope; 326 s32 o_slope_sign; 327 s32 vts[MAX_NUM_VTS]; 328 329 const struct mtk_thermal_data *conf; 330 struct mtk_thermal_bank banks[MAX_NUM_ZONES]; 331 332 int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw); 333 }; 334 335 /* MT8183 thermal sensor data */ 336 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { 337 MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB 338 }; 339 340 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { 341 TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 342 }; 343 344 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { 345 TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, 346 TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 347 }; 348 349 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; 350 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; 351 352 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { 353 VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB 354 }; 355 356 /* MT8173 thermal sensor data */ 357 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { 358 { MT8173_TS2, MT8173_TS3 }, 359 { MT8173_TS2, MT8173_TS4 }, 360 { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, 361 { MT8173_TS2 }, 362 }; 363 364 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { 365 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 366 }; 367 368 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { 369 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 370 }; 371 372 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; 373 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; 374 375 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { 376 VTS1, VTS2, VTS3, VTS4, VTSABB 377 }; 378 379 /* MT2701 thermal sensor data */ 380 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { 381 MT2701_TS1, MT2701_TS2, MT2701_TSABB 382 }; 383 384 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { 385 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 386 }; 387 388 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { 389 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 390 }; 391 392 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; 393 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; 394 395 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { 396 VTS1, VTS2, VTS3 397 }; 398 399 /* MT2712 thermal sensor data */ 400 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { 401 MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 402 }; 403 404 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { 405 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 406 }; 407 408 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { 409 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 410 }; 411 412 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; 413 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; 414 415 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { 416 VTS1, VTS2, VTS3, VTS4 417 }; 418 419 /* MT7622 thermal sensor data */ 420 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; 421 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 422 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 423 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; 424 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; 425 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; 426 427 /* MT7986 thermal sensor data */ 428 static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, }; 429 static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 430 static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 431 static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, }; 432 static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 }; 433 static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, }; 434 435 /* 436 * The MT8173 thermal controller has four banks. Each bank can read up to 437 * four temperature sensors simultaneously. The MT8173 has a total of 5 438 * temperature sensors. We use each bank to measure a certain area of the 439 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple 440 * areas, hence is used in different banks. 