1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A power allocator to manage temperature 4 * 5 * Copyright (C) 2014 ARM Ltd. 6 * 7 */ 8 9 #define pr_fmt(fmt) "Power allocator: " fmt 10 11 #include <linux/slab.h> 12 #include <linux/thermal.h> 13 14 #define CREATE_TRACE_POINTS 15 #include <trace/events/thermal_power_allocator.h> 16 17 #include "thermal_core.h" 18 19 #define INVALID_TRIP -1 20 21 #define FRAC_BITS 10 22 #define int_to_frac(x) ((x) << FRAC_BITS) 23 #define frac_to_int(x) ((x) >> FRAC_BITS) 24 25 /** 26 * mul_frac() - multiply two fixed-point numbers 27 * @x: first multiplicand 28 * @y: second multiplicand 29 * 30 * Return: the result of multiplying two fixed-point numbers. The 31 * result is also a fixed-point number. 32 */ 33 static inline s64 mul_frac(s64 x, s64 y) 34 { 35 return (x * y) >> FRAC_BITS; 36 } 37 38 /** 39 * div_frac() - divide two fixed-point numbers 40 * @x: the dividend 41 * @y: the divisor 42 * 43 * Return: the result of dividing two fixed-point numbers. The 44 * result is also a fixed-point number. 45 */ 46 static inline s64 div_frac(s64 x, s64 y) 47 { 48 return div_s64(x << FRAC_BITS, y); 49 } 50 51 /** 52 * struct power_allocator_params - parameters for the power allocator governor 53 * @allocated_tzp: whether we have allocated tzp for this thermal zone and 54 * it needs to be freed on unbind 55 * @err_integral: accumulated error in the PID controller. 56 * @prev_err: error in the previous iteration of the PID controller. 57 * Used to calculate the derivative term. 58 * @trip_switch_on: first passive trip point of the thermal zone. The 59 * governor switches on when this trip point is crossed. 60 * If the thermal zone only has one passive trip point, 61 * @trip_switch_on should be INVALID_TRIP. 62 * @trip_max_desired_temperature: last passive trip point of the thermal 63 * zone. The temperature we are 64 * controlling for. 65 * @sustainable_power: Sustainable power (heat) that this thermal zone can 66 * dissipate 67 */ 68 struct power_allocator_params { 69 bool allocated_tzp; 70 s64 err_integral; 71 s32 prev_err; 72 int trip_switch_on; 73 int trip_max_desired_temperature; 74 u32 sustainable_power; 75 }; 76 77 /** 78 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone 79 * @tz: thermal zone we are operating in 80 * 81 * For thermal zones that don't provide a sustainable_power in their 82 * thermal_zone_params, estimate one. Calculate it using the minimum 83 * power of all the cooling devices as that gives a valid value that 84 * can give some degree of functionality. For optimal performance of 85 * this governor, provide a sustainable_power in the thermal zone's 86 * thermal_zone_params. 87 */ 88 static u32 estimate_sustainable_power(struct thermal_zone_device *tz) 89 { 90 u32 sustainable_power = 0; 91 struct thermal_instance *instance; 92 struct power_allocator_params *params = tz->governor_data; 93 94 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 95 struct thermal_cooling_device *cdev = instance->cdev; 96 u32 min_power; 97 98 if (instance->trip != params->trip_max_desired_temperature) 99 continue; 100 101 if (!cdev_is_power_actor(cdev)) 102 continue; 103 104 if (cdev->ops->state2power(cdev, instance->upper, &min_power)) 105 continue; 106 107 sustainable_power += min_power; 108 } 109 110 return sustainable_power; 111 } 112 113 /** 114 * estimate_pid_constants() - Estimate the constants for the PID controller 115 * @tz: thermal zone for which to estimate the constants 116 * @sustainable_power: sustainable power for the thermal zone 117 * @trip_switch_on: trip point number for the switch on temperature 118 * @control_temp: target temperature for the power allocator governor 119 * 120 * This function is used to update the estimation of the PID 121 * controller constants in struct thermal_zone_parameters. 