1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A power allocator to manage temperature
4  *
5  * Copyright (C) 2014 ARM Ltd.
6  *
7  */
8 
9 #define pr_fmt(fmt) "Power allocator: " fmt
10 
11 #include <linux/slab.h>
12 #include <linux/thermal.h>
13 
14 #define CREATE_TRACE_POINTS
15 #include <trace/events/thermal_power_allocator.h>
16 
17 #include "thermal_core.h"
18 
19 #define INVALID_TRIP -1
20 
21 #define FRAC_BITS 10
22 #define int_to_frac(x) ((x) << FRAC_BITS)
23 #define frac_to_int(x) ((x) >> FRAC_BITS)
24 
25 /**
26  * mul_frac() - multiply two fixed-point numbers
27  * @x:	first multiplicand
28  * @y:	second multiplicand
29  *
30  * Return: the result of multiplying two fixed-point numbers.  The
31  * result is also a fixed-point number.
32  */
33 static inline s64 mul_frac(s64 x, s64 y)
34 {
35 	return (x * y) >> FRAC_BITS;
36 }
37 
38 /**
39  * div_frac() - divide two fixed-point numbers
40  * @x:	the dividend
41  * @y:	the divisor
42  *
43  * Return: the result of dividing two fixed-point numbers.  The
44  * result is also a fixed-point number.
45  */
46 static inline s64 div_frac(s64 x, s64 y)
47 {
48 	return div_s64(x << FRAC_BITS, y);
49 }
50 
51 /**
52  * struct power_allocator_params - parameters for the power allocator governor
53  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
54  *			it needs to be freed on unbind
55  * @err_integral:	accumulated error in the PID controller.
56  * @prev_err:	error in the previous iteration of the PID controller.
57  *		Used to calculate the derivative term.
58  * @trip_switch_on:	first passive trip point of the thermal zone.  The
59  *			governor switches on when this trip point is crossed.
60  *			If the thermal zone only has one passive trip point,
61  *			@trip_switch_on should be INVALID_TRIP.
62  * @trip_max_desired_temperature:	last passive trip point of the thermal
63  *					zone.  The temperature we are
64  *					controlling for.
65  * @sustainable_power:	Sustainable power (heat) that this thermal zone can
66  *			dissipate
67  */
68 struct power_allocator_params {
69 	bool allocated_tzp;
70 	s64 err_integral;
71 	s32 prev_err;
72 	int trip_switch_on;
73 	int trip_max_desired_temperature;
74 	u32 sustainable_power;
75 };
76 
77 /**
78  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
79  * @tz: thermal zone we are operating in
80  *
81  * For thermal zones that don't provide a sustainable_power in their
82  * thermal_zone_params, estimate one.  Calculate it using the minimum
83  * power of all the cooling devices as that gives a valid value that
84  * can give some degree of functionality.  For optimal performance of
85  * this governor, provide a sustainable_power in the thermal zone's
86  * thermal_zone_params.
87  */
88 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
89 {
90 	u32 sustainable_power = 0;
91 	struct thermal_instance *instance;
92 	struct power_allocator_params *params = tz->governor_data;
93 
94 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
95 		struct thermal_cooling_device *cdev = instance->cdev;
96 		u32 min_power;
97 
98 		if (instance->trip != params->trip_max_desired_temperature)
99 			continue;
100 
101 		if (!cdev_is_power_actor(cdev))
102 			continue;
103 
104 		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
105 			continue;
106 
107 		sustainable_power += min_power;
108 	}
109 
110 	return sustainable_power;
111 }
112 
113 /**
114  * estimate_pid_constants() - Estimate the constants for the PID controller
115  * @tz:		thermal zone for which to estimate the constants
116  * @sustainable_power:	sustainable power for the thermal zone
117  * @trip_switch_on:	trip point number for the switch on temperature
118  * @control_temp:	target temperature for the power allocator governor
119  *
120  * This function is used to update the estimation of the PID
121  * controller constants in struct thermal_zone_parameters.
