1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A power allocator to manage temperature 4 * 5 * Copyright (C) 2014 ARM Ltd. 6 * 7 */ 8 9 #define pr_fmt(fmt) "Power allocator: " fmt 10 11 #include <linux/slab.h> 12 #include <linux/thermal.h> 13 14 #define CREATE_TRACE_POINTS 15 #include "thermal_trace_ipa.h" 16 17 #include "thermal_core.h" 18 19 #define INVALID_TRIP -1 20 21 #define FRAC_BITS 10 22 #define int_to_frac(x) ((x) << FRAC_BITS) 23 #define frac_to_int(x) ((x) >> FRAC_BITS) 24 25 /** 26 * mul_frac() - multiply two fixed-point numbers 27 * @x: first multiplicand 28 * @y: second multiplicand 29 * 30 * Return: the result of multiplying two fixed-point numbers. The 31 * result is also a fixed-point number. 32 */ 33 static inline s64 mul_frac(s64 x, s64 y) 34 { 35 return (x * y) >> FRAC_BITS; 36 } 37 38 /** 39 * div_frac() - divide two fixed-point numbers 40 * @x: the dividend 41 * @y: the divisor 42 * 43 * Return: the result of dividing two fixed-point numbers. The 44 * result is also a fixed-point number. 45 */ 46 static inline s64 div_frac(s64 x, s64 y) 47 { 48 return div_s64(x << FRAC_BITS, y); 49 } 50 51 /** 52 * struct power_allocator_params - parameters for the power allocator governor 53 * @allocated_tzp: whether we have allocated tzp for this thermal zone and 54 * it needs to be freed on unbind 55 * @err_integral: accumulated error in the PID controller. 56 * @prev_err: error in the previous iteration of the PID controller. 57 * Used to calculate the derivative term. 58 * @trip_switch_on: first passive trip point of the thermal zone. The 59 * governor switches on when this trip point is crossed. 60 * If the thermal zone only has one passive trip point, 61 * @trip_switch_on should be INVALID_TRIP. 62 * @trip_max_desired_temperature: last passive trip point of the thermal 63 * zone. The temperature we are 64 * controlling for. 65 * @sustainable_power: Sustainable power (heat) that this thermal zone can 66 * dissipate 67 */ 68 struct power_allocator_params { 69 bool allocated_tzp; 70 s64 err_integral; 71 s32 prev_err; 72 int trip_switch_on; 73 int trip_max_desired_temperature; 74 u32 sustainable_power; 75 }; 76 77 /** 78 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone 79 * @tz: thermal zone we are operating in 80 * 81 * For thermal zones that don't provide a sustainable_power in their 82 * thermal_zone_params, estimate one. Calculate it using the minimum 83 * power of all the cooling devices as that gives a valid value that 84 * can give some degree of functionality. For optimal performance of 85 * this governor, provide a sustainable_power in the thermal zone's 86 * thermal_zone_params. 87 */ 88 static u32 estimate_sustainable_power(struct thermal_zone_device *tz) 89 { 90 u32 sustainable_power = 0; 91 struct thermal_instance *instance; 92 struct power_allocator_params *params = tz->governor_data; 93 const struct thermal_trip *trip_max_desired_temperature = 94 &tz->trips[params->trip_max_desired_temperature]; 95 96 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 97 struct thermal_cooling_device *cdev = instance->cdev; 98 u32 min_power; 99 100 if (instance->trip != trip_max_desired_temperature) 101 continue; 102 103 if (!cdev_is_power_actor(cdev)) 104 continue; 105 106 if (cdev->ops->state2power(cdev, instance->upper, &min_power)) 107 continue; 108 109 sustainable_power += min_power; 110 } 111 112 return sustainable_power; 113 } 114 115 /** 116 * estimate_pid_constants() - Estimate the constants for the PID controller 117 * @tz: thermal zone for which to estimate the constants 118 * @sustainable_power: sustainable power for the thermal zone 119 * @trip_switch_on: trip point number for the switch on temperature 120 * @control_temp: target temperature for the power allocator governor 121 * 122 * This function is used to update the estimation of the PID 123 * controller constants in struct thermal_zone_parameters. 