441 * 442 * The thermal core only gets the maximum temperature of all banks, so 443 * the bank concept wouldn't be necessary here. However, the SVS (Smart 444 * Voltage Scaling) unit makes its decisions based on the same bank 445 * data, and this indeed needs the temperatures of the individual banks 446 * for making better decisions. 447 */ 448 static const struct mtk_thermal_data mt8173_thermal_data = { 449 .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, 450 .num_banks = MT8173_NUM_ZONES, 451 .num_sensors = MT8173_NUM_SENSORS, 452 .vts_index = mt8173_vts_index, 453 .cali_val = MT8173_CALIBRATION, 454 .num_controller = MT8173_NUM_CONTROLLER, 455 .controller_offset = mt8173_tc_offset, 456 .need_switch_bank = true, 457 .bank_data = { 458 { 459 .num_sensors = 2, 460 .sensors = mt8173_bank_data[0], 461 }, { 462 .num_sensors = 2, 463 .sensors = mt8173_bank_data[1], 464 }, { 465 .num_sensors = 3, 466 .sensors = mt8173_bank_data[2], 467 }, { 468 .num_sensors = 1, 469 .sensors = mt8173_bank_data[3], 470 }, 471 }, 472 .msr = mt8173_msr, 473 .adcpnp = mt8173_adcpnp, 474 .sensor_mux_values = mt8173_mux_values, 475 .version = MTK_THERMAL_V1, 476 }; 477 478 /* 479 * The MT2701 thermal controller has one bank, which can read up to 480 * three temperature sensors simultaneously. The MT2701 has a total of 3 481 * temperature sensors. 482 * 483 * The thermal core only gets the maximum temperature of this one bank, 484 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 485 * Voltage Scaling) unit makes its decisions based on the same bank 486 * data. 487 */ 488 static const struct mtk_thermal_data mt2701_thermal_data = { 489 .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, 490 .num_banks = 1, 491 .num_sensors = MT2701_NUM_SENSORS, 492 .vts_index = mt2701_vts_index, 493 .cali_val = MT2701_CALIBRATION, 494 .num_controller = MT2701_NUM_CONTROLLER, 495 .controller_offset = mt2701_tc_offset, 496 .need_switch_bank = true, 497 .bank_data = { 498 { 499 .num_sensors = 3, 500 .sensors = mt2701_bank_data, 501 }, 502 }, 503 .msr = mt2701_msr, 504 .adcpnp = mt2701_adcpnp, 505 .sensor_mux_values = mt2701_mux_values, 506 .version = MTK_THERMAL_V1, 507 }; 508 509 /* 510 * The MT2712 thermal controller has one bank, which can read up to 511 * four temperature sensors simultaneously. The MT2712 has a total of 4 512 * temperature sensors. 513 * 514 * The thermal core only gets the maximum temperature of this one bank, 515 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 516 * Voltage Scaling) unit makes its decisions based on the same bank 517 * data. 518 */ 519 static const struct mtk_thermal_data mt2712_thermal_data = { 520 .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, 521 .num_banks = 1, 522 .num_sensors = MT2712_NUM_SENSORS, 523 .vts_index = mt2712_vts_index, 524 .cali_val = MT2712_CALIBRATION, 525 .num_controller = MT2712_NUM_CONTROLLER, 526 .controller_offset = mt2712_tc_offset, 527 .need_switch_bank = true, 528 .bank_data = { 529 { 530 .num_sensors = 4, 531 .sensors = mt2712_bank_data, 532 }, 533 }, 534 .msr = mt2712_msr, 535 .adcpnp = mt2712_adcpnp, 536 .sensor_mux_values = mt2712_mux_values, 537 .version = MTK_THERMAL_V1, 538 }; 539 540 /* 541 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data 542 * access. 543 */ 544 static const struct mtk_thermal_data mt7622_thermal_data = { 545 .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, 546 .num_banks = MT7622_NUM_ZONES, 547 .num_sensors = MT7622_NUM_SENSORS, 548 .vts_index = mt7622_vts_index, 549 .cali_val = MT7622_CALIBRATION, 550 .num_controller = MT7622_NUM_CONTROLLER, 551 .controller_offset = mt7622_tc_offset, 552 .need_switch_bank = true, 553 .bank_data = { 554 { 555 .num_sensors = 1, 556 .sensors = mt7622_bank_data, 557 }, 558 }, 559 .msr = mt7622_msr, 560 .adcpnp = mt7622_adcpnp, 561 .sensor_mux_values = mt7622_mux_values, 562 .version = MTK_THERMAL_V2, 563 }; 564 565 /* 566 * The MT8183 thermal controller has one bank for the current SW framework. 