122  */
123 static void estimate_pid_constants(struct thermal_zone_device *tz,
124 				   u32 sustainable_power, int trip_switch_on,
125 				   int control_temp)
126 {
127 	int ret;
128 	int switch_on_temp;
129 	u32 temperature_threshold;
130 	s32 k_i;
131 
132 	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
133 	if (ret)
134 		switch_on_temp = 0;
135 
136 	temperature_threshold = control_temp - switch_on_temp;
137 	/*
138 	 * estimate_pid_constants() tries to find appropriate default
139 	 * values for thermal zones that don't provide them. If a
140 	 * system integrator has configured a thermal zone with two
141 	 * passive trip points at the same temperature, that person
142 	 * hasn't put any effort to set up the thermal zone properly
143 	 * so just give up.
144 	 */
145 	if (!temperature_threshold)
146 		return;
147 
148 	tz->tzp->k_po = int_to_frac(sustainable_power) /
149 		temperature_threshold;
150 
151 	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
152 		temperature_threshold;
153 
154 	k_i = tz->tzp->k_pu / 10;
155 	tz->tzp->k_i = k_i > 0 ? k_i : 1;
156 
157 	/*
158 	 * The default for k_d and integral_cutoff is 0, so we can
159 	 * leave them as they are.
160 	 */
161 }
162 
163 /**
164  * get_sustainable_power() - Get the right sustainable power
165  * @tz:		thermal zone for which to estimate the constants
166  * @params:	parameters for the power allocator governor
167  * @control_temp:	target temperature for the power allocator governor
168  *
169  * This function is used for getting the proper sustainable power value based
170  * on variables which might be updated by the user sysfs interface. If that
171  * happen the new value is going to be estimated and updated. It is also used
172  * after thermal zone binding, where the initial values where set to 0.
173  */
174 static u32 get_sustainable_power(struct thermal_zone_device *tz,
175 				 struct power_allocator_params *params,
176 				 int control_temp)
177 {
178 	u32 sustainable_power;
179 
180 	if (!tz->tzp->sustainable_power)
181 		sustainable_power = estimate_sustainable_power(tz);
182 	else
183 		sustainable_power = tz->tzp->sustainable_power;
184 
185 	/* Check if it's init value 0 or there was update via sysfs */
186 	if (sustainable_power != params->sustainable_power) {
187 		estimate_pid_constants(tz, sustainable_power,
188 				       params->trip_switch_on, control_temp);
189 
190 		/* Do the estimation only once and make available in sysfs */
191 		tz->tzp->sustainable_power = sustainable_power;
192 		params->sustainable_power = sustainable_power;
193 	}
194 
195 	return sustainable_power;
196 }
197 
198 /**
199  * pid_controller() - PID controller
200  * @tz:	thermal zone we are operating in
201  * @control_temp:	the target temperature in millicelsius
202  * @max_allocatable_power:	maximum allocatable power for this thermal zone
203  *
204  * This PID controller increases the available power budget so that the
205  * temperature of the thermal zone gets as close as possible to
206  * @control_temp and limits the power if it exceeds it.  k_po is the
207  * proportional term when we are overshooting, k_pu is the
208  * proportional term when we are undershooting.  integral_cutoff is a
209  * threshold below which we stop accumulating the error.  The
210  * accumulated error is only valid if the requested power will make
211  * the system warmer.  If the system is mostly idle, there's no point
212  * in accumulating positive error.
213  *
214  * Return: The power budget for the next period.
