1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12 
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/pm_opp.h>
20 #include <linux/pm_qos.h>
21 #include <linux/thermal.h>
22 
23 #include <trace/events/thermal.h>
24 
25 #define HZ_PER_KHZ		1000
26 #define SCALE_ERROR_MITIGATION	100
27 
28 static DEFINE_IDA(devfreq_ida);
29 
30 /**
31  * struct devfreq_cooling_device - Devfreq cooling device
32  * @id:		unique integer value corresponding to each
33  *		devfreq_cooling_device registered.
34  * @cdev:	Pointer to associated thermal cooling device.
35  * @devfreq:	Pointer to associated devfreq device.
36  * @cooling_state:	Current cooling state.
37  * @freq_table:	Pointer to a table with the frequencies sorted in descending
38  *		order.  You can index the table by cooling device state
39  * @max_state:	It is the last index, that is, one less than the number of the
40  *		OPPs
41  * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
42  * @res_util:	Resource utilization scaling factor for the power.
43  *		It is multiplied by 100 to minimize the error. It is used
44  *		for estimation of the power budget instead of using
45  *		'utilization' (which is	'busy_time' / 'total_time').
46  *		The 'res_util' range is from 100 to power * 100	for the
47  *		corresponding 'state'.
48  * @capped_state:	index to cooling state with in dynamic power budget
49  * @req_max_freq:	PM QoS request for limiting the maximum frequency
50  *			of the devfreq device.
51  */
52 struct devfreq_cooling_device {
53 	int id;
54 	struct thermal_cooling_device *cdev;
55 	struct devfreq *devfreq;
56 	unsigned long cooling_state;
57 	u32 *freq_table;
58 	size_t max_state;
59 	struct devfreq_cooling_power *power_ops;
60 	u32 res_util;
61 	int capped_state;
62 	struct dev_pm_qos_request req_max_freq;
63 };
64 
65 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
66 					 unsigned long *state)
67 {
68 	struct devfreq_cooling_device *dfc = cdev->devdata;
69 
70 	*state = dfc->max_state;
71 
72 	return 0;
73 }
74 
75 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
76 					 unsigned long *state)
77 {
78 	struct devfreq_cooling_device *dfc = cdev->devdata;
79 
80 	*state = dfc->cooling_state;
81 
82 	return 0;
83 }
84 
85 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
86 					 unsigned long state)
87 {
88 	struct devfreq_cooling_device *dfc = cdev->devdata;
89 	struct devfreq *df = dfc->devfreq;
90 	struct device *dev = df->dev.parent;
91 	unsigned long freq;
92 	int perf_idx;
93 
94 	if (state == dfc->cooling_state)
95 		return 0;
96 
97 	dev_dbg(dev, "Setting cooling state %lu\n", state);
98 
99 	if (state > dfc->max_state)
100 		return -EINVAL;
101 
102 	if (dev->em_pd) {
103 		perf_idx = dfc->max_state - state;
104 		freq = dev->em_pd->table[perf_idx].frequency * 1000;
105 	} else {
106 		freq = dfc->freq_table[state];
107 	}
108 
109 	dev_pm_qos_update_request(&dfc->req_max_freq,
110 				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
111 
112 	dfc->cooling_state = state;
113 
114 	return 0;
115 }
116 
117 /**
118  * get_perf_idx() - get the performance index corresponding to a frequency
119  * @em_pd:	Pointer to device's Energy Model
120  * @freq:	frequency in kHz
121  *
122  * Return: the performance index associated with the @freq, or
123  * -EINVAL if it wasn't found.