122 */ 123 static void estimate_pid_constants(struct thermal_zone_device *tz, 124 u32 sustainable_power, int trip_switch_on, 125 int control_temp) 126 { 127 int ret; 128 int switch_on_temp; 129 u32 temperature_threshold; 130 s32 k_i; 131 132 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp); 133 if (ret) 134 switch_on_temp = 0; 135 136 temperature_threshold = control_temp - switch_on_temp; 137 /* 138 * estimate_pid_constants() tries to find appropriate default 139 * values for thermal zones that don't provide them. If a 140 * system integrator has configured a thermal zone with two 141 * passive trip points at the same temperature, that person 142 * hasn't put any effort to set up the thermal zone properly 143 * so just give up. 144 */ 145 if (!temperature_threshold) 146 return; 147 148 tz->tzp->k_po = int_to_frac(sustainable_power) / 149 temperature_threshold; 150 151 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / 152 temperature_threshold; 153 154 k_i = tz->tzp->k_pu / 10; 155 tz->tzp->k_i = k_i > 0 ? k_i : 1; 156 157 /* 158 * The default for k_d and integral_cutoff is 0, so we can 159 * leave them as they are. 160 */ 161 } 162 163 /** 164 * get_sustainable_power() - Get the right sustainable power 165 * @tz: thermal zone for which to estimate the constants 166 * @params: parameters for the power allocator governor 167 * @control_temp: target temperature for the power allocator governor 168 * 169 * This function is used for getting the proper sustainable power value based 170 * on variables which might be updated by the user sysfs interface. If that 171 * happen the new value is going to be estimated and updated. It is also used 172 * after thermal zone binding, where the initial values where set to 0. 173 */ 174 static u32 get_sustainable_power(struct thermal_zone_device *tz, 175 struct power_allocator_params *params, 176 int control_temp) 177 { 178 u32 sustainable_power; 179 180 if (!tz->tzp->sustainable_power) 181 sustainable_power = estimate_sustainable_power(tz); 182 else 183 sustainable_power = tz->tzp->sustainable_power; 184 185 /* Check if it's init value 0 or there was update via sysfs */ 186 if (sustainable_power != params->sustainable_power) { 187 estimate_pid_constants(tz, sustainable_power, 188 params->trip_switch_on, control_temp); 189 190 /* Do the estimation only once and make available in sysfs */ 191 tz->tzp->sustainable_power = sustainable_power; 192 params->sustainable_power = sustainable_power; 193 } 194 195 return sustainable_power; 196 } 197 198 /** 199 * pid_controller() - PID controller 200 * @tz: thermal zone we are operating in 201 * @control_temp: the target temperature in millicelsius 202 * @max_allocatable_power: maximum allocatable power for this thermal zone 203 * 204 * This PID controller increases the available power budget so that the 205 * temperature of the thermal zone gets as close as possible to 206 * @control_temp and limits the power if it exceeds it. k_po is the 207 * proportional term when we are overshooting, k_pu is the 208 * proportional term when we are undershooting. integral_cutoff is a 209 * threshold below which we stop accumulating the error. The 210 * accumulated error is only valid if the requested power will make 211 * the system warmer. If the system is mostly idle, there's no point 212 * in accumulating positive error. 213 * 214 * Return: The power budget for the next period. 