215  */
216 static u32 pid_controller(struct thermal_zone_device *tz,
217 			  int control_temp,
218 			  u32 max_allocatable_power)
219 {
220 	s64 p, i, d, power_range;
221 	s32 err, max_power_frac;
222 	u32 sustainable_power;
223 	struct power_allocator_params *params = tz->governor_data;
224 
225 	max_power_frac = int_to_frac(max_allocatable_power);
226 
227 	sustainable_power = get_sustainable_power(tz, params, control_temp);
228 
229 	err = control_temp - tz->temperature;
230 	err = int_to_frac(err);
231 
232 	/* Calculate the proportional term */
233 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
234 
235 	/*
236 	 * Calculate the integral term
237 	 *
238 	 * if the error is less than cut off allow integration (but
239 	 * the integral is limited to max power)
240 	 */
241 	i = mul_frac(tz->tzp->k_i, params->err_integral);
242 
243 	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
244 		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
245 
246 		if (abs(i_next) < max_power_frac) {
247 			i = i_next;
248 			params->err_integral += err;
249 		}
250 	}
251 
252 	/*
253 	 * Calculate the derivative term
254 	 *
255 	 * We do err - prev_err, so with a positive k_d, a decreasing
256 	 * error (i.e. driving closer to the line) results in less
257 	 * power being applied, slowing down the controller)
258 	 */
259 	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
260 	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
261 	params->prev_err = err;
262 
263 	power_range = p + i + d;
264 
265 	/* feed-forward the known sustainable dissipatable power */
266 	power_range = sustainable_power + frac_to_int(power_range);
267 
268 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
269 
270 	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
271 					  frac_to_int(params->err_integral),
272 					  frac_to_int(p), frac_to_int(i),
273 					  frac_to_int(d), power_range);
274 
275 	return power_range;
276 }
277 
278 /**
279  * power_actor_set_power() - limit the maximum power a cooling device consumes
280  * @cdev:	pointer to &thermal_cooling_device
281  * @instance:	thermal instance to update
282  * @power:	the power in milliwatts
283  *
284  * Set the cooling device to consume at most @power milliwatts. The limit is
285  * expected to be a cap at the maximum power consumption.
286  *
287  * Return: 0 on success, -EINVAL if the cooling device does not
288  * implement the power actor API or -E* for other failures.
289  */
290 static int
291 power_actor_set_power(struct thermal_cooling_device *cdev,
292 		      struct thermal_instance *instance, u32 power)
293 {
294 	unsigned long state;
295 	int ret;
296 
297 	ret = cdev->ops->power2state(cdev, power, &state);
298 	if (ret)
299 		return ret;
300 
301 	instance->target = clamp_val(state, instance->lower, instance->upper);
302 	mutex_lock(&cdev->lock);
303 	__thermal_cdev_update(cdev);
304 	mutex_unlock(&cdev->lock);
305 
306 	return 0;
307 }
308 
309 /**
310  * divvy_up_power() - divvy the allocated power between the actors
311  * @req_power:	each actor's requested power
312  * @max_power:	each actor's maximum available power
313  * @num_actors:	size of the @req_power, @max_power and @granted_power's array
314  * @total_req_power: sum of @req_power
315  * @power_range:	total allocated power
316  * @granted_power:	output array: each actor's granted power
317  * @extra_actor_power:	an appropriately sized array to be used in the
318  *			function as temporary storage of the extra power given
319  *			to the actors
320  *
321  * This function divides the total allocated power (@power_range)
322  * fairly between the actors.  It first tries to give each actor a
323  * share of the @power_range according to how much power it requested
324  * compared to the rest of the actors.  For example, if only one actor
325  * requests power, then it receives all the @power_range.  If
326  * three actors each requests 1mW, each receives a third of the
327  * @power_range.
328  *
329  * If any actor received more than their maximum power, then that
330  * surplus is re-divvied among the actors based on how far they are
331  * from their respective maximums.
332  *
333  * Granted power for each actor is written to @granted_power, which
334  * should've been allocated by the calling function.
335  */
336 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
337 			   u32 total_req_power, u32 power_range,
338 			   u32 *granted_power, u32 *extra_actor_power)
339 {
340 	u32 extra_power, capped_extra_power;
341 	int i;
342 
343 	/*
344 	 * Prevent division by 0 if none of the actors request power.
