1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A power allocator to manage temperature 4 * 5 * Copyright (C) 2014 ARM Ltd. 6 * 7 */ 8 9 #define pr_fmt(fmt) "Power allocator: " fmt 10 11 #include <linux/rculist.h> 12 #include <linux/slab.h> 13 #include <linux/thermal.h> 14 15 #define CREATE_TRACE_POINTS 16 #include <trace/events/thermal_power_allocator.h> 17 18 #include "thermal_core.h" 19 20 #define INVALID_TRIP -1 21 22 #define FRAC_BITS 10 23 #define int_to_frac(x) ((x) << FRAC_BITS) 24 #define frac_to_int(x) ((x) >> FRAC_BITS) 25 26 /** 27 * mul_frac() - multiply two fixed-point numbers 28 * @x: first multiplicand 29 * @y: second multiplicand 30 * 31 * Return: the result of multiplying two fixed-point numbers. The 32 * result is also a fixed-point number. 33 */ 34 static inline s64 mul_frac(s64 x, s64 y) 35 { 36 return (x * y) >> FRAC_BITS; 37 } 38 39 /** 40 * div_frac() - divide two fixed-point numbers 41 * @x: the dividend 42 * @y: the divisor 43 * 44 * Return: the result of dividing two fixed-point numbers. The 45 * result is also a fixed-point number. 46 */ 47 static inline s64 div_frac(s64 x, s64 y) 48 { 49 return div_s64(x << FRAC_BITS, y); 50 } 51 52 /** 53 * struct power_allocator_params - parameters for the power allocator governor 54 * @allocated_tzp: whether we have allocated tzp for this thermal zone and 55 * it needs to be freed on unbind 56 * @err_integral: accumulated error in the PID controller. 57 * @prev_err: error in the previous iteration of the PID controller. 58 * Used to calculate the derivative term. 59 * @trip_switch_on: first passive trip point of the thermal zone. The 60 * governor switches on when this trip point is crossed. 61 * If the thermal zone only has one passive trip point, 62 * @trip_switch_on should be INVALID_TRIP. 63 * @trip_max_desired_temperature: last passive trip point of the thermal 64 * zone. The temperature we are 65 * controlling for. 66 * @sustainable_power: Sustainable power (heat) that this thermal zone can 67 * dissipate 68 */ 69 struct power_allocator_params { 70 bool allocated_tzp; 71 s64 err_integral; 72 s32 prev_err; 73 int trip_switch_on; 74 int trip_max_desired_temperature; 75 u32 sustainable_power; 76 }; 77 78 /** 79 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone 80 * @tz: thermal zone we are operating in 81 * 82 * For thermal zones that don't provide a sustainable_power in their 83 * thermal_zone_params, estimate one. Calculate it using the minimum 84 * power of all the cooling devices as that gives a valid value that 85 * can give some degree of functionality. For optimal performance of 86 * this governor, provide a sustainable_power in the thermal zone's 87 * thermal_zone_params. 88 */ 89 static u32 estimate_sustainable_power(struct thermal_zone_device *tz) 90 { 91 u32 sustainable_power = 0; 92 struct thermal_instance *instance; 93 struct power_allocator_params *params = tz->governor_data; 94 95 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 96 struct thermal_cooling_device *cdev = instance->cdev; 97 u32 min_power; 98 99 if (instance->trip != params->trip_max_desired_temperature) 100 continue; 101 102 if (!cdev_is_power_actor(cdev)) 103 continue; 104 105 if (cdev->ops->state2power(cdev, instance->upper, &min_power)) 106 continue; 107 108 sustainable_power += min_power; 109 } 110 111 return sustainable_power; 112 } 113 114 /** 115 * estimate_pid_constants() - Estimate the constants for the PID controller 116 * @tz: thermal zone for which to estimate the constants 117 * @sustainable_power: sustainable power for the thermal zone 118 * @trip_switch_on: trip point number for the switch on temperature 119 * @control_temp: target temperature for the power allocator governor 120 * 121 * This function is used to update the estimation of the PID 122 * controller constants in struct thermal_zone_parameters. 