1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20 
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/thermal.h>
28 
29 #include <trace/events/thermal.h>
30 
31 #define SCALE_ERROR_MITIGATION 100
32 
33 static DEFINE_IDA(devfreq_ida);
34 
35 /**
36  * struct devfreq_cooling_device - Devfreq cooling device
37  * @id:		unique integer value corresponding to each
38  *		devfreq_cooling_device registered.
39  * @cdev:	Pointer to associated thermal cooling device.
40  * @devfreq:	Pointer to associated devfreq device.
41  * @cooling_state:	Current cooling state.
42  * @power_table:	Pointer to table with maximum power draw for each
43  *			cooling state. State is the index into the table, and
44  *			the power is in mW.
45  * @freq_table:	Pointer to a table with the frequencies sorted in descending
46  *		order.  You can index the table by cooling device state
47  * @freq_table_size:	Size of the @freq_table and @power_table
48  * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
49  *		@power_table.
50  * @res_util:	Resource utilization scaling factor for the power.
51  *		It is multiplied by 100 to minimize the error. It is used
52  *		for estimation of the power budget instead of using
53  *		'utilization' (which is	'busy_time / 'total_time').
54  *		The 'res_util' range is from 100 to (power_table[state] * 100)
55  *		for the corresponding 'state'.
56  */
57 struct devfreq_cooling_device {
58 	int id;
59 	struct thermal_cooling_device *cdev;
60 	struct devfreq *devfreq;
61 	unsigned long cooling_state;
62 	u32 *power_table;
63 	u32 *freq_table;
64 	size_t freq_table_size;
65 	struct devfreq_cooling_power *power_ops;
66 	u32 res_util;
67 	int capped_state;
68 };
69 
70 /**
71  * partition_enable_opps() - disable all opps above a given state
72  * @dfc:	Pointer to devfreq we are operating on
73  * @cdev_state:	cooling device state we're setting
74  *
75  * Go through the OPPs of the device, enabling all OPPs until
76  * @cdev_state and disabling those frequencies above it.
77  */
78 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
79 				 unsigned long cdev_state)
80 {
81 	int i;
82 	struct device *dev = dfc->devfreq->dev.parent;
83 
84 	for (i = 0; i < dfc->freq_table_size; i++) {
85 		struct dev_pm_opp *opp;
86 		int ret = 0;
87 		unsigned int freq = dfc->freq_table[i];
88 		bool want_enable = i >= cdev_state ? true : false;
89 
90 		opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
91 
92 		if (PTR_ERR(opp) == -ERANGE)
93 			continue;
94 		else if (IS_ERR(opp))
95 			return PTR_ERR(opp);
96 
97 		dev_pm_opp_put(opp);
98 
99 		if (want_enable)
100 			ret = dev_pm_opp_enable(dev, freq);
101 		else
102 			ret = dev_pm_opp_disable(dev, freq);
103 
104 		if (ret)
105 			return ret;
106 	}
107 
108 	return 0;
109 }
110 
111 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
112 					 unsigned long *state)
113 {
114 	struct devfreq_cooling_device *dfc = cdev->devdata;
115 
116 	*state = dfc->freq_table_size - 1;
117 
118 	return 0;
119 }
120 
121 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
122 					 unsigned long *state)
123 {
124 	struct devfreq_cooling_device *dfc = cdev->devdata;
125 
126 	*state = dfc->cooling_state;
127 
128 	return 0;
129 }
130 
131 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
132 					 unsigned long state)
133 {
134 	struct devfreq_cooling_device *dfc = cdev->devdata;
135 	struct devfreq *df = dfc->devfreq;
136 	struct device *dev = df->dev.parent;
137 	int ret;
138 
139 	if (state == dfc->cooling_state)
140 		return 0;
141 
142 	dev_dbg(dev, "Setting cooling state %lu\n", state);
143 
144 	if (state >= dfc->freq_table_size)
145 		return -EINVAL;
146 
147 	ret = partition_enable_opps(dfc, state);
148 	if (ret)
149 		return ret;
150 
151 	dfc->cooling_state = state;
152 
153 	return 0;
154 }
155 
156 /**
157  * freq_get_state() - get the cooling state corresponding to a frequency
158  * @dfc:	Pointer to devfreq cooling device
159  * @freq:	frequency in Hz
160  *
161  * Return: the cooling state associated with the @freq, or
162  * THERMAL_CSTATE_INVALID if it wasn't found.