345 	 */
346 	if (!total_req_power)
347 		total_req_power = 1;
348 
349 	capped_extra_power = 0;
350 	extra_power = 0;
351 	for (i = 0; i < num_actors; i++) {
352 		u64 req_range = (u64)req_power[i] * power_range;
353 
354 		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
355 							 total_req_power);
356 
357 		if (granted_power[i] > max_power[i]) {
358 			extra_power += granted_power[i] - max_power[i];
359 			granted_power[i] = max_power[i];
360 		}
361 
362 		extra_actor_power[i] = max_power[i] - granted_power[i];
363 		capped_extra_power += extra_actor_power[i];
364 	}
365 
366 	if (!extra_power)
367 		return;
368 
369 	/*
370 	 * Re-divvy the reclaimed extra among actors based on
371 	 * how far they are from the max
372 	 */
373 	extra_power = min(extra_power, capped_extra_power);
374 	if (capped_extra_power > 0)
375 		for (i = 0; i < num_actors; i++) {
376 			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
377 			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
378 							 capped_extra_power);
379 		}
380 }
381 
382 static int allocate_power(struct thermal_zone_device *tz,
383 			  int control_temp)
384 {
385 	struct thermal_instance *instance;
386 	struct power_allocator_params *params = tz->governor_data;
387 	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
388 	u32 *weighted_req_power;
389 	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
390 	u32 total_granted_power, power_range;
391 	int i, num_actors, total_weight, ret = 0;
392 	int trip_max_desired_temperature = params->trip_max_desired_temperature;
393 
394 	num_actors = 0;
395 	total_weight = 0;
396 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
397 		if ((instance->trip == trip_max_desired_temperature) &&
398 		    cdev_is_power_actor(instance->cdev)) {
399 			num_actors++;
400 			total_weight += instance->weight;
401 		}
402 	}
403 
404 	if (!num_actors)
405 		return -ENODEV;
406 
407 	/*
408 	 * We need to allocate five arrays of the same size:
409 	 * req_power, max_power, granted_power, extra_actor_power and
410 	 * weighted_req_power.  They are going to be needed until this
411 	 * function returns.  Allocate them all in one go to simplify
412 	 * the allocation and deallocation logic.
413 	 */
414 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
415 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
416 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
417 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
418 	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
419 	if (!req_power)
420 		return -ENOMEM;
421 
422 	max_power = &req_power[num_actors];
423 	granted_power = &req_power[2 * num_actors];
424 	extra_actor_power = &req_power[3 * num_actors];
425 	weighted_req_power = &req_power[4 * num_actors];
426 
427 	i = 0;
428 	total_weighted_req_power = 0;
429 	total_req_power = 0;
430 	max_allocatable_power = 0;
431 
432 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
433 		int weight;
434 		struct thermal_cooling_device *cdev = instance->cdev;
435 
436 		if (instance->trip != trip_max_desired_temperature)
437 			continue;
438 
439 		if (!cdev_is_power_actor(cdev))
440 			continue;
441 
442 		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
443 			continue;
444 
445 		if (!total_weight)
446 			weight = 1 << FRAC_BITS;
447 		else
448 			weight = instance->weight;
449 
450 		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
451 
452 		if (cdev->ops->state2power(cdev, instance->lower,
453 					   &max_power[i]))
454 			continue;
455 
456 		total_req_power += req_power[i];
457 		max_allocatable_power += max_power[i];
458 		total_weighted_req_power += weighted_req_power[i];
459 
460 		i++;
461 	}
462 
463 	power_range = pid_controller(tz, control_temp, max_allocatable_power);
464 
465 	divvy_up_power(weighted_req_power, max_power, num_actors,
466 		       total_weighted_req_power, power_range, granted_power,
467 		       extra_actor_power);
468 
469 	total_granted_power = 0;
470 	i = 0;
471 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
472 		if (instance->trip != trip_max_desired_temperature)
473 			continue;
474 
475 		if (!cdev_is_power_actor(instance->cdev))
476 			continue;
477 
478 		power_actor_set_power(instance->cdev, instance,
479 				      granted_power[i]);
480 		total_granted_power += granted_power[i];
481 
482 		i++;
483 	}
484 
485 	trace_thermal_power_allocator(tz, req_power, total_req_power,
486 				      granted_power, total_granted_power,
487 				      num_actors, power_range,
488 				      max_allocatable_power, tz->temperature,
489 				      control_temp - tz->temperature);
490 
491 	kfree(req_power);
492 
493 	return ret;
494 }
495 
496 /**
497  * get_governor_trips() - get the number of the two trip points that are key for this governor
498  * @tz:	thermal zone to operate on
499  * @params:	pointer to private data for this governor
500  *
501  * The power allocator governor works optimally with two trips points:
502  * a "switch on" trip point and a "maximum desired temperature".  These
503  * are defined as the first and last passive trip points.