123 */ 124 static void estimate_pid_constants(struct thermal_zone_device *tz, 125 u32 sustainable_power, int trip_switch_on, 126 int control_temp) 127 { 128 int ret; 129 int switch_on_temp; 130 u32 temperature_threshold; 131 s32 k_i; 132 133 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp); 134 if (ret) 135 switch_on_temp = 0; 136 137 temperature_threshold = control_temp - switch_on_temp; 138 /* 139 * estimate_pid_constants() tries to find appropriate default 140 * values for thermal zones that don't provide them. If a 141 * system integrator has configured a thermal zone with two 142 * passive trip points at the same temperature, that person 143 * hasn't put any effort to set up the thermal zone properly 144 * so just give up. 145 */ 146 if (!temperature_threshold) 147 return; 148 149 tz->tzp->k_po = int_to_frac(sustainable_power) / 150 temperature_threshold; 151 152 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / 153 temperature_threshold; 154 155 k_i = tz->tzp->k_pu / 10; 156 tz->tzp->k_i = k_i > 0 ? k_i : 1; 157 158 /* 159 * The default for k_d and integral_cutoff is 0, so we can 160 * leave them as they are. 161 */ 162 } 163 164 /** 165 * get_sustainable_power() - Get the right sustainable power 166 * @tz: thermal zone for which to estimate the constants 167 * @params: parameters for the power allocator governor 168 * @control_temp: target temperature for the power allocator governor 169 * 170 * This function is used for getting the proper sustainable power value based 171 * on variables which might be updated by the user sysfs interface. If that 172 * happen the new value is going to be estimated and updated. It is also used 173 * after thermal zone binding, where the initial values where set to 0. 174 */ 175 static u32 get_sustainable_power(struct thermal_zone_device *tz, 176 struct power_allocator_params *params, 177 int control_temp) 178 { 179 u32 sustainable_power; 180 181 if (!tz->tzp->sustainable_power) 182 sustainable_power = estimate_sustainable_power(tz); 183 else 184 sustainable_power = tz->tzp->sustainable_power; 185 186 /* Check if it's init value 0 or there was update via sysfs */ 187 if (sustainable_power != params->sustainable_power) { 188 estimate_pid_constants(tz, sustainable_power, 189 params->trip_switch_on, control_temp); 190 191 /* Do the estimation only once and make available in sysfs */ 192 tz->tzp->sustainable_power = sustainable_power; 193 params->sustainable_power = sustainable_power; 194 } 195 196 return sustainable_power; 197 } 198 199 /** 200 * pid_controller() - PID controller 201 * @tz: thermal zone we are operating in 202 * @control_temp: the target temperature in millicelsius 203 * @max_allocatable_power: maximum allocatable power for this thermal zone 204 * 205 * This PID controller increases the available power budget so that the 206 * temperature of the thermal zone gets as close as possible to 207 * @control_temp and limits the power if it exceeds it. k_po is the 208 * proportional term when we are overshooting, k_pu is the 209 * proportional term when we are undershooting. integral_cutoff is a 210 * threshold below which we stop accumulating the error. The 211 * accumulated error is only valid if the requested power will make 212 * the system warmer. If the system is mostly idle, there's no point 213 * in accumulating positive error. 214 * 215 * Return: The power budget for the next period. 