567 * The MT8183 has a total of 6 temperature sensors. 568 * There are two thermal controller to control the six sensor. 569 * The first one bind 2 sensor, and the other bind 4 sensors. 570 * The thermal core only gets the maximum temperature of all sensor, so 571 * the bank concept wouldn't be necessary here. However, the SVS (Smart 572 * Voltage Scaling) unit makes its decisions based on the same bank 573 * data, and this indeed needs the temperatures of the individual banks 574 * for making better decisions. 575 */ 576 static const struct mtk_thermal_data mt8183_thermal_data = { 577 .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, 578 .num_banks = MT8183_NUM_ZONES, 579 .num_sensors = MT8183_NUM_SENSORS, 580 .vts_index = mt8183_vts_index, 581 .cali_val = MT8183_CALIBRATION, 582 .num_controller = MT8183_NUM_CONTROLLER, 583 .controller_offset = mt8183_tc_offset, 584 .need_switch_bank = false, 585 .bank_data = { 586 { 587 .num_sensors = 6, 588 .sensors = mt8183_bank_data, 589 }, 590 }, 591 592 .msr = mt8183_msr, 593 .adcpnp = mt8183_adcpnp, 594 .sensor_mux_values = mt8183_mux_values, 595 .version = MTK_THERMAL_V1, 596 }; 597 598 /* 599 * MT7986 uses AUXADC Channel 11 for raw data access. 600 */ 601 static const struct mtk_thermal_data mt7986_thermal_data = { 602 .auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL, 603 .num_banks = MT7986_NUM_ZONES, 604 .num_sensors = MT7986_NUM_SENSORS, 605 .vts_index = mt7986_vts_index, 606 .cali_val = MT7986_CALIBRATION, 607 .num_controller = MT7986_NUM_CONTROLLER, 608 .controller_offset = mt7986_tc_offset, 609 .need_switch_bank = true, 610 .bank_data = { 611 { 612 .num_sensors = 1, 613 .sensors = mt7986_bank_data, 614 }, 615 }, 616 .msr = mt7986_msr, 617 .adcpnp = mt7986_adcpnp, 618 .sensor_mux_values = mt7986_mux_values, 619 .version = MTK_THERMAL_V3, 620 }; 621 622 /** 623 * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius 624 * @mt: The thermal controller 625 * @sensno: sensor number 626 * @raw: raw ADC value 627 * 628 * This converts the raw ADC value to mcelsius using the SoC specific 629 * calibration constants 630 */ 631 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw) 632 { 633 s32 tmp; 634 635 raw &= 0xfff; 636 637 tmp = 203450520 << 3; 638 tmp /= mt->conf->cali_val + mt->o_slope; 639 tmp /= 10000 + mt->adc_ge; 640 tmp *= raw - mt->vts[sensno] - 3350; 641 tmp >>= 3; 642 643 return mt->degc_cali * 500 - tmp; 644 } 645 646 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw) 647 { 648 s32 format_1; 649 s32 format_2; 650 s32 g_oe; 651 s32 g_gain; 652 s32 g_x_roomt; 653 s32 tmp; 654 655 if (raw == 0) 656 return 0; 657 658 raw &= 0xfff; 659 g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12); 660 g_oe = mt->adc_oe - 512; 661 format_1 = mt->vts[VTS2] + 3105 - g_oe; 662 format_2 = (mt->degc_cali * 10) >> 1; 663 g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain; 664 665 tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt; 666 tmp = tmp * 10 * 100 / 11; 667 668 if (mt->o_slope_sign == 0) 669 tmp = tmp / (165 - mt->o_slope); 670 else 671 tmp = tmp / (165 + mt->o_slope); 672 673 return (format_2 - tmp) * 100; 674 } 675 676 static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw) 677 { 678 s32 tmp; 679 680 if (raw == 0) 681 return 0; 682 683 raw &= 0xfff; 684 tmp = 100000 * 15 / 16 * 10000; 685 tmp /= 4096 - 512 + mt->adc_ge; 686 tmp /= 1490; 687 tmp *= raw - mt->vts[sensno] - 2900; 688 689 return mt->degc_cali * 500 - tmp; 690 } 691 692 /** 693 * mtk_thermal_get_bank - get bank 694 * @bank: The bank 695 * 696 * The bank registers are banked, we have to select a bank in the 697 * PTPCORESEL register to access it. 698 */ 699 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) 700 { 701 struct mtk_thermal *mt = bank->mt; 702 u32 val; 703 704 if (mt->conf->need_switch_bank) { 705 mutex_lock(&mt->lock); 706 707 val = readl(mt->thermal_base + PTPCORESEL); 708 val &= ~0xf; 709 val |= bank->id; 710 writel(val, mt->thermal_base + PTPCORESEL); 711 } 712 } 713 714 /** 715 * mtk_thermal_put_bank - release bank 716 * @bank: The bank 717 * 718 * release a bank previously taken with mtk_thermal_get_bank, 719 */ 720 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) 721 { 722 struct mtk_thermal *mt = bank->mt; 723 724 if (mt->conf->need_switch_bank) 725 mutex_unlock(&mt->lock); 726 } 727 728 /** 729 * mtk_thermal_bank_temperature - get the temperature of a bank 730 * @bank: The bank 731 * 732 * The temperature of a bank is considered the maximum temperature of 733 * the sensors associated to the bank. 734 */ 735 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) 736 { 737 struct mtk_thermal *mt = bank->mt; 738 const struct mtk_thermal_data *conf = mt->conf; 739 int i, temp = INT_MIN, max = INT_MIN; 740 u32 raw; 741 742 for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { 743 raw = readl(mt->thermal_base + conf->msr[i]); 744 745 temp = mt->raw_to_mcelsius( 746 mt, conf->bank_data[bank->id].sensors[i], raw); 747 748 749 /* 750 * The first read of a sensor often contains very high bogus 751 * temperature value. Filter these out so that the system does 752 * not immediately shut down. 753 */ 754 if (temp > 200000) 755 temp = 0; 756 757 if (temp > max) 758 max = temp; 759 } 760 761 return max; 762 } 763 764 static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature) 765 { 766 struct mtk_thermal *mt = tz->devdata; 767 int i; 768 int tempmax = INT_MIN; 769 770 for (i = 0; i < mt->conf->num_banks; i++) { 771 struct mtk_thermal_bank *bank = &mt->banks[i]; 772 773 mtk_thermal_get_bank(bank); 774 775 tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); 776 777 mtk_thermal_put_bank(bank); 778 } 779 780 *temperature = tempmax; 781 782 return 0; 783 } 784 785 static const struct thermal_zone_device_ops mtk_thermal_ops = { 786 .get_temp = mtk_read_temp, 787 }; 788 789 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, 790 u32 apmixed_phys_base, u32 auxadc_phys_base, 791 int ctrl_id) 792 { 793 struct mtk_thermal_bank *bank = &mt->banks[num]; 794 const struct mtk_thermal_data *conf = mt->conf; 795 int i; 796 797 int offset = mt->conf->controller_offset[ctrl_id]; 798 void __iomem *controller_base = mt->thermal_base + offset; 799 800 bank->id = num; 801 bank->mt = mt; 802 803 mtk_thermal_get_bank(bank); 804 805 /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ 806 writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); 807 808 /* 809 * filt interval is 1 * 46.540us = 46.54us, 810 * sen interval is 429 * 46.540us = 19.96ms 811 */ 812 writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | 813 TEMP_MONCTL2_SENSOR_INTERVAL(429), 814 controller_base + TEMP_MONCTL2); 815 816 /* poll is set to 10u */ 817 writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), 818 controller_base + TEMP_AHBPOLL); 819 820 /* temperature sampling control, 1 sample */ 821 writel(0x0, controller_base + TEMP_MSRCTL0); 822 823 /* exceed this polling time, IRQ would be inserted */ 824 writel(0xffffffff, controller_base + TEMP_AHBTO); 825 826 /* number of interrupts per event, 1 is enough */ 827 writel(0x0, controller_base + TEMP_MONIDET0); 828 writel(0x0, controller_base + TEMP_MONIDET1); 829 830 /* 831 * The MT8173 thermal controller does not have its own ADC. Instead it 832 * uses AHB bus accesses to control the AUXADC. To do this the thermal 833 * controller has to be programmed with the physical addresses of the 834 * AUXADC registers and with the various bit positions in the AUXADC. 835 * Also the thermal controller controls a mux in the APMIXEDSYS register 836 * space. 