504  *
505  * If there is only one trip point, then that's considered to be the
506  * "maximum desired temperature" trip point and the governor is always
507  * on.  If there are no passive or active trip points, then the
508  * governor won't do anything.  In fact, its throttle function
509  * won't be called at all.
510  */
511 static void get_governor_trips(struct thermal_zone_device *tz,
512 			       struct power_allocator_params *params)
513 {
514 	int i, last_active, last_passive;
515 	bool found_first_passive;
516 
517 	found_first_passive = false;
518 	last_active = INVALID_TRIP;
519 	last_passive = INVALID_TRIP;
520 
521 	for (i = 0; i < tz->num_trips; i++) {
522 		enum thermal_trip_type type;
523 		int ret;
524 
525 		ret = tz->ops->get_trip_type(tz, i, &type);
526 		if (ret) {
527 			dev_warn(&tz->device,
528 				 "Failed to get trip point %d type: %d\n", i,
529 				 ret);
530 			continue;
531 		}
532 
533 		if (type == THERMAL_TRIP_PASSIVE) {
534 			if (!found_first_passive) {
535 				params->trip_switch_on = i;
536 				found_first_passive = true;
537 			} else  {
538 				last_passive = i;
539 			}
540 		} else if (type == THERMAL_TRIP_ACTIVE) {
541 			last_active = i;
542 		} else {
543 			break;
544 		}
545 	}
546 
547 	if (last_passive != INVALID_TRIP) {
548 		params->trip_max_desired_temperature = last_passive;
549 	} else if (found_first_passive) {
550 		params->trip_max_desired_temperature = params->trip_switch_on;
551 		params->trip_switch_on = INVALID_TRIP;
552 	} else {
553 		params->trip_switch_on = INVALID_TRIP;
554 		params->trip_max_desired_temperature = last_active;
555 	}
556 }
557 
558 static void reset_pid_controller(struct power_allocator_params *params)
559 {
560 	params->err_integral = 0;
561 	params->prev_err = 0;
562 }
563 
564 static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
565 {
566 	struct thermal_instance *instance;
567 	struct power_allocator_params *params = tz->governor_data;
568 	u32 req_power;
569 
570 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
571 		struct thermal_cooling_device *cdev = instance->cdev;
572 
573 		if ((instance->trip != params->trip_max_desired_temperature) ||
574 		    (!cdev_is_power_actor(instance->cdev)))
575 			continue;
576 
577 		instance->target = 0;
578 		mutex_lock(&instance->cdev->lock);
579 		/*
580 		 * Call for updating the cooling devices local stats and avoid
581 		 * periods of dozen of seconds when those have not been
582 		 * maintained.
583 		 */
584 		cdev->ops->get_requested_power(cdev, &req_power);
585 
586 		if (update)
587 			__thermal_cdev_update(instance->cdev);
588 
589 		mutex_unlock(&instance->cdev->lock);
590 	}
591 }
592 
593 /**
594  * check_power_actors() - Check all cooling devices and warn when they are
595  *			not power actors
596  * @tz:		thermal zone to operate on
597  *
598  * Check all cooling devices in the @tz and warn every time they are missing
599  * power actor API. The warning should help to investigate the issue, which
600  * could be e.g. lack of Energy Model for a given device.