216 */ 217 static u32 pid_controller(struct thermal_zone_device *tz, 218 int control_temp, 219 u32 max_allocatable_power) 220 { 221 s64 p, i, d, power_range; 222 s32 err, max_power_frac; 223 u32 sustainable_power; 224 struct power_allocator_params *params = tz->governor_data; 225 226 max_power_frac = int_to_frac(max_allocatable_power); 227 228 sustainable_power = get_sustainable_power(tz, params, control_temp); 229 230 err = control_temp - tz->temperature; 231 err = int_to_frac(err); 232 233 /* Calculate the proportional term */ 234 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); 235 236 /* 237 * Calculate the integral term 238 * 239 * if the error is less than cut off allow integration (but 240 * the integral is limited to max power) 241 */ 242 i = mul_frac(tz->tzp->k_i, params->err_integral); 243 244 if (err < int_to_frac(tz->tzp->integral_cutoff)) { 245 s64 i_next = i + mul_frac(tz->tzp->k_i, err); 246 247 if (abs(i_next) < max_power_frac) { 248 i = i_next; 249 params->err_integral += err; 250 } 251 } 252 253 /* 254 * Calculate the derivative term 255 * 256 * We do err - prev_err, so with a positive k_d, a decreasing 257 * error (i.e. driving closer to the line) results in less 258 * power being applied, slowing down the controller) 259 */ 260 d = mul_frac(tz->tzp->k_d, err - params->prev_err); 261 d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); 262 params->prev_err = err; 263 264 power_range = p + i + d; 265 266 /* feed-forward the known sustainable dissipatable power */ 267 power_range = sustainable_power + frac_to_int(power_range); 268 269 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); 270 271 trace_thermal_power_allocator_pid(tz, frac_to_int(err), 272 frac_to_int(params->err_integral), 273 frac_to_int(p), frac_to_int(i), 274 frac_to_int(d), power_range); 275 276 return power_range; 277 } 278 279 /** 280 * power_actor_set_power() - limit the maximum power a cooling device consumes 281 * @cdev: pointer to &thermal_cooling_device 282 * @instance: thermal instance to update 283 * @power: the power in milliwatts 284 * 285 * Set the cooling device to consume at most @power milliwatts. The limit is 286 * expected to be a cap at the maximum power consumption. 287 * 288 * Return: 0 on success, -EINVAL if the cooling device does not 289 * implement the power actor API or -E* for other failures. 290 */ 291 static int 292 power_actor_set_power(struct thermal_cooling_device *cdev, 293 struct thermal_instance *instance, u32 power) 294 { 295 unsigned long state; 296 int ret; 297 298 ret = cdev->ops->power2state(cdev, power, &state); 299 if (ret) 300 return ret; 301 302 instance->target = clamp_val(state, instance->lower, instance->upper); 303 mutex_lock(&cdev->lock); 304 __thermal_cdev_update(cdev); 305 mutex_unlock(&cdev->lock); 306 307 return 0; 308 } 309 310 /** 311 * divvy_up_power() - divvy the allocated power between the actors 312 * @req_power: each actor's requested power 313 * @max_power: each actor's maximum available power 314 * @num_actors: size of the @req_power, @max_power and @granted_power's array 315 * @total_req_power: sum of @req_power 316 * @power_range: total allocated power 317 * @granted_power: output array: each actor's granted power 318 * @extra_actor_power: an appropriately sized array to be used in the 319 * function as temporary storage of the extra power given 320 * to the actors 321 * 322 * This function divides the total allocated power (@power_range) 323 * fairly between the actors. It first tries to give each actor a 324 * share of the @power_range according to how much power it requested 325 * compared to the rest of the actors. For example, if only one actor 326 * requests power, then it receives all the @power_range. If 327 * three actors each requests 1mW, each receives a third of the 328 * @power_range. 329 * 330 * If any actor received more than their maximum power, then that 331 * surplus is re-divvied among the actors based on how far they are 332 * from their respective maximums. 333 * 334 * Granted power for each actor is written to @granted_power, which 335 * should've been allocated by the calling function. 336 */ 337 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, 338 u32 total_req_power, u32 power_range, 339 u32 *granted_power, u32 *extra_actor_power) 340 { 341 u32 extra_power, capped_extra_power; 342 int i; 343 344 /* 345 * Prevent division by 0 if none of the actors request power. 