163  */
164 static unsigned long
165 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
166 {
167 	int i;
168 
169 	for (i = 0; i < dfc->freq_table_size; i++) {
170 		if (dfc->freq_table[i] == freq)
171 			return i;
172 	}
173 
174 	return THERMAL_CSTATE_INVALID;
175 }
176 
177 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
178 {
179 	struct device *dev = df->dev.parent;
180 	unsigned long voltage;
181 	struct dev_pm_opp *opp;
182 
183 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
184 	if (PTR_ERR(opp) == -ERANGE)
185 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
186 
187 	if (IS_ERR(opp)) {
188 		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
189 				    freq, PTR_ERR(opp));
190 		return 0;
191 	}
192 
193 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
194 	dev_pm_opp_put(opp);
195 
196 	if (voltage == 0) {
197 		dev_err_ratelimited(dev,
198 				    "Failed to get voltage for frequency %lu\n",
199 				    freq);
200 	}
201 
202 	return voltage;
203 }
204 
205 /**
206  * get_static_power() - calculate the static power
207  * @dfc:	Pointer to devfreq cooling device
208  * @freq:	Frequency in Hz
209  *
210  * Calculate the static power in milliwatts using the supplied
211  * get_static_power().  The current voltage is calculated using the
212  * OPP library.  If no get_static_power() was supplied, assume the
213  * static power is negligible.
214  */
215 static unsigned long
216 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
217 {
218 	struct devfreq *df = dfc->devfreq;
219 	unsigned long voltage;
220 
221 	if (!dfc->power_ops->get_static_power)
222 		return 0;
223 
224 	voltage = get_voltage(df, freq);
225 
226 	if (voltage == 0)
227 		return 0;
228 
229 	return dfc->power_ops->get_static_power(df, voltage);
230 }
231 
232 /**
233  * get_dynamic_power - calculate the dynamic power
234  * @dfc:	Pointer to devfreq cooling device
235  * @freq:	Frequency in Hz
236  * @voltage:	Voltage in millivolts
237  *
238  * Calculate the dynamic power in milliwatts consumed by the device at
239  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
240  * was supplied as part of the devfreq_cooling_power struct, then that
241  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
242  * Voltage^2 * Frequency) is used.
243  */
244 static unsigned long
245 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
246 		  unsigned long voltage)
247 {
248 	u64 power;
249 	u32 freq_mhz;
250 	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
251 
252 	if (dfc_power->get_dynamic_power)
253 		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
254 						    voltage);
255 
256 	freq_mhz = freq / 1000000;
257 	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
258 	do_div(power, 1000000000);
259 
260 	return power;
261 }
262 
263 
264 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
265 					    unsigned long freq,
266 					    unsigned long voltage)
267 {
268 	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
269 							       voltage);
270 }
271 
272 
273 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
274 					       struct thermal_zone_device *tz,
275 					       u32 *power)
276 {
277 	struct devfreq_cooling_device *dfc = cdev->devdata;
278 	struct devfreq *df = dfc->devfreq;
279 	struct devfreq_dev_status *status = &df->last_status;
280 	unsigned long state;
281 	unsigned long freq = status->current_frequency;
282 	unsigned long voltage;
283 	u32 dyn_power = 0;
284 	u32 static_power = 0;
285 	int res;
286 
287 	state = freq_get_state(dfc, freq);
288 	if (state == THERMAL_CSTATE_INVALID) {
289 		res = -EAGAIN;
290 		goto fail;
291 	}
292 
293 	if (dfc->power_ops->get_real_power) {
294 		voltage = get_voltage(df, freq);
295 		if (voltage == 0) {
296 			res = -EINVAL;
297 			goto fail;