124  */
125 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
126 {
127 	int i;
128 
129 	for (i = 0; i < em_pd->nr_perf_states; i++) {
130 		if (em_pd->table[i].frequency == freq)
131 			return i;
132 	}
133 
134 	return -EINVAL;
135 }
136 
137 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
138 {
139 	struct device *dev = df->dev.parent;
140 	unsigned long voltage;
141 	struct dev_pm_opp *opp;
142 
143 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
144 	if (PTR_ERR(opp) == -ERANGE)
145 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
146 
147 	if (IS_ERR(opp)) {
148 		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
149 				    freq, PTR_ERR(opp));
150 		return 0;
151 	}
152 
153 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
154 	dev_pm_opp_put(opp);
155 
156 	if (voltage == 0) {
157 		dev_err_ratelimited(dev,
158 				    "Failed to get voltage for frequency %lu\n",
159 				    freq);
160 	}
161 
162 	return voltage;
163 }
164 
165 static void _normalize_load(struct devfreq_dev_status *status)
166 {
167 	if (status->total_time > 0xfffff) {
168 		status->total_time >>= 10;
169 		status->busy_time >>= 10;
170 	}
171 
172 	status->busy_time <<= 10;
173 	status->busy_time /= status->total_time ? : 1;
174 
175 	status->busy_time = status->busy_time ? : 1;
176 	status->total_time = 1024;
177 }
178 
179 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
180 					       u32 *power)
181 {
182 	struct devfreq_cooling_device *dfc = cdev->devdata;
183 	struct devfreq *df = dfc->devfreq;
184 	struct device *dev = df->dev.parent;
185 	struct devfreq_dev_status status;
186 	unsigned long state;
187 	unsigned long freq;
188 	unsigned long voltage;
189 	int res, perf_idx;
190 
191 	mutex_lock(&df->lock);
192 	status = df->last_status;
193 	mutex_unlock(&df->lock);
194 
195 	freq = status.current_frequency;
196 
197 	if (dfc->power_ops && dfc->power_ops->get_real_power) {
198 		voltage = get_voltage(df, freq);
199 		if (voltage == 0) {
200 			res = -EINVAL;
201 			goto fail;
202 		}
203 
204 		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
205 		if (!res) {
206 			state = dfc->capped_state;
207 			dfc->res_util = dev->em_pd->table[state].power;
208 			dfc->res_util *= SCALE_ERROR_MITIGATION;
209 
210 			if (*power > 1)
211 				dfc->res_util /= *power;
212 		} else {
213 			goto fail;
214 		}
215 	} else {
216 		/* Energy Model frequencies are in kHz */
217 		perf_idx = get_perf_idx(dev->em_pd, freq / 1000);
218 		if (perf_idx < 0) {
219 			res = -EAGAIN;
220 			goto fail;
221 		}
222 
223 		_normalize_load(&status);
224 
225 		/* Scale power for utilization */
226 		*power = dev->em_pd->table[perf_idx].power;
227 		*power *= status.busy_time;
228 		*power >>= 10;
229 	}
230 
231 	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
232 
233 	return 0;
234 fail:
235 	/* It is safe to set max in this case */
236 	dfc->res_util = SCALE_ERROR_MITIGATION;
237 	return res;
238 }
239 
240 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
241 				       unsigned long state, u32 *power)
242 {
243 	struct devfreq_cooling_device *dfc = cdev->devdata;
244 	struct devfreq *df = dfc->devfreq;
245 	struct device *dev = df->dev.parent;
246 	int perf_idx;
247 
248 	if (state > dfc->max_state)
249 		return -EINVAL;
250 
251 	perf_idx = dfc->max_state - state;
252 	*power = dev->em_pd->table[perf_idx].power;
253 
254 	return 0;
255 }
256 
257 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
258 				       u32 power, unsigned long *state)
259 {
260 	struct devfreq_cooling_device *dfc = cdev->devdata;
261 	struct devfreq *df = dfc->devfreq;
262 	struct device *dev = df->dev.parent;
263 	struct devfreq_dev_status status;
264 	unsigned long freq;
265 	s32 est_power;
266 	int i;
267 
268 	mutex_lock(&df->lock);
269 	status = df->last_status;
270 	mutex_unlock(&df->lock);
271 
272 	freq = status.current_frequency;
273 
274 	if (dfc->power_ops && dfc->power_ops->get_real_power) {
275 		/* Scale for resource utilization */
276 		est_power = power * dfc->res_util;
277 		est_power /= SCALE_ERROR_MITIGATION;
278 	} else {
279 		/* Scale dynamic power for utilization */
280 		_normalize_load(&status);
281 		est_power = power << 10;
282 		est_power /= status.busy_time;
283 	}
284 
285 	/*
286 	 * Find the first cooling state that is within the power
287 	 * budget. The EM power table is sorted ascending.