346 */ 347 if (!total_req_power) 348 total_req_power = 1; 349 350 capped_extra_power = 0; 351 extra_power = 0; 352 for (i = 0; i < num_actors; i++) { 353 u64 req_range = (u64)req_power[i] * power_range; 354 355 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, 356 total_req_power); 357 358 if (granted_power[i] > max_power[i]) { 359 extra_power += granted_power[i] - max_power[i]; 360 granted_power[i] = max_power[i]; 361 } 362 363 extra_actor_power[i] = max_power[i] - granted_power[i]; 364 capped_extra_power += extra_actor_power[i]; 365 } 366 367 if (!extra_power) 368 return; 369 370 /* 371 * Re-divvy the reclaimed extra among actors based on 372 * how far they are from the max 373 */ 374 extra_power = min(extra_power, capped_extra_power); 375 if (capped_extra_power > 0) 376 for (i = 0; i < num_actors; i++) { 377 u64 extra_range = (u64)extra_actor_power[i] * extra_power; 378 granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range, 379 capped_extra_power); 380 } 381 } 382 383 static int allocate_power(struct thermal_zone_device *tz, 384 int control_temp) 385 { 386 struct thermal_instance *instance; 387 struct power_allocator_params *params = tz->governor_data; 388 u32 *req_power, *max_power, *granted_power, *extra_actor_power; 389 u32 *weighted_req_power; 390 u32 total_req_power, max_allocatable_power, total_weighted_req_power; 391 u32 total_granted_power, power_range; 392 int i, num_actors, total_weight, ret = 0; 393 int trip_max_desired_temperature = params->trip_max_desired_temperature; 394 395 mutex_lock(&tz->lock); 396 397 num_actors = 0; 398 total_weight = 0; 399 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 400 if ((instance->trip == trip_max_desired_temperature) && 401 cdev_is_power_actor(instance->cdev)) { 402 num_actors++; 403 total_weight += instance->weight; 404 } 405 } 406 407 if (!num_actors) { 408 ret = -ENODEV; 409 goto unlock; 410 } 411 412 /* 413 * We need to allocate five arrays of the same size: 414 * req_power, max_power, granted_power, extra_actor_power and 415 * weighted_req_power. They are going to be needed until this 416 * function returns. Allocate them all in one go to simplify 417 * the allocation and deallocation logic. 418 */ 419 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); 420 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); 421 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); 422 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); 423 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); 424 if (!req_power) { 425 ret = -ENOMEM; 426 goto unlock; 427 } 428 429 max_power = &req_power[num_actors]; 430 granted_power = &req_power[2 * num_actors]; 431 extra_actor_power = &req_power[3 * num_actors]; 432 weighted_req_power = &req_power[4 * num_actors]; 433 434 i = 0; 435 total_weighted_req_power = 0; 436 total_req_power = 0; 437 max_allocatable_power = 0; 438 439 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 440 int weight; 441 struct thermal_cooling_device *cdev = instance->cdev; 442 443 if (instance->trip != trip_max_desired_temperature) 444 continue; 445 446 if (!cdev_is_power_actor(cdev)) 447 continue; 448 449 if (cdev->ops->get_requested_power(cdev, &req_power[i])) 450 continue; 451 452 if (!total_weight) 453 weight = 1 << FRAC_BITS; 454 else 455 weight = instance->weight; 456 457 weighted_req_power[i] = frac_to_int(weight * req_power[i]); 458 459 if (cdev->ops->state2power(cdev, instance->lower, 460 &max_power[i])) 461 continue; 462 463 total_req_power += req_power[i]; 464 max_allocatable_power += max_power[i]; 465 total_weighted_req_power += weighted_req_power[i]; 466 467 i++; 468 } 469 470 power_range = pid_controller(tz, control_temp, max_allocatable_power); 471 472 divvy_up_power(weighted_req_power, max_power, num_actors, 