124 */ 125 static void estimate_pid_constants(struct thermal_zone_device *tz, 126 u32 sustainable_power, int trip_switch_on, 127 int control_temp) 128 { 129 struct thermal_trip trip; 130 u32 temperature_threshold = control_temp; 131 int ret; 132 s32 k_i; 133 134 ret = __thermal_zone_get_trip(tz, trip_switch_on, &trip); 135 if (!ret) 136 temperature_threshold -= trip.temperature; 137 138 /* 139 * estimate_pid_constants() tries to find appropriate default 140 * values for thermal zones that don't provide them. If a 141 * system integrator has configured a thermal zone with two 142 * passive trip points at the same temperature, that person 143 * hasn't put any effort to set up the thermal zone properly 144 * so just give up. 145 */ 146 if (!temperature_threshold) 147 return; 148 149 tz->tzp->k_po = int_to_frac(sustainable_power) / 150 temperature_threshold; 151 152 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / 153 temperature_threshold; 154 155 k_i = tz->tzp->k_pu / 10; 156 tz->tzp->k_i = k_i > 0 ? k_i : 1; 157 158 /* 159 * The default for k_d and integral_cutoff is 0, so we can 160 * leave them as they are. 161 */ 162 } 163 164 /** 165 * get_sustainable_power() - Get the right sustainable power 166 * @tz: thermal zone for which to estimate the constants 167 * @params: parameters for the power allocator governor 168 * @control_temp: target temperature for the power allocator governor 169 * 170 * This function is used for getting the proper sustainable power value based 171 * on variables which might be updated by the user sysfs interface. If that 172 * happen the new value is going to be estimated and updated. It is also used 173 * after thermal zone binding, where the initial values where set to 0. 174 */ 175 static u32 get_sustainable_power(struct thermal_zone_device *tz, 176 struct power_allocator_params *params, 177 int control_temp) 178 { 179 u32 sustainable_power; 180 181 if (!tz->tzp->sustainable_power) 182 sustainable_power = estimate_sustainable_power(tz); 183 else 184 sustainable_power = tz->tzp->sustainable_power; 185 186 /* Check if it's init value 0 or there was update via sysfs */ 187 if (sustainable_power != params->sustainable_power) { 188 estimate_pid_constants(tz, sustainable_power, 189 params->trip_switch_on, control_temp); 190 191 /* Do the estimation only once and make available in sysfs */ 192 tz->tzp->sustainable_power = sustainable_power; 193 params->sustainable_power = sustainable_power; 194 } 195 196 return sustainable_power; 197 } 198 199 /** 200 * pid_controller() - PID controller 201 * @tz: thermal zone we are operating in 202 * @control_temp: the target temperature in millicelsius 203 * @max_allocatable_power: maximum allocatable power for this thermal zone 204 * 205 * This PID controller increases the available power budget so that the 206 * temperature of the thermal zone gets as close as possible to 207 * @control_temp and limits the power if it exceeds it. k_po is the 208 * proportional term when we are overshooting, k_pu is the 209 * proportional term when we are undershooting. integral_cutoff is a 210 * threshold below which we stop accumulating the error. The 211 * accumulated error is only valid if the requested power will make 212 * the system warmer. If the system is mostly idle, there's no point 213 * in accumulating positive error. 214 * 215 * Return: The power budget for the next period. 