1 /* 2 * A power allocator to manage temperature 3 * 4 * Copyright (C) 2014 ARM Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #define pr_fmt(fmt) "Power allocator: " fmt 17 18 #include <linux/rculist.h> 19 #include <linux/slab.h> 20 #include <linux/thermal.h> 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/thermal_power_allocator.h> 24 25 #include "thermal_core.h" 26 27 #define INVALID_TRIP -1 28 29 #define FRAC_BITS 10 30 #define int_to_frac(x) ((x) << FRAC_BITS) 31 #define frac_to_int(x) ((x) >> FRAC_BITS) 32 33 /** 34 * mul_frac() - multiply two fixed-point numbers 35 * @x: first multiplicand 36 * @y: second multiplicand 37 * 38 * Return: the result of multiplying two fixed-point numbers. The 39 * result is also a fixed-point number. 40 */ 41 static inline s64 mul_frac(s64 x, s64 y) 42 { 43 return (x * y) >> FRAC_BITS; 44 } 45 46 /** 47 * div_frac() - divide two fixed-point numbers 48 * @x: the dividend 49 * @y: the divisor 50 * 51 * Return: the result of dividing two fixed-point numbers. The 52 * result is also a fixed-point number. 53 */ 54 static inline s64 div_frac(s64 x, s64 y) 55 { 56 return div_s64(x << FRAC_BITS, y); 57 } 58 59 /** 60 * struct power_allocator_params - parameters for the power allocator governor 61 * @allocated_tzp: whether we have allocated tzp for this thermal zone and 62 * it needs to be freed on unbind 63 * @err_integral: accumulated error in the PID controller. 64 * @prev_err: error in the previous iteration of the PID controller. 65 * Used to calculate the derivative term. 66 * @trip_switch_on: first passive trip point of the thermal zone. The 67 * governor switches on when this trip point is crossed. 68 * If the thermal zone only has one passive trip point, 69 * @trip_switch_on should be INVALID_TRIP. 70 * @trip_max_desired_temperature: last passive trip point of the thermal 71 * zone. The temperature we are 72 * controlling for. 73 */ 74 struct power_allocator_params { 75 bool allocated_tzp; 76 s64 err_integral; 77 s32 prev_err; 78 int trip_switch_on; 79 int trip_max_desired_temperature; 80 }; 81 82 /** 83 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone 84 * @tz: thermal zone we are operating in 85 * 86 * For thermal zones that don't provide a sustainable_power in their 87 * thermal_zone_params, estimate one. Calculate it using the minimum 88 * power of all the cooling devices as that gives a valid value that 89 * can give some degree of functionality. For optimal performance of 90 * this governor, provide a sustainable_power in the thermal zone's 91 * thermal_zone_params. 92 */ 93 static u32 estimate_sustainable_power(struct thermal_zone_device *tz) 94 { 95 u32 sustainable_power = 0; 96 struct thermal_instance *instance; 97 struct power_allocator_params *params = tz->governor_data; 98 99 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 100 struct thermal_cooling_device *cdev = instance->cdev; 101 u32 min_power; 102 103 if (instance->trip != params->trip_max_desired_temperature) 104 continue; 105 106 if (power_actor_get_min_power(cdev, tz, &min_power)) 107 continue; 108 109 sustainable_power += min_power; 110 } 111 112 return sustainable_power; 113 } 114 115 /** 116 * estimate_pid_constants() - Estimate the constants for the PID controller 117 * @tz: thermal zone for which to estimate the constants 118 * @sustainable_power: sustainable power for the thermal zone 119 * @trip_switch_on: trip point number for the switch on temperature 120 * @control_temp: target temperature for the power allocator governor 121 * @force: whether to force the update of the constants 122 * 123 * This function is used to update the estimation of the PID 124 * controller constants in struct thermal_zone_parameters. 125 * Sustainable power is provided in case it was estimated. The 126 * estimated sustainable_power should not be stored in the 127 * thermal_zone_parameters so it has to be passed explicitly to this 128 * function. 