601  *
602  * Return: 0 on success, -EINVAL if any cooling device does not implement
603  * the power actor API.
604  */
605 static int check_power_actors(struct thermal_zone_device *tz)
606 {
607 	struct thermal_instance *instance;
608 	int ret = 0;
609 
610 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
611 		if (!cdev_is_power_actor(instance->cdev)) {
612 			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
613 				 instance->cdev->type);
614 			ret = -EINVAL;
615 		}
616 	}
617 
618 	return ret;
619 }
620 
621 /**
622  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
623  * @tz:	thermal zone to bind it to
624  *
625  * Initialize the PID controller parameters and bind it to the thermal
626  * zone.
627  *
628  * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
629  * when there are unsupported cooling devices in the @tz.
630  */
631 static int power_allocator_bind(struct thermal_zone_device *tz)
632 {
633 	int ret;
634 	struct power_allocator_params *params;
635 	int control_temp;
636 
637 	ret = check_power_actors(tz);
638 	if (ret)
639 		return ret;
640 
641 	params = kzalloc(sizeof(*params), GFP_KERNEL);
642 	if (!params)
643 		return -ENOMEM;
644 
645 	if (!tz->tzp) {
646 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
647 		if (!tz->tzp) {
648 			ret = -ENOMEM;
649 			goto free_params;
650 		}
651 
652 		params->allocated_tzp = true;
653 	}
654 
655 	if (!tz->tzp->sustainable_power)
656 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
657 
658 	get_governor_trips(tz, params);
659 
660 	if (tz->num_trips > 0) {
661 		ret = tz->ops->get_trip_temp(tz,
662 					params->trip_max_desired_temperature,
663 					&control_temp);
664 		if (!ret)
665 			estimate_pid_constants(tz, tz->tzp->sustainable_power,
666 					       params->trip_switch_on,
667 					       control_temp);
668 	}
669 
670 	reset_pid_controller(params);
671 
672 	tz->governor_data = params;
673 
674 	return 0;
675 
676 free_params:
677 	kfree(params);
678 
679 	return ret;
680 }
681 
682 static void power_allocator_unbind(struct thermal_zone_device *tz)
683 {
684 	struct power_allocator_params *params = tz->governor_data;
685 
686 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
687 
688 	if (params->allocated_tzp) {
689 		kfree(tz->tzp);
690 		tz->tzp = NULL;
691 	}
692 
693 	kfree(tz->governor_data);
694 	tz->governor_data = NULL;
695 }
696 
697 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
698 {
699 	int ret;
700 	int switch_on_temp, control_temp;
701 	struct power_allocator_params *params = tz->governor_data;
702 	bool update;
703 
704 	lockdep_assert_held(&tz->lock);
705 
706 	/*
707 	 * We get called for every trip point but we only need to do
708 	 * our calculations once
709 	 */
710 	if (trip != params->trip_max_desired_temperature)
711 		return 0;
712 
713 	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
714 				     &switch_on_temp);
715 	if (!ret && (tz->temperature < switch_on_temp)) {
716 		update = (tz->last_temperature >= switch_on_temp);
717 		tz->passive = 0;
718 		reset_pid_controller(params);
719 		allow_maximum_power(tz, update);
720 		return 0;
721 	}
722 
723 	tz->passive = 1;
724 
725 	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
726 				&control_temp);
727 	if (ret) {
728 		dev_warn(&tz->device,
729 			 "Failed to get the maximum desired temperature: %d\n",
730 			 ret);
731 		return ret;
732 	}
733 
734 	return allocate_power(tz, control_temp);
735 }
736 
737 static struct thermal_governor thermal_gov_power_allocator = {
738 	.name		= "power_allocator",
739 	.bind_to_tz	= power_allocator_bind,
740 	.unbind_from_tz	= power_allocator_unbind,
741 	.throttle	= power_allocator_throttle,
742 };
743 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
744