216 */ 217 static u32 pid_controller(struct thermal_zone_device *tz, 218 int control_temp, 219 u32 max_allocatable_power) 220 { 221 s64 p, i, d, power_range; 222 s32 err, max_power_frac; 223 u32 sustainable_power; 224 struct power_allocator_params *params = tz->governor_data; 225 226 max_power_frac = int_to_frac(max_allocatable_power); 227 228 sustainable_power = get_sustainable_power(tz, params, control_temp); 229 230 err = control_temp - tz->temperature; 231 err = int_to_frac(err); 232 233 /* Calculate the proportional term */ 234 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); 235 236 /* 237 * Calculate the integral term 238 * 239 * if the error is less than cut off allow integration (but 240 * the integral is limited to max power) 241 */ 242 i = mul_frac(tz->tzp->k_i, params->err_integral); 243 244 if (err < int_to_frac(tz->tzp->integral_cutoff)) { 245 s64 i_next = i + mul_frac(tz->tzp->k_i, err); 246 247 if (abs(i_next) < max_power_frac) { 248 i = i_next; 249 params->err_integral += err; 250 } 251 } 252 253 /* 254 * Calculate the derivative term 255 * 256 * We do err - prev_err, so with a positive k_d, a decreasing 257 * error (i.e. driving closer to the line) results in less 258 * power being applied, slowing down the controller) 259 */ 260 d = mul_frac(tz->tzp->k_d, err - params->prev_err); 261 d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); 262 params->prev_err = err; 263 264 power_range = p + i + d; 265 266 /* feed-forward the known sustainable dissipatable power */ 267 power_range = sustainable_power + frac_to_int(power_range); 268 269 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); 270 271 trace_thermal_power_allocator_pid(tz, frac_to_int(err), 272 frac_to_int(params->err_integral), 273 frac_to_int(p), frac_to_int(i), 274 frac_to_int(d), power_range); 275 276 return power_range; 277 } 278 279 /** 280 * power_actor_set_power() - limit the maximum power a cooling device consumes 281 * @cdev: pointer to &thermal_cooling_device 282 * @instance: thermal instance to update 283 * @power: the power in milliwatts 284 * 285 * Set the cooling device to consume at most @power milliwatts. The limit is 286 * expected to be a cap at the maximum power consumption. 287 * 288 * Return: 0 on success, -EINVAL if the cooling device does not 289 * implement the power actor API or -E* for other failures. 290 */ 291 static int 292 power_actor_set_power(struct thermal_cooling_device *cdev, 293 struct thermal_instance *instance, u32 power) 294 { 295 unsigned long state; 296 int ret; 297 298 ret = cdev->ops->power2state(cdev, power, &state); 299 if (ret) 300 return ret; 301 302 instance->target = clamp_val(state, instance->lower, instance->upper); 303 mutex_lock(&cdev->lock); 304 __thermal_cdev_update(cdev); 305 mutex_unlock(&cdev->lock); 306 307 return 0; 308 } 309 310 /** 311 * divvy_up_power() - divvy the allocated power between the actors 312 * @req_power: each actor's requested power 313 * @max_power: each actor's maximum available power 314 * @num_actors: size of the @req_power, @max_power and @granted_power's array 315 * @total_req_power: sum of @req_power 316 * @power_range: total allocated power 317 * @granted_power: output array: each actor's granted power 318 * @extra_actor_power: an appropriately sized array to be used in the 319 * function as temporary storage of the extra power given 320 * to the actors 321 * 322 * This function divides the total allocated power (@power_range) 323 * fairly between the actors. It first tries to give each actor a 324 * share of the @power_range according to how much power it requested 325 * compared to the rest of the actors. For example, if only one actor 326 * requests power, then it receives all the @power_range. If 327 * three actors each requests 1mW, each receives a third of the 328 * @power_range. 329 * 330 * If any actor received more than their maximum power, then that 331 * surplus is re-divvied among the actors based on how far they are 332 * from their respective maximums. 333 * 334 * Granted power for each actor is written to @granted_power, which 335 * should've been allocated by the calling function. 336 */ 337 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, 338 u32 total_req_power, u32 power_range, 339 u32 *granted_power, u32 *extra_actor_power) 340 { 341 u32 extra_power, capped_extra_power; 342 int i; 343 344 /* 345 * Prevent division by 0 if none of the actors request power. 