837 */ 838 839 /* 840 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) 841 * automatically by hw 842 */ 843 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); 844 845 /* AHB address for auxadc mux selection */ 846 writel(auxadc_phys_base + AUXADC_CON1_CLR_V, 847 controller_base + TEMP_ADCMUXADDR); 848 849 if (mt->conf->version == MTK_THERMAL_V1) { 850 /* AHB address for pnp sensor mux selection */ 851 writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, 852 controller_base + TEMP_PNPMUXADDR); 853 } 854 855 /* AHB value for auxadc enable */ 856 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); 857 858 /* AHB address for auxadc enable (channel 0 immediate mode selected) */ 859 writel(auxadc_phys_base + AUXADC_CON1_SET_V, 860 controller_base + TEMP_ADCENADDR); 861 862 /* AHB address for auxadc valid bit */ 863 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 864 controller_base + TEMP_ADCVALIDADDR); 865 866 /* AHB address for auxadc voltage output */ 867 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 868 controller_base + TEMP_ADCVOLTADDR); 869 870 /* read valid & voltage are at the same register */ 871 writel(0x0, controller_base + TEMP_RDCTRL); 872 873 /* indicate where the valid bit is */ 874 writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), 875 controller_base + TEMP_ADCVALIDMASK); 876 877 /* no shift */ 878 writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); 879 880 /* enable auxadc mux write transaction */ 881 writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 882 controller_base + TEMP_ADCWRITECTRL); 883 884 for (i = 0; i < conf->bank_data[num].num_sensors; i++) 885 writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], 886 mt->thermal_base + conf->adcpnp[i]); 887 888 writel((1 << conf->bank_data[num].num_sensors) - 1, 889 controller_base + TEMP_MONCTL0); 890 891 writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | 892 TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 893 controller_base + TEMP_ADCWRITECTRL); 894 895 mtk_thermal_put_bank(bank); 896 } 897 898 static u64 of_get_phys_base(struct device_node *np) 899 { 900 u64 size64; 901 const __be32 *regaddr_p; 902 903 regaddr_p = of_get_address(np, 0, &size64, NULL); 904 if (!regaddr_p) 905 return OF_BAD_ADDR; 906 907 return of_translate_address(np, regaddr_p); 908 } 909 910 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf) 911 { 912 int i; 913 914 if (!(buf[0] & CALIB_BUF0_VALID_V1)) 915 return -EINVAL; 916 917 mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]); 918 919 for (i = 0; i < mt->conf->num_sensors; i++) { 920 switch (mt->conf->vts_index[i]) { 921 case VTS1: 922 mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]); 923 break; 924 case VTS2: 925 mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]); 926 break; 927 case VTS3: 928 mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]); 929 break; 930 case VTS4: 931 mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]); 932 break; 933 case VTS5: 934 mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]); 935 break; 936 case VTSABB: 937 mt->vts[VTSABB] = 938 CALIB_BUF2_VTS_TSABB_V1(buf[2]); 939 break; 940 default: 941 break; 942 } 943 } 944 945 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]); 946 if (CALIB_BUF1_ID_V1(buf[1]) & 947 CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0])) 948 mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]); 949 else 950 mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]); 951 952 return 0; 953 } 954 955 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf) 956 { 957 if (!CALIB_BUF1_VALID_V2(buf[1])) 958 return -EINVAL; 959 960 mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]); 961 mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]); 962 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]); 963 mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]); 964 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]); 965 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]); 966 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]); 967 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]); 968 969 return 0; 970 } 