129 * 130 * If @force is not set, the values in the thermal zone's parameters 131 * are preserved if they are not zero. If @force is set, the values 132 * in thermal zone's parameters are overwritten. 133 */ 134 static void estimate_pid_constants(struct thermal_zone_device *tz, 135 u32 sustainable_power, int trip_switch_on, 136 int control_temp, bool force) 137 { 138 int ret; 139 int switch_on_temp; 140 u32 temperature_threshold; 141 142 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp); 143 if (ret) 144 switch_on_temp = 0; 145 146 temperature_threshold = control_temp - switch_on_temp; 147 /* 148 * estimate_pid_constants() tries to find appropriate default 149 * values for thermal zones that don't provide them. If a 150 * system integrator has configured a thermal zone with two 151 * passive trip points at the same temperature, that person 152 * hasn't put any effort to set up the thermal zone properly 153 * so just give up. 154 */ 155 if (!temperature_threshold) 156 return; 157 158 if (!tz->tzp->k_po || force) 159 tz->tzp->k_po = int_to_frac(sustainable_power) / 160 temperature_threshold; 161 162 if (!tz->tzp->k_pu || force) 163 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / 164 temperature_threshold; 165 166 if (!tz->tzp->k_i || force) 167 tz->tzp->k_i = int_to_frac(10) / 1000; 168 /* 169 * The default for k_d and integral_cutoff is 0, so we can 170 * leave them as they are. 171 */ 172 } 173 174 /** 175 * pid_controller() - PID controller 176 * @tz: thermal zone we are operating in 177 * @control_temp: the target temperature in millicelsius 178 * @max_allocatable_power: maximum allocatable power for this thermal zone 179 * 180 * This PID controller increases the available power budget so that the 181 * temperature of the thermal zone gets as close as possible to 182 * @control_temp and limits the power if it exceeds it. k_po is the 183 * proportional term when we are overshooting, k_pu is the 184 * proportional term when we are undershooting. integral_cutoff is a 185 * threshold below which we stop accumulating the error. The 186 * accumulated error is only valid if the requested power will make 187 * the system warmer. If the system is mostly idle, there's no point 188 * in accumulating positive error. 189 * 190 * Return: The power budget for the next period. 191 */ 192 static u32 pid_controller(struct thermal_zone_device *tz, 193 int control_temp, 194 u32 max_allocatable_power) 195 { 196 s64 p, i, d, power_range; 197 s32 err, max_power_frac; 198 u32 sustainable_power; 199 struct power_allocator_params *params = tz->governor_data; 200 201 max_power_frac = int_to_frac(max_allocatable_power); 202 203 if (tz->tzp->sustainable_power) { 204 sustainable_power = tz->tzp->sustainable_power; 205 } else { 206 sustainable_power = estimate_sustainable_power(tz); 207 estimate_pid_constants(tz, sustainable_power, 208 params->trip_switch_on, control_temp, 209 true); 210 } 211 212 err = control_temp - tz->temperature; 213 err = int_to_frac(err); 214 215 /* Calculate the proportional term */ 216 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); 217 218 /* 219 * Calculate the integral term 220 * 221 * if the error is less than cut off allow integration (but 222 * the integral is limited to max power) 223 */ 224 i = mul_frac(tz->tzp->k_i, params->err_integral); 225 226 if (err < int_to_frac(tz->tzp->integral_cutoff)) { 227 s64 i_next = i + mul_frac(tz->tzp->k_i, err); 228 229 if (abs(i_next) < max_power_frac) { 230 i = i_next; 231 params->err_integral += err; 232 } 233 } 234 235 /* 236 * Calculate the derivative term 237 * 238 * We do err - prev_err, so with a positive k_d, a decreasing 239 * error (i.e. driving closer to the line) results in less 240 * power being applied, slowing down the controller) 241 */ 242 d = mul_frac(tz->tzp->k_d, err - params->prev_err); 243 d = div_frac(d, tz->passive_delay); 244 params->prev_err = err; 245 246 power_range = p + i + d; 247 248 /* feed-forward the known sustainable dissipatable power */ 249 power_range = sustainable_power + frac_to_int(power_range); 250 251 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); 252 253 trace_thermal_power_allocator_pid(tz, frac_to_int(err), 254 frac_to_int(params->err_integral), 255 frac_to_int(p), frac_to_int(i), 256 frac_to_int(d), power_range); 257 258 return power_range; 259 } 260 261 /** 262 * divvy_up_power() - divvy the allocated power between the actors 263 * @req_power: each actor's requested power 264 * @max_power: each actor's maximum available power 265 * @num_actors: size of the @req_power, @max_power and @granted_power's array 266 * @total_req_power: sum of @req_power 267 * @power_range: total allocated power 268 * @granted_power: output array: each actor's granted power 269 * @extra_actor_power: an appropriately sized array to be used in the 270 * function as temporary storage of the extra power given 271 * to the actors 272 * 273 * This function divides the total allocated power (@power_range) 274 * fairly between the actors. It first tries to give each actor a 275 * share of the @power_range according to how much power it requested 276 * compared to the rest of the actors. For example, if only one actor 277 * requests power, then it receives all the @power_range. If 278 * three actors each requests 1mW, each receives a third of the 279 * @power_range. 280 * 281 * If any actor received more than their maximum power, then that 282 * surplus is re-divvied among the actors based on how far they are 283 * from their respective maximums. 284 * 285 * Granted power for each actor is written to @granted_power, which 286 * should've been allocated by the calling function. 287 */ 288 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, 289 u32 total_req_power, u32 power_range, 290 u32 *granted_power, u32 *extra_actor_power) 291 { 292 u32 extra_power, capped_extra_power; 293 int i; 294 295 /* 296 * Prevent division by 0 if none of the actors request power. 297 */ 298 if (!total_req_power) 299 total_req_power = 1; 300 301 capped_extra_power = 0; 302 extra_power = 0; 303 for (i = 0; i < num_actors; i++) { 304 u64 req_range = (u64)req_power[i] * power_range; 305 306 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, 307 total_req_power); 308 309 if (granted_power[i] > max_power[i]) { 310 extra_power += granted_power[i] - max_power[i]; 311 granted_power[i] = max_power[i]; 312 } 313 314 extra_actor_power[i] = max_power[i] - granted_power[i]; 315 capped_extra_power += extra_actor_power[i]; 316 } 317 318 if (!extra_power) 319 return; 320 321 /* 322 * Re-divvy the reclaimed extra among actors based on 323 * how far they are from the max 324 */ 325 extra_power = min(extra_power, capped_extra_power); 326 if (capped_extra_power > 0) 327 for (i = 0; i < num_actors; i++) 328 granted_power[i] += (extra_actor_power[i] * 329 extra_power) / capped_extra_power; 330 } 331 332 static int allocate_power(struct thermal_zone_device *tz, 333 int control_temp) 334 { 335 struct thermal_instance *instance; 336 struct power_allocator_params *params = tz->governor_data; 337 u32 *req_power, *max_power, *granted_power, *extra_actor_power; 338 u32 *weighted_req_power; 339 u32 total_req_power, max_allocatable_power, total_weighted_req_power; 340 u32 total_granted_power, power_range; 341 int i, num_actors, total_weight, ret = 0; 342 int trip_max_desired_temperature = params->trip_max_desired_temperature; 343 344 mutex_lock(&tz->lock); 345 346 num_actors = 0; 347 total_weight = 0; 348 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 349 if ((instance->trip == trip_max_desired_temperature) && 350 cdev_is_power_actor(instance->cdev)) { 351 num_actors++; 352 total_weight += instance->weight; 353 } 354 } 355 356 if (!num_actors) { 357 ret = -ENODEV; 358 goto unlock; 359 } 360 361 /* 362 * We need to allocate five arrays of the same size: 363 * req_power, max_power, granted_power, extra_actor_power and 364 * weighted_req_power. They are going to be needed until this 365 * function returns. Allocate them all in one go to simplify 366 * the allocation and deallocation logic. 