346 */ 347 if (!total_req_power) 348 total_req_power = 1; 349 350 capped_extra_power = 0; 351 extra_power = 0; 352 for (i = 0; i < num_actors; i++) { 353 u64 req_range = (u64)req_power[i] * power_range; 354 355 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, 356 total_req_power); 357 358 if (granted_power[i] > max_power[i]) { 359 extra_power += granted_power[i] - max_power[i]; 360 granted_power[i] = max_power[i]; 361 } 362 363 extra_actor_power[i] = max_power[i] - granted_power[i]; 364 capped_extra_power += extra_actor_power[i]; 365 } 366 367 if (!extra_power) 368 return; 369 370 /* 371 * Re-divvy the reclaimed extra among actors based on 372 * how far they are from the max 373 */ 374 extra_power = min(extra_power, capped_extra_power); 375 if (capped_extra_power > 0) 376 for (i = 0; i < num_actors; i++) { 377 u64 extra_range = (u64)extra_actor_power[i] * extra_power; 378 granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range, 379 capped_extra_power); 380 } 381 } 382 383 static int allocate_power(struct thermal_zone_device *tz, 384 int control_temp) 385 { 386 struct thermal_instance *instance; 387 struct power_allocator_params *params = tz->governor_data; 388 const struct thermal_trip *trip_max_desired_temperature = 389 &tz->trips[params->trip_max_desired_temperature]; 390 u32 *req_power, *max_power, *granted_power, *extra_actor_power; 391 u32 *weighted_req_power; 392 u32 total_req_power, max_allocatable_power, total_weighted_req_power; 393 u32 total_granted_power, power_range; 394 int i, num_actors, total_weight, ret = 0; 395 396 num_actors = 0; 397 total_weight = 0; 398 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 399 if ((instance->trip == trip_max_desired_temperature) && 400 cdev_is_power_actor(instance->cdev)) { 401 num_actors++; 402 total_weight += instance->weight; 403 } 404 } 405 406 if (!num_actors) 407 return -ENODEV; 408 409 /* 410 * We need to allocate five arrays of the same size: 411 * req_power, max_power, granted_power, extra_actor_power and 412 * weighted_req_power. They are going to be needed until this 413 * function returns. Allocate them all in one go to simplify 414 * the allocation and deallocation logic. 415 */ 416 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); 417 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); 418 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); 419 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); 420 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); 421 if (!req_power) 422 return -ENOMEM; 423 424 max_power = &req_power[num_actors]; 425 granted_power = &req_power[2 * num_actors]; 426 extra_actor_power = &req_power[3 * num_actors]; 427 weighted_req_power = &req_power[4 * num_actors]; 428 429 i = 0; 430 total_weighted_req_power = 0; 431 total_req_power = 0; 432 max_allocatable_power = 0; 433 434 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 435 int weight; 436 struct thermal_cooling_device *cdev = instance->cdev; 437 438 if (instance->trip != trip_max_desired_temperature) 439 continue; 440 441 if (!cdev_is_power_actor(cdev)) 442 continue; 443 444 if (cdev->ops->get_requested_power(cdev, &req_power[i])) 445 continue; 446 447 if (!total_weight) 448 weight = 1 << FRAC_BITS; 449 else 450 weight = instance->weight; 451 452 weighted_req_power[i] = frac_to_int(weight * req_power[i]); 453 454 if (cdev->ops->state2power(cdev, instance->lower, 455 &max_power[i])) 456 continue; 457 458 total_req_power += req_power[i]; 459 max_allocatable_power += max_power[i]; 460 total_weighted_req_power += weighted_req_power[i]; 461 462 i++; 463 } 464 465 power_range = pid_controller(tz, control_temp, max_allocatable_power); 466 467 divvy_up_power(weighted_req_power, max_power, num_actors, 468 