288 	 */
289 	for (i = dfc->max_state; i > 0; i--)
290 		if (est_power >= dev->em_pd->table[i].power)
291 			break;
292 
293 	*state = dfc->max_state - i;
294 	dfc->capped_state = *state;
295 
296 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
297 	return 0;
298 }
299 
300 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
301 	.get_max_state = devfreq_cooling_get_max_state,
302 	.get_cur_state = devfreq_cooling_get_cur_state,
303 	.set_cur_state = devfreq_cooling_set_cur_state,
304 };
305 
306 /**
307  * devfreq_cooling_gen_tables() - Generate frequency table.
308  * @dfc:	Pointer to devfreq cooling device.
309  * @num_opps:	Number of OPPs
310  *
311  * Generate frequency table which holds the frequencies in descending
312  * order. That way its indexed by cooling device state. This is for
313  * compatibility with drivers which do not register Energy Model.
314  *
315  * Return: 0 on success, negative error code on failure.
316  */
317 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
318 				      int num_opps)
319 {
320 	struct devfreq *df = dfc->devfreq;
321 	struct device *dev = df->dev.parent;
322 	unsigned long freq;
323 	int i;
324 
325 	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
326 			     GFP_KERNEL);
327 	if (!dfc->freq_table)
328 		return -ENOMEM;
329 
330 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
331 		struct dev_pm_opp *opp;
332 
333 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
334 		if (IS_ERR(opp)) {
335 			kfree(dfc->freq_table);
336 			return PTR_ERR(opp);
337 		}
338 
339 		dev_pm_opp_put(opp);
340 		dfc->freq_table[i] = freq;
341 	}
342 
343 	return 0;
344 }
345 
346 /**
347  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
348  *                                      with OF and power information.
349  * @np:	Pointer to OF device_node.
350  * @df:	Pointer to devfreq device.
351  * @dfc_power:	Pointer to devfreq_cooling_power.
352  *
353  * Register a devfreq cooling device.  The available OPPs must be
354  * registered on the device.
355  *
356  * If @dfc_power is provided, the cooling device is registered with the
357  * power extensions.  For the power extensions to work correctly,
358  * devfreq should use the simple_ondemand governor, other governors
359  * are not currently supported.
360  */
361 struct thermal_cooling_device *
362 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
363 				  struct devfreq_cooling_power *dfc_power)
364 {
365 	struct thermal_cooling_device *cdev;
366 	struct device *dev = df->dev.parent;
367 	struct devfreq_cooling_device *dfc;
368 	char dev_name[THERMAL_NAME_LENGTH];
369 	int err, num_opps;
370 
371 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
372 	if (!dfc)
373 		return ERR_PTR(-ENOMEM);
374 
375 	dfc->devfreq = df;
376 
377 	if (dev->em_pd) {
378 		devfreq_cooling_ops.get_requested_power =
379 			devfreq_cooling_get_requested_power;
380 		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
381 		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
382 
383 		dfc->power_ops = dfc_power;
384 
385 		num_opps = em_pd_nr_perf_states(dev->em_pd);
386 	} else {
387 		/* Backward compatibility for drivers which do not use IPA */
388 		dev_dbg(dev, "missing EM for cooling device\n");
389 
390 		num_opps = dev_pm_opp_get_opp_count(dev);
391 
392 		err = devfreq_cooling_gen_tables(dfc, num_opps);
393 		if (err)
394 			goto free_dfc;
395 	}
396 
397 	if (num_opps <= 0) {
398 		err = -EINVAL;
399 		goto free_dfc;
400 	}
401 
402 	/* max_state is an index, not a counter */
403 	dfc->max_state = num_opps - 1;
404 
405 	err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
406 				     DEV_PM_QOS_MAX_FREQUENCY,
407 				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
408 	if (err < 0)
409 		goto free_table;
410 
411 	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
412 	if (err < 0)
413 		goto remove_qos_req;
414 
415 	dfc->id = err;
416 
417 	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
418 
419 	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
420 						  &devfreq_cooling_ops);
421 	if (IS_ERR(cdev)) {
422 		err = PTR_ERR(cdev);
423 		dev_err(dev,
424 			"Failed to register devfreq cooling device (%d)\n",
425 			err);
426 		goto release_ida;
427 	}
428 
429 	dfc->cdev = cdev;
430 
431 	return cdev;
432 
433 release_ida:
434 	ida_simple_remove(&devfreq_ida, dfc->id);
435 remove_qos_req:
436 	dev_pm_qos_remove_request(&dfc->req_max_freq);
437 free_table:
438 	kfree(dfc->freq_table);
439 free_dfc:
440 	kfree(dfc);
441 
442 	return ERR_PTR(err);
443 }
444 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
445 
446 /**
447  * of_devfreq_cooling_register() - Register devfreq cooling device,
448  *                                with OF information.