367 */ 368 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); 369 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); 370 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); 371 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); 372 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); 373 if (!req_power) { 374 ret = -ENOMEM; 375 goto unlock; 376 } 377 378 max_power = &req_power[num_actors]; 379 granted_power = &req_power[2 * num_actors]; 380 extra_actor_power = &req_power[3 * num_actors]; 381 weighted_req_power = &req_power[4 * num_actors]; 382 383 i = 0; 384 total_weighted_req_power = 0; 385 total_req_power = 0; 386 max_allocatable_power = 0; 387 388 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 389 int weight; 390 struct thermal_cooling_device *cdev = instance->cdev; 391 392 if (instance->trip != trip_max_desired_temperature) 393 continue; 394 395 if (!cdev_is_power_actor(cdev)) 396 continue; 397 398 if (cdev->ops->get_requested_power(cdev, tz, &req_power[i])) 399 continue; 400 401 if (!total_weight) 402 weight = 1 << FRAC_BITS; 403 else 404 weight = instance->weight; 405 406 weighted_req_power[i] = frac_to_int(weight * req_power[i]); 407 408 if (power_actor_get_max_power(cdev, tz, &max_power[i])) 409 continue; 410 411 total_req_power += req_power[i]; 412 max_allocatable_power += max_power[i]; 413 total_weighted_req_power += weighted_req_power[i]; 414 415 i++; 416 } 417 418 power_range = pid_controller(tz, control_temp, max_allocatable_power); 419 420 divvy_up_power(weighted_req_power, max_power, num_actors, 421 total_weighted_req_power, power_range, granted_power, 422 extra_actor_power); 423 424 total_granted_power = 0; 425 i = 0; 426 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 427 if (instance->trip != trip_max_desired_temperature) 428 continue; 429 430 if (!cdev_is_power_actor(instance->cdev)) 431 continue; 432 433 power_actor_set_power(instance->cdev, instance, 434 granted_power[i]); 435 total_granted_power += granted_power[i]; 436 437 i++; 438 } 439 440 trace_thermal_power_allocator(tz, req_power, total_req_power, 441 granted_power, total_granted_power, 442 num_actors, power_range, 443 max_allocatable_power, tz->temperature, 444 control_temp - tz->temperature); 445 446 kfree(req_power); 447 unlock: 448 mutex_unlock(&tz->lock); 449 450 return ret; 451 } 452 453 /** 454 * get_governor_trips() - get the number of the two trip points that are key for this governor 455 * @tz: thermal zone to operate on 456 * @params: pointer to private data for this governor 457 * 458 * The power allocator governor works optimally with two trips points: 459 * a "switch on" trip point and a "maximum desired temperature". These 460 * are defined as the first and last passive trip points. 461 * 462 * If there is only one trip point, then that's considered to be the 463 * "maximum desired temperature" trip point and the governor is always 464 * on. If there are no passive or active trip points, then the 465 * governor won't do anything. In fact, its throttle function 466 * won't be called at all. 467 */ 468 static void get_governor_trips(struct thermal_zone_device *tz, 469 struct power_allocator_params *params) 470 { 471 int i, last_active, last_passive; 472 bool found_first_passive; 473 474 found_first_passive = false; 475 last_active = INVALID_TRIP; 476 last_passive = INVALID_TRIP; 477 478 for (i = 0; i < tz->trips; i++) { 479 enum thermal_trip_type type; 480 int ret; 481 482 ret = tz->ops->get_trip_type(tz, i, &type); 483 if (ret) { 484 dev_warn(&tz->device, 485 "Failed to get trip point %d type: %d\n", i, 486 ret); 487 continue; 488 } 489 490 if (type == THERMAL_TRIP_PASSIVE) { 491 if (!found_first_passive) { 492 params->trip_switch_on = i; 493 found_first_passive = true; 494 } else { 495 last_passive = i; 496 } 497 } else if (type == THERMAL_TRIP_ACTIVE) { 498 last_active = i; 499 } else { 500 break; 501 } 502 } 503 504 if (last_passive != INVALID_TRIP) { 505 params->trip_max_desired_temperature = last_passive; 506 } else if (found_first_passive) { 507 params->trip_max_desired_temperature = params->trip_switch_on; 508 params->trip_switch_on = INVALID_TRIP; 509 } else { 510 params->trip_switch_on = INVALID_TRIP; 511 params->trip_max_desired_temperature = last_active; 512 } 513 } 514 515 static void reset_pid_controller(struct power_allocator_params *params) 516 { 517 params->err_integral = 0; 518 params->prev_err = 0; 519 } 520 521 static void allow_maximum_power(struct thermal_zone_device *tz) 522 { 523 struct thermal_instance *instance; 524 struct power_allocator_params *params = tz->governor_data; 525 526 mutex_lock(&tz->lock); 527 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 528 if ((instance->trip != params->trip_max_desired_temperature) || 529 (!cdev_is_power_actor(instance->cdev))) 530 continue; 531 532 instance->target = 0; 533 mutex_lock(&instance->cdev->lock); 534 instance->cdev->updated = false; 535 mutex_unlock(&instance->cdev->lock); 536 thermal_cdev_update(instance->cdev); 537 } 538 mutex_unlock(&tz->lock); 539 } 540 541 /** 542 * power_allocator_bind() - bind the power_allocator governor to a thermal zone 543 * @tz: thermal zone to bind it to 544 * 545 * Initialize the PID controller parameters and bind it to the thermal 546 * zone. 547 * 548 * Return: 0 on success, or -ENOMEM if we ran out of memory. 549 */ 550 static int power_allocator_bind(struct thermal_zone_device *tz) 551 { 552 int ret; 553 struct power_allocator_params *params; 554 int control_temp; 555 556 params = kzalloc(sizeof(*params), GFP_KERNEL); 557 if (!params) 558 return -ENOMEM; 559 560 if (!tz->tzp) { 561 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); 562 if (!tz->tzp) { 563 ret = -ENOMEM; 564 goto free_params; 565 } 566 567 params->allocated_tzp = true; 568 } 569 570 if (!tz->tzp->sustainable_power) 571 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); 572 573 get_governor_trips(tz, params); 574 575 if (tz->trips > 0) { 576 ret = tz->ops->get_trip_temp(tz, 577 params->trip_max_desired_temperature, 578 &control_temp); 579 if (!ret) 580 estimate_pid_constants(tz, tz->tzp->sustainable_power, 581 params->trip_switch_on, 582 control_temp, false); 583 } 584 585 reset_pid_controller(params); 586 587 tz->governor_data = params; 588 589 return 0; 590 591 free_params: 592 kfree(params); 593 594 return ret; 595 } 596 597 static void power_allocator_unbind(struct thermal_zone_device *tz) 598 { 599 struct power_allocator_params *params = tz->governor_data; 600 601 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); 602 603 if (params->allocated_tzp) { 604 kfree(tz->tzp); 605 tz->tzp = NULL; 606 } 607 608 kfree(tz->governor_data); 609 tz->governor_data = NULL; 610 } 611 612 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) 613 { 614 int ret; 615 int switch_on_temp, control_temp; 616 struct power_allocator_params *params = tz->governor_data; 617 618 /* 619 * We get called for every trip point but we only need to do 620 * our calculations once 621 */ 622 if (trip != params->trip_max_desired_temperature) 623 return 0; 624 625 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, 626 &switch_on_temp); 627 if (!ret && (tz->temperature < switch_on_temp)) { 628 tz->passive = 0; 629 reset_pid_controller(params); 630 allow_maximum_power(tz); 631 return 0; 632 } 633 634 tz->passive = 1; 635 636 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, 637 &control_temp); 638 if (ret) { 639 dev_warn(&tz->device, 640 "Failed to get the maximum desired temperature: %d\n", 641 ret); 642 return ret; 643 } 644 645 return allocate_power(tz, control_temp); 646 } 647 648 static struct thermal_governor thermal_gov_power_allocator = { 649 .name = "power_allocator", 650 .bind_to_tz = power_allocator_bind, 651 .unbind_from_tz = power_allocator_unbind, 652 .throttle = power_allocator_throttle, 653 }; 654 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); 655