total_weighted_req_power, power_range, granted_power, 469 extra_actor_power); 470 471 total_granted_power = 0; 472 i = 0; 473 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 474 if (instance->trip != trip_max_desired_temperature) 475 continue; 476 477 if (!cdev_is_power_actor(instance->cdev)) 478 continue; 479 480 power_actor_set_power(instance->cdev, instance, 481 granted_power[i]); 482 total_granted_power += granted_power[i]; 483 484 i++; 485 } 486 487 trace_thermal_power_allocator(tz, req_power, total_req_power, 488 granted_power, total_granted_power, 489 num_actors, power_range, 490 max_allocatable_power, tz->temperature, 491 control_temp - tz->temperature); 492 493 kfree(req_power); 494 495 return ret; 496 } 497 498 /** 499 * get_governor_trips() - get the number of the two trip points that are key for this governor 500 * @tz: thermal zone to operate on 501 * @params: pointer to private data for this governor 502 * 503 * The power allocator governor works optimally with two trips points: 504 * a "switch on" trip point and a "maximum desired temperature". These 505 * are defined as the first and last passive trip points. 506 * 507 * If there is only one trip point, then that's considered to be the 508 * "maximum desired temperature" trip point and the governor is always 509 * on. If there are no passive or active trip points, then the 510 * governor won't do anything. In fact, its throttle function 511 * won't be called at all. 512 */ 513 static void get_governor_trips(struct thermal_zone_device *tz, 514 struct power_allocator_params *params) 515 { 516 int i, last_active, last_passive; 517 bool found_first_passive; 518 519 found_first_passive = false; 520 last_active = INVALID_TRIP; 521 last_passive = INVALID_TRIP; 522 523 for (i = 0; i < tz->num_trips; i++) { 524 struct thermal_trip trip; 525 int ret; 526 527 ret = __thermal_zone_get_trip(tz, i, &trip); 528 if (ret) { 529 dev_warn(&tz->device, 530 "Failed to get trip point %d type: %d\n", i, 531 ret); 532 continue; 533 } 534 535 if (trip.type == THERMAL_TRIP_PASSIVE) { 536 if (!found_first_passive) { 537 params->trip_switch_on = i; 538 found_first_passive = true; 539 } else { 540 last_passive = i; 541 } 542 } else if (trip.type == THERMAL_TRIP_ACTIVE) { 543 last_active = i; 544 } else { 545 break; 546 } 547 } 548 549 if (last_passive != INVALID_TRIP) { 550 params->trip_max_desired_temperature = last_passive; 551 } else if (found_first_passive) { 552 params->trip_max_desired_temperature = params->trip_switch_on; 553 params->trip_switch_on = INVALID_TRIP; 554 } else { 555 params->trip_switch_on = INVALID_TRIP; 556 params->trip_max_desired_temperature = last_active; 557 } 558 } 559 560 static void reset_pid_controller(struct power_allocator_params *params) 561 { 562 params->err_integral = 0; 563 params->prev_err = 0; 564 } 565 566 static void allow_maximum_power(struct thermal_zone_device *tz, bool update) 567 { 568 struct thermal_instance *instance; 569 struct power_allocator_params *params = tz->governor_data; 570 const struct thermal_trip *trip_max_desired_temperature = 571 &tz->trips[params->trip_max_desired_temperature]; 572 u32 req_power; 573 574 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 575 struct thermal_cooling_device *cdev = instance->cdev; 576 577 if ((instance->trip != trip_max_desired_temperature) || 578 (!cdev_is_power_actor(instance->cdev))) 579 continue; 580 581 instance->target = 0; 582 mutex_lock(&instance->cdev->lock); 583 /* 584 * Call for updating the cooling devices local stats and avoid 585 * periods of dozen of seconds when those have not been 586 * maintained. 