971 972 static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf) 973 { 974 if (!CALIB_BUF1_VALID_V3(buf[1])) 975 return -EINVAL; 976 977 mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]); 978 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]); 979 mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]); 980 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]); 981 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]); 982 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]); 983 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]); 984 985 if (CALIB_BUF1_ID_V3(buf[1]) == 0) 986 mt->o_slope = 0; 987 988 return 0; 989 } 990 991 static int mtk_thermal_get_calibration_data(struct device *dev, 992 struct mtk_thermal *mt) 993 { 994 struct nvmem_cell *cell; 995 u32 *buf; 996 size_t len; 997 int i, ret = 0; 998 999 /* Start with default values */ 1000 mt->adc_ge = 512; 1001 mt->adc_oe = 512; 1002 for (i = 0; i < mt->conf->num_sensors; i++) 1003 mt->vts[i] = 260; 1004 mt->degc_cali = 40; 1005 mt->o_slope = 0; 1006 1007 cell = nvmem_cell_get(dev, "calibration-data"); 1008 if (IS_ERR(cell)) { 1009 if (PTR_ERR(cell) == -EPROBE_DEFER) 1010 return PTR_ERR(cell); 1011 return 0; 1012 } 1013 1014 buf = (u32 *)nvmem_cell_read(cell, &len); 1015 1016 nvmem_cell_put(cell); 1017 1018 if (IS_ERR(buf)) 1019 return PTR_ERR(buf); 1020 1021 if (len < 3 * sizeof(u32)) { 1022 dev_warn(dev, "invalid calibration data\n"); 1023 ret = -EINVAL; 1024 goto out; 1025 } 1026 1027 switch (mt->conf->version) { 1028 case MTK_THERMAL_V1: 1029 ret = mtk_thermal_extract_efuse_v1(mt, buf); 1030 break; 1031 case MTK_THERMAL_V2: 1032 ret = mtk_thermal_extract_efuse_v2(mt, buf); 1033 break; 1034 case MTK_THERMAL_V3: 1035 ret = mtk_thermal_extract_efuse_v3(mt, buf); 1036 break; 1037 default: 1038 ret = -EINVAL; 1039 break; 1040 } 1041 1042 if (ret) { 1043 dev_info(dev, "Device not calibrated, using default calibration values\n"); 1044 ret = 0; 1045 } 1046 1047 out: 1048 kfree(buf); 1049 1050 return ret; 1051 } 1052 1053 static const struct of_device_id mtk_thermal_of_match[] = { 1054 { 1055 .compatible = "mediatek,mt8173-thermal", 1056 .data = (void *)&mt8173_thermal_data, 1057 }, 1058 { 1059 .compatible = "mediatek,mt2701-thermal", 1060 .data = (void *)&mt2701_thermal_data, 1061 }, 1062 { 1063 .compatible = "mediatek,mt2712-thermal", 1064 .data = (void *)&mt2712_thermal_data, 1065 }, 1066 { 1067 .compatible = "mediatek,mt7622-thermal", 1068 .data = (void *)&mt7622_thermal_data, 1069 }, 1070 { 1071 .compatible = "mediatek,mt7986-thermal", 1072 .data = (void *)&mt7986_thermal_data, 1073 }, 1074 { 1075 .compatible = "mediatek,mt8183-thermal", 1076 .data = (void *)&mt8183_thermal_data, 1077 }, { 1078 }, 1079 }; 1080 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); 1081 1082 static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base) 1083 { 1084 int tmp; 1085 1086 tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1); 1087 tmp &= ~(0x37); 1088 tmp |= 0x1; 1089 writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1); 1090 udelay(200); 1091 } 1092 1093 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt, 1094 void __iomem *auxadc_base) 1095 { 1096 int tmp; 1097 1098 writel(0x800, auxadc_base + AUXADC_CON1_SET_V); 1099 writel(0x1, mt->thermal_base + TEMP_MONCTL0); 1100 tmp = readl(mt->thermal_base + TEMP_MSRCTL1); 1101 writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1); 1102 } 1103 1104 static int mtk_thermal_probe(struct platform_device *pdev) 1105 { 1106 int ret, i, ctrl_id; 1107 struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; 1108 struct mtk_thermal *mt; 1109 u64 auxadc_phys_base, apmixed_phys_base; 1110 struct thermal_zone_device *tzdev; 1111 void __iomem *apmixed_base, *auxadc_base; 1112 1113 mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); 1114 if (!mt) 1115 return -ENOMEM; 1116 1117 mt->conf = of_device_get_match_data(&pdev->dev); 1118 1119 mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm"); 