473 total_weighted_req_power, power_range, granted_power, 474 extra_actor_power); 475 476 total_granted_power = 0; 477 i = 0; 478 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 479 if (instance->trip != trip_max_desired_temperature) 480 continue; 481 482 if (!cdev_is_power_actor(instance->cdev)) 483 continue; 484 485 power_actor_set_power(instance->cdev, instance, 486 granted_power[i]); 487 total_granted_power += granted_power[i]; 488 489 i++; 490 } 491 492 trace_thermal_power_allocator(tz, req_power, total_req_power, 493 granted_power, total_granted_power, 494 num_actors, power_range, 495 max_allocatable_power, tz->temperature, 496 control_temp - tz->temperature); 497 498 kfree(req_power); 499 unlock: 500 mutex_unlock(&tz->lock); 501 502 return ret; 503 } 504 505 /** 506 * get_governor_trips() - get the number of the two trip points that are key for this governor 507 * @tz: thermal zone to operate on 508 * @params: pointer to private data for this governor 509 * 510 * The power allocator governor works optimally with two trips points: 511 * a "switch on" trip point and a "maximum desired temperature". These 512 * are defined as the first and last passive trip points. 513 * 514 * If there is only one trip point, then that's considered to be the 515 * "maximum desired temperature" trip point and the governor is always 516 * on. If there are no passive or active trip points, then the 517 * governor won't do anything. In fact, its throttle function 518 * won't be called at all. 519 */ 520 static void get_governor_trips(struct thermal_zone_device *tz, 521 struct power_allocator_params *params) 522 { 523 int i, last_active, last_passive; 524 bool found_first_passive; 525 526 found_first_passive = false; 527 last_active = INVALID_TRIP; 528 last_passive = INVALID_TRIP; 529 530 for (i = 0; i < tz->num_trips; i++) { 531 enum thermal_trip_type type; 532 int ret; 533 534 ret = tz->ops->get_trip_type(tz, i, &type); 535 if (ret) { 536 dev_warn(&tz->device, 537 "Failed to get trip point %d type: %d\n", i, 538 ret); 539 continue; 540 } 541 542 if (type == THERMAL_TRIP_PASSIVE) { 543 if (!found_first_passive) { 544 params->trip_switch_on = i; 545 found_first_passive = true; 546 } else { 547 last_passive = i; 548 } 549 } else if (type == THERMAL_TRIP_ACTIVE) { 550 last_active = i; 551 } else { 552 break; 553 } 554 } 555 556 if (last_passive != INVALID_TRIP) { 557 params->trip_max_desired_temperature = last_passive; 558 } else if (found_first_passive) { 559 params->trip_max_desired_temperature = params->trip_switch_on; 560 params->trip_switch_on = INVALID_TRIP; 561 } else { 562 params->trip_switch_on = INVALID_TRIP; 563 params->trip_max_desired_temperature = last_active; 564 } 565 } 566 567 static void reset_pid_controller(struct power_allocator_params *params) 568 { 569 params->err_integral = 0; 570 params->prev_err = 0; 571 } 572 573 static void allow_maximum_power(struct thermal_zone_device *tz, bool update) 574 { 575 struct thermal_instance *instance; 576 struct power_allocator_params *params = tz->governor_data; 577 u32 req_power; 578 579 mutex_lock(&tz->lock); 580 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 581 struct thermal_cooling_device *cdev = instance->cdev; 582 583 if ((instance->trip != params->trip_max_desired_temperature) || 584 (!cdev_is_power_actor(instance->cdev))) 585 continue; 586 587 instance->target = 0; 588 mutex_lock(&instance->cdev->lock); 589 /* 590 * Call for updating the cooling devices local stats and avoid 591 * periods of dozen of seconds when those have not been 592 * maintained. 