587 */ 588 cdev->ops->get_requested_power(cdev, &req_power); 589 590 if (update) 591 __thermal_cdev_update(instance->cdev); 592 593 mutex_unlock(&instance->cdev->lock); 594 } 595 } 596 597 /** 598 * check_power_actors() - Check all cooling devices and warn when they are 599 * not power actors 600 * @tz: thermal zone to operate on 601 * 602 * Check all cooling devices in the @tz and warn every time they are missing 603 * power actor API. The warning should help to investigate the issue, which 604 * could be e.g. lack of Energy Model for a given device. 605 * 606 * Return: 0 on success, -EINVAL if any cooling device does not implement 607 * the power actor API. 608 */ 609 static int check_power_actors(struct thermal_zone_device *tz) 610 { 611 struct thermal_instance *instance; 612 int ret = 0; 613 614 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 615 if (!cdev_is_power_actor(instance->cdev)) { 616 dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", 617 instance->cdev->type); 618 ret = -EINVAL; 619 } 620 } 621 622 return ret; 623 } 624 625 /** 626 * power_allocator_bind() - bind the power_allocator governor to a thermal zone 627 * @tz: thermal zone to bind it to 628 * 629 * Initialize the PID controller parameters and bind it to the thermal 630 * zone. 631 * 632 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL 633 * when there are unsupported cooling devices in the @tz. 634 */ 635 static int power_allocator_bind(struct thermal_zone_device *tz) 636 { 637 int ret; 638 struct power_allocator_params *params; 639 struct thermal_trip trip; 640 641 ret = check_power_actors(tz); 642 if (ret) 643 return ret; 644 645 params = kzalloc(sizeof(*params), GFP_KERNEL); 646 if (!params) 647 return -ENOMEM; 648 649 if (!tz->tzp) { 650 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); 651 if (!tz->tzp) { 652 ret = -ENOMEM; 653 goto free_params; 654 } 655 656 params->allocated_tzp = true; 657 } 658 659 if (!tz->tzp->sustainable_power) 660 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); 661 662 get_governor_trips(tz, params); 663 664 if (tz->num_trips > 0) { 665 ret = __thermal_zone_get_trip(tz, params->trip_max_desired_temperature, 666 &trip); 667 if (!ret) 668 estimate_pid_constants(tz, tz->tzp->sustainable_power, 669 params->trip_switch_on, 670 trip.temperature); 671 } 672 673 reset_pid_controller(params); 674 675 tz->governor_data = params; 676 677 return 0; 678 679 free_params: 680 kfree(params); 681 682 return ret; 683 } 684 685 static void power_allocator_unbind(struct thermal_zone_device *tz) 686 { 687 struct power_allocator_params *params = tz->governor_data; 688 689 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); 690 691 if (params->allocated_tzp) { 692 kfree(tz->tzp); 693 tz->tzp = NULL; 694 } 695 696 kfree(tz->governor_data); 697 tz->governor_data = NULL; 698 } 699 700 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip_id) 701 { 702 struct power_allocator_params *params = tz->governor_data; 703 struct thermal_trip trip; 704 int ret; 705 bool update; 706 707 lockdep_assert_held(&tz->lock); 708 709 /* 710 * We get called for every trip point but we only need to do 711 * our calculations once 712 */ 713 if (trip_id != params->trip_max_desired_temperature) 714 return 0; 715 716 ret = __thermal_zone_get_trip(tz, params->trip_switch_on, &trip); 717 if (!ret && (tz->temperature < trip.temperature)) { 718 update = tz->passive; 719 tz->passive = 0; 720 reset_pid_controller(params); 721 allow_maximum_power(tz, update); 722 return 0; 723 } 724 725 tz->passive = 1; 726 727 ret = __thermal_zone_get_trip(tz, params->trip_max_desired_temperature, &trip); 728 if (ret) { 729 dev_warn(&tz->device, "Failed to get the maximum desired temperature: %d\n", 730 ret); 731 return ret; 732 } 733 734 return allocate_power(tz, trip.temperature); 735 } 736 737 static struct thermal_governor thermal_gov_power_allocator = { 738 .name = "power_allocator", 739 .bind_to_tz = power_allocator_bind, 740 .unbind_from_tz = power_allocator_unbind, 741 .throttle = power_allocator_throttle, 742 }; 743 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); 744