298 		}
299 
300 		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
301 		if (!res) {
302 			state = dfc->capped_state;
303 			dfc->res_util = dfc->power_table[state];
304 			dfc->res_util *= SCALE_ERROR_MITIGATION;
305 
306 			if (*power > 1)
307 				dfc->res_util /= *power;
308 		} else {
309 			goto fail;
310 		}
311 	} else {
312 		dyn_power = dfc->power_table[state];
313 
314 		/* Scale dynamic power for utilization */
315 		dyn_power *= status->busy_time;
316 		dyn_power /= status->total_time;
317 		/* Get static power */
318 		static_power = get_static_power(dfc, freq);
319 
320 		*power = dyn_power + static_power;
321 	}
322 
323 	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
324 					      static_power, *power);
325 
326 	return 0;
327 fail:
328 	/* It is safe to set max in this case */
329 	dfc->res_util = SCALE_ERROR_MITIGATION;
330 	return res;
331 }
332 
333 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
334 				       struct thermal_zone_device *tz,
335 				       unsigned long state,
336 				       u32 *power)
337 {
338 	struct devfreq_cooling_device *dfc = cdev->devdata;
339 	unsigned long freq;
340 	u32 static_power;
341 
342 	if (state >= dfc->freq_table_size)
343 		return -EINVAL;
344 
345 	freq = dfc->freq_table[state];
346 	static_power = get_static_power(dfc, freq);
347 
348 	*power = dfc->power_table[state] + static_power;
349 	return 0;
350 }
351 
352 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
353 				       struct thermal_zone_device *tz,
354 				       u32 power, unsigned long *state)
355 {
356 	struct devfreq_cooling_device *dfc = cdev->devdata;
357 	struct devfreq *df = dfc->devfreq;
358 	struct devfreq_dev_status *status = &df->last_status;
359 	unsigned long freq = status->current_frequency;
360 	unsigned long busy_time;
361 	s32 dyn_power;
362 	u32 static_power;
363 	s32 est_power;
364 	int i;
365 
366 	if (dfc->power_ops->get_real_power) {
367 		/* Scale for resource utilization */
368 		est_power = power * dfc->res_util;
369 		est_power /= SCALE_ERROR_MITIGATION;
370 	} else {
371 		static_power = get_static_power(dfc, freq);
372 
373 		dyn_power = power - static_power;
374 		dyn_power = dyn_power > 0 ? dyn_power : 0;
375 
376 		/* Scale dynamic power for utilization */
377 		busy_time = status->busy_time ?: 1;
378 		est_power = (dyn_power * status->total_time) / busy_time;
379 	}
380 
381 	/*
382 	 * Find the first cooling state that is within the power
383 	 * budget for dynamic power.
384 	 */
385 	for (i = 0; i < dfc->freq_table_size - 1; i++)
386 		if (est_power >= dfc->power_table[i])
387 			break;
388 
389 	*state = i;
390 	dfc->capped_state = i;
391 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
392 	return 0;
393 }
394 
395 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
396 	.get_max_state = devfreq_cooling_get_max_state,
397 	.get_cur_state = devfreq_cooling_get_cur_state,
398 	.set_cur_state = devfreq_cooling_set_cur_state,
399 };
400 
401 /**
402  * devfreq_cooling_gen_tables() - Generate power and freq tables.
403  * @dfc: Pointer to devfreq cooling device.
404  *
405  * Generate power and frequency tables: the power table hold the
406  * device's maximum power usage at each cooling state (OPP).  The
407  * static and dynamic power using the appropriate voltage and
408  * frequency for the state, is acquired from the struct
409  * devfreq_cooling_power, and summed to make the maximum power draw.
410  *
411  * The frequency table holds the frequencies in descending order.
412  * That way its indexed by cooling device state.
413  *
414  * The tables are malloced, and pointers put in dfc.  They must be
415  * freed when unregistering the devfreq cooling device.
416  *
417  * Return: 0 on success, negative error code on failure.