1120 if (IS_ERR(mt->clk_peri_therm)) 1121 return PTR_ERR(mt->clk_peri_therm); 1122 1123 mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc"); 1124 if (IS_ERR(mt->clk_auxadc)) 1125 return PTR_ERR(mt->clk_auxadc); 1126 1127 mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); 1128 if (IS_ERR(mt->thermal_base)) 1129 return PTR_ERR(mt->thermal_base); 1130 1131 ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); 1132 if (ret) 1133 return ret; 1134 1135 mutex_init(&mt->lock); 1136 1137 mt->dev = &pdev->dev; 1138 1139 auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); 1140 if (!auxadc) { 1141 dev_err(&pdev->dev, "missing auxadc node\n"); 1142 return -ENODEV; 1143 } 1144 1145 auxadc_base = of_iomap(auxadc, 0); 1146 auxadc_phys_base = of_get_phys_base(auxadc); 1147 1148 of_node_put(auxadc); 1149 1150 if (auxadc_phys_base == OF_BAD_ADDR) { 1151 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1152 return -EINVAL; 1153 } 1154 1155 apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); 1156 if (!apmixedsys) { 1157 dev_err(&pdev->dev, "missing apmixedsys node\n"); 1158 return -ENODEV; 1159 } 1160 1161 apmixed_base = of_iomap(apmixedsys, 0); 1162 apmixed_phys_base = of_get_phys_base(apmixedsys); 1163 1164 of_node_put(apmixedsys); 1165 1166 if (apmixed_phys_base == OF_BAD_ADDR) { 1167 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1168 return -EINVAL; 1169 } 1170 1171 ret = device_reset_optional(&pdev->dev); 1172 if (ret) 1173 return ret; 1174 1175 ret = clk_prepare_enable(mt->clk_auxadc); 1176 if (ret) { 1177 dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); 1178 return ret; 1179 } 1180 1181 ret = clk_prepare_enable(mt->clk_peri_therm); 1182 if (ret) { 1183 dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); 1184 goto err_disable_clk_auxadc; 1185 } 1186 1187 if (mt->conf->version != MTK_THERMAL_V1) { 1188 mtk_thermal_turn_on_buffer(apmixed_base); 1189 mtk_thermal_release_periodic_ts(mt, auxadc_base); 1190 } 1191 1192 if (mt->conf->version == MTK_THERMAL_V1) 1193 mt->raw_to_mcelsius = raw_to_mcelsius_v1; 1194 else if (mt->conf->version == MTK_THERMAL_V2) 1195 mt->raw_to_mcelsius = raw_to_mcelsius_v2; 1196 else 1197 mt->raw_to_mcelsius = raw_to_mcelsius_v3; 1198 1199 for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) 1200 for (i = 0; i < mt->conf->num_banks; i++) 1201 mtk_thermal_init_bank(mt, i, apmixed_phys_base, 1202 auxadc_phys_base, ctrl_id); 1203 1204 platform_set_drvdata(pdev, mt); 1205 1206 tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt, 1207 &mtk_thermal_ops); 1208 if (IS_ERR(tzdev)) { 1209 ret = PTR_ERR(tzdev); 1210 goto err_disable_clk_peri_therm; 1211 } 1212 1213 ret = devm_thermal_add_hwmon_sysfs(tzdev); 1214 if (ret) 1215 dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs"); 1216 1217 return 0; 1218 1219 err_disable_clk_peri_therm: 1220 clk_disable_unprepare(mt->clk_peri_therm); 1221 err_disable_clk_auxadc: 1222 clk_disable_unprepare(mt->clk_auxadc); 1223 1224 return ret; 1225 } 1226 1227 static int mtk_thermal_remove(struct platform_device *pdev) 1228 { 1229 struct mtk_thermal *mt = platform_get_drvdata(pdev); 1230 1231 clk_disable_unprepare(mt->clk_peri_therm); 1232 clk_disable_unprepare(mt->clk_auxadc); 1233 1234 return 0; 1235 } 1236 1237 static struct platform_driver mtk_thermal_driver = { 1238 .probe = mtk_thermal_probe, 1239 .remove = mtk_thermal_remove, 1240 .driver = { 1241 .name = "mtk-thermal", 1242 .of_match_table = mtk_thermal_of_match, 1243 }, 1244 }; 1245 1246 module_platform_driver(mtk_thermal_driver); 1247 1248 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>"); 1249 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>"); 1250 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>"); 1251 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); 1252 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>"); 1253 MODULE_DESCRIPTION("Mediatek thermal driver"); 1254 MODULE_LICENSE("GPL v2"); 1255