215 */ 216 static u32 pid_controller(struct thermal_zone_device *tz, 217 int control_temp, 218 u32 max_allocatable_power) 219 { 220 s64 p, i, d, power_range; 221 s32 err, max_power_frac; 222 u32 sustainable_power; 223 struct power_allocator_params *params = tz->governor_data; 224 225 max_power_frac = int_to_frac(max_allocatable_power); 226 227 sustainable_power = get_sustainable_power(tz, params, control_temp); 228 229 err = control_temp - tz->temperature; 230 err = int_to_frac(err); 231 232 /* Calculate the proportional term */ 233 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); 234 235 /* 236 * Calculate the integral term 237 * 238 * if the error is less than cut off allow integration (but 239 * the integral is limited to max power) 240 */ 241 i = mul_frac(tz->tzp->k_i, params->err_integral); 242 243 if (err < int_to_frac(tz->tzp->integral_cutoff)) { 244 s64 i_next = i + mul_frac(tz->tzp->k_i, err); 245 246 if (abs(i_next) < max_power_frac) { 247 i = i_next; 248 params->err_integral += err; 249 } 250 } 251 252 /* 253 * Calculate the derivative term 254 * 255 * We do err - prev_err, so with a positive k_d, a decreasing 256 * error (i.e. driving closer to the line) results in less 257 * power being applied, slowing down the controller) 258 */ 259 d = mul_frac(tz->tzp->k_d, err - params->prev_err); 260 d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); 261 params->prev_err = err; 262 263 power_range = p + i + d; 264 265 /* feed-forward the known sustainable dissipatable power */ 266 power_range = sustainable_power + frac_to_int(power_range); 267 268 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); 269 270 trace_thermal_power_allocator_pid(tz, frac_to_int(err), 271 frac_to_int(params->err_integral), 272 frac_to_int(p), frac_to_int(i), 273 frac_to_int(d), power_range); 274 275 return power_range; 276 } 277 278 /** 279 * power_actor_set_power() - limit the maximum power a cooling device consumes 280 * @cdev: pointer to &thermal_cooling_device 281 * @instance: thermal instance to update 282 * @power: the power in milliwatts 283 * 284 * Set the cooling device to consume at most @power milliwatts. The limit is 285 * expected to be a cap at the maximum power consumption. 286 * 287 * Return: 0 on success, -EINVAL if the cooling device does not 288 * implement the power actor API or -E* for other failures. 289 */ 290 static int 291 power_actor_set_power(struct thermal_cooling_device *cdev, 292 struct thermal_instance *instance, u32 power) 293 { 294 unsigned long state; 295 int ret; 296 297 ret = cdev->ops->power2state(cdev, power, &state); 298 if (ret) 299 return ret; 300 301 instance->target = clamp_val(state, instance->lower, instance->upper); 302 mutex_lock(&cdev->lock); 303 __thermal_cdev_update(cdev); 304 mutex_unlock(&cdev->lock); 305 306 return 0; 307 } 308 309 /** 310 * divvy_up_power() - divvy the allocated power between the actors 311 * @req_power: each actor's requested power 312 * @max_power: each actor's maximum available power 313 * @num_actors: size of the @req_power, @max_power and @granted_power's array 314 * @total_req_power: sum of @req_power 315 * @power_range: total allocated power 316 * @granted_power: output array: each actor's granted power 317 * @extra_actor_power: an appropriately sized array to be used in the 318 * function as temporary storage of the extra power given 319 * to the actors 320 * 321 * This function divides the total allocated power (@power_range) 322 * fairly between the actors. It first tries to give each actor a 323 * share of the @power_range according to how much power it requested 324 * compared to the rest of the actors. For example, if only one actor 325 * requests power, then it receives all the @power_range. If 326 * three actors each requests 1mW, each receives a third of the 327 * @power_range. 328 * 329 * If any actor received more than their maximum power, then that 330 * surplus is re-divvied among the actors based on how far they are 331 * from their respective maximums. 332 * 333 * Granted power for each actor is written to @granted_power, which 334 * should've been allocated by the calling function. 