593 */ 594 cdev->ops->get_requested_power(cdev, &req_power); 595 596 if (update) 597 __thermal_cdev_update(instance->cdev); 598 599 mutex_unlock(&instance->cdev->lock); 600 } 601 mutex_unlock(&tz->lock); 602 } 603 604 /** 605 * check_power_actors() - Check all cooling devices and warn when they are 606 * not power actors 607 * @tz: thermal zone to operate on 608 * 609 * Check all cooling devices in the @tz and warn every time they are missing 610 * power actor API. The warning should help to investigate the issue, which 611 * could be e.g. lack of Energy Model for a given device. 612 * 613 * Return: 0 on success, -EINVAL if any cooling device does not implement 614 * the power actor API. 615 */ 616 static int check_power_actors(struct thermal_zone_device *tz) 617 { 618 struct thermal_instance *instance; 619 int ret = 0; 620 621 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 622 if (!cdev_is_power_actor(instance->cdev)) { 623 dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", 624 instance->cdev->type); 625 ret = -EINVAL; 626 } 627 } 628 629 return ret; 630 } 631 632 /** 633 * power_allocator_bind() - bind the power_allocator governor to a thermal zone 634 * @tz: thermal zone to bind it to 635 * 636 * Initialize the PID controller parameters and bind it to the thermal 637 * zone. 638 * 639 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL 640 * when there are unsupported cooling devices in the @tz. 641 */ 642 static int power_allocator_bind(struct thermal_zone_device *tz) 643 { 644 int ret; 645 struct power_allocator_params *params; 646 int control_temp; 647 648 ret = check_power_actors(tz); 649 if (ret) 650 return ret; 651 652 params = kzalloc(sizeof(*params), GFP_KERNEL); 653 if (!params) 654 return -ENOMEM; 655 656 if (!tz->tzp) { 657 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); 658 if (!tz->tzp) { 659 ret = -ENOMEM; 660 goto free_params; 661 } 662 663 params->allocated_tzp = true; 664 } 665 666 if (!tz->tzp->sustainable_power) 667 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); 668 669 get_governor_trips(tz, params); 670 671 if (tz->num_trips > 0) { 672 ret = tz->ops->get_trip_temp(tz, 673 params->trip_max_desired_temperature, 674 &control_temp); 675 if (!ret) 676 estimate_pid_constants(tz, tz->tzp->sustainable_power, 677 params->trip_switch_on, 678 control_temp); 679 } 680 681 reset_pid_controller(params); 682 683 tz->governor_data = params; 684 685 return 0; 686 687 free_params: 688 kfree(params); 689 690 return ret; 691 } 692 693 static void power_allocator_unbind(struct thermal_zone_device *tz) 694 { 695 struct power_allocator_params *params = tz->governor_data; 696 697 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); 698 699 if (params->allocated_tzp) { 700 kfree(tz->tzp); 701 tz->tzp = NULL; 702 } 703 704 kfree(tz->governor_data); 705 tz->governor_data = NULL; 706 } 707 708 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) 709 { 710 int ret; 711 int switch_on_temp, control_temp; 712 struct power_allocator_params *params = tz->governor_data; 713 bool update; 714 715 /* 716 * We get called for every trip point but we only need to do 717 * our calculations once 718 */ 719 if (trip != params->trip_max_desired_temperature) 720 return 0; 721 722 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, 723 &switch_on_temp); 724 if (!ret && (tz->temperature < switch_on_temp)) { 725 update = (tz->last_temperature >= switch_on_temp); 726 tz->passive = 0; 727 reset_pid_controller(params); 728 allow_maximum_power(tz, update); 729 return 0; 730 } 731 732 tz->passive = 1; 733 734 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, 735 &control_temp); 736 if (ret) { 737 dev_warn(&tz->device, 738 "Failed to get the maximum desired temperature: %d\n", 739 ret); 740 return ret; 741 } 742 743 return allocate_power(tz, control_temp); 744 } 745 746 static struct thermal_governor thermal_gov_power_allocator = { 747 .name = "power_allocator", 748 .bind_to_tz = power_allocator_bind, 749 .unbind_from_tz = power_allocator_unbind, 750 .throttle = power_allocator_throttle, 751 }; 752 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); 753