418  */
419 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
420 {
421 	struct devfreq *df = dfc->devfreq;
422 	struct device *dev = df->dev.parent;
423 	int ret, num_opps;
424 	unsigned long freq;
425 	u32 *power_table = NULL;
426 	u32 *freq_table;
427 	int i;
428 
429 	num_opps = dev_pm_opp_get_opp_count(dev);
430 
431 	if (dfc->power_ops) {
432 		power_table = kcalloc(num_opps, sizeof(*power_table),
433 				      GFP_KERNEL);
434 		if (!power_table)
435 			return -ENOMEM;
436 	}
437 
438 	freq_table = kcalloc(num_opps, sizeof(*freq_table),
439 			     GFP_KERNEL);
440 	if (!freq_table) {
441 		ret = -ENOMEM;
442 		goto free_power_table;
443 	}
444 
445 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
446 		unsigned long power, voltage;
447 		struct dev_pm_opp *opp;
448 
449 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
450 		if (IS_ERR(opp)) {
451 			ret = PTR_ERR(opp);
452 			goto free_tables;
453 		}
454 
455 		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
456 		dev_pm_opp_put(opp);
457 
458 		if (dfc->power_ops) {
459 			if (dfc->power_ops->get_real_power)
460 				power = get_total_power(dfc, freq, voltage);
461 			else
462 				power = get_dynamic_power(dfc, freq, voltage);
463 
464 			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
465 				freq / 1000000, voltage, power, power);
466 
467 			power_table[i] = power;
468 		}
469 
470 		freq_table[i] = freq;
471 	}
472 
473 	if (dfc->power_ops)
474 		dfc->power_table = power_table;
475 
476 	dfc->freq_table = freq_table;
477 	dfc->freq_table_size = num_opps;
478 
479 	return 0;
480 
481 free_tables:
482 	kfree(freq_table);
483 free_power_table:
484 	kfree(power_table);
485 
486 	return ret;
487 }
488 
489 /**
490  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
491  *                                      with OF and power information.
492  * @np:	Pointer to OF device_node.
493  * @df:	Pointer to devfreq device.
494  * @dfc_power:	Pointer to devfreq_cooling_power.
495  *
496  * Register a devfreq cooling device.  The available OPPs must be
497  * registered on the device.
498  *
499  * If @dfc_power is provided, the cooling device is registered with the
500  * power extensions.  For the power extensions to work correctly,
501  * devfreq should use the simple_ondemand governor, other governors
502  * are not currently supported.
503  */
504 struct thermal_cooling_device *
505 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
506 				  struct devfreq_cooling_power *dfc_power)
507 {
508 	struct thermal_cooling_device *cdev;
509 	struct devfreq_cooling_device *dfc;
510 	char dev_name[THERMAL_NAME_LENGTH];
511 	int err;
512 
513 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
514 	if (!dfc)
515 		return ERR_PTR(-ENOMEM);
516 
517 	dfc->devfreq = df;
518 
519 	if (dfc_power) {
520 		dfc->power_ops = dfc_power;
521 
522 		devfreq_cooling_ops.get_requested_power =
523 			devfreq_cooling_get_requested_power;
524 		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
525 		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
526 	}
527 
528 	err = devfreq_cooling_gen_tables(dfc);
529 	if (err)
530 		goto free_dfc;
531 
532 	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
533 	if (err < 0)
534 		goto free_tables;
535 	dfc->id = err;
536 
537 	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
538 
539 	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
540 						  &devfreq_cooling_ops);
541 	if (IS_ERR(cdev)) {
542 		err = PTR_ERR(cdev);
543 		dev_err(df->dev.parent,
544 			"Failed to register devfreq cooling device (%d)\n",
545 			err);
546 		goto release_ida;
547 	}
548 
549 	dfc->cdev = cdev;
550 
551 	return cdev;
552 
553 release_ida:
554 	ida_simple_remove(&devfreq_ida, dfc->id);
555 free_tables:
556 	kfree(dfc->power_table);
557 	kfree(dfc->freq_table);
558 free_dfc:
559 	kfree(dfc);
560 
561 	return ERR_PTR(err);
562 }
563 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
564 
565 /**
566  * of_devfreq_cooling_register() - Register devfreq cooling device,
567  *                                with OF information.
568  * @np: Pointer to OF device_node.
569  * @df: Pointer to devfreq device.
570  */
571 struct thermal_cooling_device *
572 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
573 {
574 	return of_devfreq_cooling_register_power(np, df, NULL);
575 }
576 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
577 
578 /**
579  * devfreq_cooling_register() - Register devfreq cooling device.
580  * @df: Pointer to devfreq device.
581  */
582 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
583 {
584 	return of_devfreq_cooling_register(NULL, df);
585 }
586 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
587 
588 /**
589  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
590  * @dfc: Pointer to devfreq cooling device to unregister.
591  */
592 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
593 {
594 	struct devfreq_cooling_device *dfc;
595 
596 	if (!cdev)
597 		return;
598 
599 	dfc = cdev->devdata;
600 
601 	thermal_cooling_device_unregister(dfc->cdev);
602 	ida_simple_remove(&devfreq_ida, dfc->id);
603 	kfree(dfc->power_table);
604 	kfree(dfc->freq_table);
605 
606 	kfree(dfc);
607 }
608 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
609