335 */ 336 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, 337 u32 total_req_power, u32 power_range, 338 u32 *granted_power, u32 *extra_actor_power) 339 { 340 u32 extra_power, capped_extra_power; 341 int i; 342 343 /* 344 * Prevent division by 0 if none of the actors request power. 345 */ 346 if (!total_req_power) 347 total_req_power = 1; 348 349 capped_extra_power = 0; 350 extra_power = 0; 351 for (i = 0; i < num_actors; i++) { 352 u64 req_range = (u64)req_power[i] * power_range; 353 354 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, 355 total_req_power); 356 357 if (granted_power[i] > max_power[i]) { 358 extra_power += granted_power[i] - max_power[i]; 359 granted_power[i] = max_power[i]; 360 } 361 362 extra_actor_power[i] = max_power[i] - granted_power[i]; 363 capped_extra_power += extra_actor_power[i]; 364 } 365 366 if (!extra_power) 367 return; 368 369 /* 370 * Re-divvy the reclaimed extra among actors based on 371 * how far they are from the max 372 */ 373 extra_power = min(extra_power, capped_extra_power); 374 if (capped_extra_power > 0) 375 for (i = 0; i < num_actors; i++) { 376 u64 extra_range = (u64)extra_actor_power[i] * extra_power; 377 granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range, 378 capped_extra_power); 379 } 380 } 381 382 static int allocate_power(struct thermal_zone_device *tz, 383 int control_temp) 384 { 385 struct thermal_instance *instance; 386 struct power_allocator_params *params = tz->governor_data; 387 u32 *req_power, *max_power, *granted_power, *extra_actor_power; 388 u32 *weighted_req_power; 389 u32 total_req_power, max_allocatable_power, total_weighted_req_power; 390 u32 total_granted_power, power_range; 391 int i, num_actors, total_weight, ret = 0; 392 int trip_max_desired_temperature = params->trip_max_desired_temperature; 393 394 num_actors = 0; 395 total_weight = 0; 396 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 397 if ((instance->trip == trip_max_desired_temperature) && 398 cdev_is_power_actor(instance->cdev)) { 399 num_actors++; 400 total_weight += instance->weight; 401 } 402 } 403 404 if (!num_actors) 405 return -ENODEV; 406 407 /* 408 * We need to allocate five arrays of the same size: 409 * req_power, max_power, granted_power, extra_actor_power and 410 * weighted_req_power. They are going to be needed until this 411 * function returns. Allocate them all in one go to simplify 412 * the allocation and deallocation logic. 413 */ 414 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); 415 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); 416 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); 417 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); 418 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); 419 if (!req_power) 420 return -ENOMEM; 421 422 max_power = &req_power[num_actors]; 423 granted_power = &req_power[2 * num_actors]; 424 extra_actor_power = &req_power[3 * num_actors]; 425 weighted_req_power = &req_power[4 * num_actors]; 426 427 i = 0; 428 total_weighted_req_power = 0; 429 total_req_power = 0; 430 max_allocatable_power = 0; 431 432 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 433 int weight; 434 struct thermal_cooling_device *cdev = instance->cdev; 435 436 if (instance->trip != trip_max_desired_temperature) 437 continue; 438 439 if (!cdev_is_power_actor(cdev)) 440 continue; 441 442 if (cdev->ops->get_requested_power(cdev, &req_power[i])) 443 continue; 444 445 if (!total_weight) 446 weight = 1 << FRAC_BITS; 447 else 448 weight = instance->weight; 449 450 weighted_req_power[i] = frac_to_int(weight * req_power[i]); 451 452 if (cdev->ops->state2power(cdev, instance->lower, 453 &max_power[i])) 454 continue; 455 456 total_req_power += req_power[i]; 457 max_allocatable_power += max_power[i]; 458 total_weighted_req_power += weighted_req_power[i]; 459 460 i++; 461 } 462 463 power_range = pid_controller(tz, control_temp, max_allocatable_power); 464 465 divvy_up_power(weighted_req_power, max_power, num_actors, 