449  * @np: Pointer to OF device_node.
450  * @df: Pointer to devfreq device.
451  */
452 struct thermal_cooling_device *
453 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
454 {
455 	return of_devfreq_cooling_register_power(np, df, NULL);
456 }
457 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
458 
459 /**
460  * devfreq_cooling_register() - Register devfreq cooling device.
461  * @df: Pointer to devfreq device.
462  */
463 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
464 {
465 	return of_devfreq_cooling_register(NULL, df);
466 }
467 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
468 
469 /**
470  * devfreq_cooling_em_register_power() - Register devfreq cooling device with
471  *		power information and automatically register Energy Model (EM)
472  * @df:		Pointer to devfreq device.
473  * @dfc_power:	Pointer to devfreq_cooling_power.
474  *
475  * Register a devfreq cooling device and automatically register EM. The
476  * available OPPs must be registered for the device.
477  *
478  * If @dfc_power is provided, the cooling device is registered with the
479  * power extensions. It is using the simple Energy Model which requires
480  * "dynamic-power-coefficient" a devicetree property. To not break drivers
481  * which miss that DT property, the function won't bail out when the EM
482  * registration failed. The cooling device will be registered if everything
483  * else is OK.
484  */
485 struct thermal_cooling_device *
486 devfreq_cooling_em_register(struct devfreq *df,
487 			    struct devfreq_cooling_power *dfc_power)
488 {
489 	struct thermal_cooling_device *cdev;
490 	struct device *dev;
491 	int ret;
492 
493 	if (IS_ERR_OR_NULL(df))
494 		return ERR_PTR(-EINVAL);
495 
496 	dev = df->dev.parent;
497 
498 	ret = dev_pm_opp_of_register_em(dev, NULL);
499 	if (ret)
500 		dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
501 			ret);
502 
503 	cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
504 
505 	if (IS_ERR_OR_NULL(cdev))
506 		em_dev_unregister_perf_domain(dev);
507 
508 	return cdev;
509 }
510 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
511 
512 /**
513  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
514  * @cdev: Pointer to devfreq cooling device to unregister.
515  *
516  * Unregisters devfreq cooling device and related Energy Model if it was
517  * present.
518  */
519 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
520 {
521 	struct devfreq_cooling_device *dfc;
522 	struct device *dev;
523 
524 	if (IS_ERR_OR_NULL(cdev))
525 		return;
526 
527 	dfc = cdev->devdata;
528 	dev = dfc->devfreq->dev.parent;
529 
530 	thermal_cooling_device_unregister(dfc->cdev);
531 	ida_simple_remove(&devfreq_ida, dfc->id);
532 	dev_pm_qos_remove_request(&dfc->req_max_freq);
533 
534 	em_dev_unregister_perf_domain(dev);
535 
536 	kfree(dfc->freq_table);
537 	kfree(dfc);
538 }
539 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
540