466 total_weighted_req_power, power_range, granted_power, 467 extra_actor_power); 468 469 total_granted_power = 0; 470 i = 0; 471 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 472 if (instance->trip != trip_max_desired_temperature) 473 continue; 474 475 if (!cdev_is_power_actor(instance->cdev)) 476 continue; 477 478 power_actor_set_power(instance->cdev, instance, 479 granted_power[i]); 480 total_granted_power += granted_power[i]; 481 482 i++; 483 } 484 485 trace_thermal_power_allocator(tz, req_power, total_req_power, 486 granted_power, total_granted_power, 487 num_actors, power_range, 488 max_allocatable_power, tz->temperature, 489 control_temp - tz->temperature); 490 491 kfree(req_power); 492 493 return ret; 494 } 495 496 /** 497 * get_governor_trips() - get the number of the two trip points that are key for this governor 498 * @tz: thermal zone to operate on 499 * @params: pointer to private data for this governor 500 * 501 * The power allocator governor works optimally with two trips points: 502 * a "switch on" trip point and a "maximum desired temperature". These 503 * are defined as the first and last passive trip points. 504 * 505 * If there is only one trip point, then that's considered to be the 506 * "maximum desired temperature" trip point and the governor is always 507 * on. If there are no passive or active trip points, then the 508 * governor won't do anything. In fact, its throttle function 509 * won't be called at all. 510 */ 511 static void get_governor_trips(struct thermal_zone_device *tz, 512 struct power_allocator_params *params) 513 { 514 int i, last_active, last_passive; 515 bool found_first_passive; 516 517 found_first_passive = false; 518 last_active = INVALID_TRIP; 519 last_passive = INVALID_TRIP; 520 521 for (i = 0; i < tz->num_trips; i++) { 522 enum thermal_trip_type type; 523 int ret; 524 525 ret = tz->ops->get_trip_type(tz, i, &type); 526 if (ret) { 527 dev_warn(&tz->device, 528 "Failed to get trip point %d type: %d\n", i, 529 ret); 530 continue; 531 } 532 533 if (type == THERMAL_TRIP_PASSIVE) { 534 if (!found_first_passive) { 535 params->trip_switch_on = i; 536 found_first_passive = true; 537 } else { 538 last_passive = i; 539 } 540 } else if (type == THERMAL_TRIP_ACTIVE) { 541 last_active = i; 542 } else { 543 break; 544 } 545 } 546 547 if (last_passive != INVALID_TRIP) { 548 params->trip_max_desired_temperature = last_passive; 549 } else if (found_first_passive) { 550 params->trip_max_desired_temperature = params->trip_switch_on; 551 params->trip_switch_on = INVALID_TRIP; 552 } else { 553 params->trip_switch_on = INVALID_TRIP; 554 params->trip_max_desired_temperature = last_active; 555 } 556 } 557 558 static void reset_pid_controller(struct power_allocator_params *params) 559 { 560 params->err_integral = 0; 561 params->prev_err = 0; 562 } 563 564 static void allow_maximum_power(struct thermal_zone_device *tz, bool update) 565 { 566 struct thermal_instance *instance; 567 struct power_allocator_params *params = tz->governor_data; 568 u32 req_power; 569 570 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 571 struct thermal_cooling_device *cdev = instance->cdev; 572 573 if ((instance->trip != params->trip_max_desired_temperature) || 574 (!cdev_is_power_actor(instance->cdev))) 575 continue; 576 577 instance->target = 0; 578 mutex_lock(&instance->cdev->lock); 579 /* 580 * Call for updating the cooling devices local stats and avoid 581 * periods of dozen of seconds when those have not been 582 * maintained. 583 */ 584 cdev->ops->get_requested_power(cdev, &req_power); 585 586 if (update) 587 __thermal_cdev_update(instance->cdev); 588 589 mutex_unlock(&instance->cdev->lock); 590 } 591 } 592 593 /** 594 * check_power_actors() - Check all cooling devices and warn when they are 595 * not power actors 596 * @tz: thermal zone to operate on 597 * 598 * Check all cooling devices in the @tz and warn every time they are missing 599 * power actor API. The warning should help to investigate the issue, which 600 * could be e.g. lack of Energy Model for a given device. 601 * 602 * Return: 0 on success, -EINVAL if any cooling device does not implement 603 * the power actor API. 604 */ 605 static int check_power_actors(struct thermal_zone_device *tz) 606 { 607 struct thermal_instance *instance; 608 int ret = 0; 609 610 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 611 if (!cdev_is_power_actor(instance->cdev)) { 612 dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", 613 instance->cdev->type); 614 ret = -EINVAL; 615 } 616 } 617 618 return ret; 619 } 620 621 /** 622 * power_allocator_bind() - bind the power_allocator governor to a thermal zone 623 * @tz: thermal zone to bind it to 624 * 625 * Initialize the PID controller parameters and bind it to the thermal 626 * zone. 627 * 628 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL 629 * when there are unsupported cooling devices in the @tz. 630 */ 631 static int power_allocator_bind(struct thermal_zone_device *tz) 632 { 633 int ret; 634 struct power_allocator_params *params; 635 int control_temp; 636 637 ret = check_power_actors(tz); 638 if (ret) 639 return ret; 640 641 params = kzalloc(sizeof(*params), GFP_KERNEL); 642 if (!params) 643 return -ENOMEM; 644 645 if (!tz->tzp) { 646 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); 647 if (!tz->tzp) { 648 ret = -ENOMEM; 649 goto free_params; 650 } 651 652 params->allocated_tzp = true; 653 } 654 655 if (!tz->tzp->sustainable_power) 656 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); 657 658 get_governor_trips(tz, params); 659 660 if (tz->num_trips > 0) { 661 ret = tz->ops->get_trip_temp(tz, 662 params->trip_max_desired_temperature, 663 &control_temp); 664 if (!ret) 665 estimate_pid_constants(tz, tz->tzp->sustainable_power, 666 params->trip_switch_on, 667 control_temp); 668 } 669 670 reset_pid_controller(params); 671 672 tz->governor_data = params; 673 674 return 0; 675 676 free_params: 677 kfree(params); 678 679 return ret; 680 } 681 682 static void power_allocator_unbind(struct thermal_zone_device *tz) 683 { 684 struct power_allocator_params *params = tz->governor_data; 685 686 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); 687 688 if (params->allocated_tzp) { 689 kfree(tz->tzp); 690 tz->tzp = NULL; 691 } 692 693 kfree(tz->governor_data); 694 tz->governor_data = NULL; 695 } 696 697 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) 698 { 699 int ret; 700 int switch_on_temp, control_temp; 701 struct power_allocator_params *params = tz->governor_data; 702 bool update; 703 704 lockdep_assert_held(&tz->lock); 705 706 /* 707 * We get called for every trip point but we only need to do 708 * our calculations once 709 */ 710 if (trip != params->trip_max_desired_temperature) 711 return 0; 712 713 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, 714 &switch_on_temp); 715 if (!ret && (tz->temperature < switch_on_temp)) { 716 update = (tz->last_temperature >= switch_on_temp); 717 tz->passive = 0; 718 reset_pid_controller(params); 719 allow_maximum_power(tz, update); 720 return 0; 721 } 722 723 tz->passive = 1; 724 725 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, 726 &control_temp); 727 if (ret) { 728 dev_warn(&tz->device, 729 "Failed to get the maximum desired temperature: %d\n", 730 ret); 731 return ret; 732 } 733 734 return allocate_power(tz, control_temp); 735 } 736 737 static struct thermal_governor thermal_gov_power_allocator = { 738 .name = "power_allocator", 739 .bind_to_tz = power_allocator_bind, 740 .unbind_from_tz = power_allocator_unbind, 741 .throttle = power_allocator_throttle, 742 }; 743 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); 744