xref: /openbmc/linux/drivers/thermal/devfreq_cooling.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20 
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/thermal.h>
28 
29 #include <trace/events/thermal.h>
30 
31 static DEFINE_IDA(devfreq_ida);
32 
33 /**
34  * struct devfreq_cooling_device - Devfreq cooling device
35  * @id:		unique integer value corresponding to each
36  *		devfreq_cooling_device registered.
37  * @cdev:	Pointer to associated thermal cooling device.
38  * @devfreq:	Pointer to associated devfreq device.
39  * @cooling_state:	Current cooling state.
40  * @power_table:	Pointer to table with maximum power draw for each
41  *			cooling state. State is the index into the table, and
42  *			the power is in mW.
43  * @freq_table:	Pointer to a table with the frequencies sorted in descending
44  *		order.  You can index the table by cooling device state
45  * @freq_table_size:	Size of the @freq_table and @power_table
46  * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
47  *		@power_table.
48  */
49 struct devfreq_cooling_device {
50 	int id;
51 	struct thermal_cooling_device *cdev;
52 	struct devfreq *devfreq;
53 	unsigned long cooling_state;
54 	u32 *power_table;
55 	u32 *freq_table;
56 	size_t freq_table_size;
57 	struct devfreq_cooling_power *power_ops;
58 };
59 
60 /**
61  * partition_enable_opps() - disable all opps above a given state
62  * @dfc:	Pointer to devfreq we are operating on
63  * @cdev_state:	cooling device state we're setting
64  *
65  * Go through the OPPs of the device, enabling all OPPs until
66  * @cdev_state and disabling those frequencies above it.
67  */
68 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
69 				 unsigned long cdev_state)
70 {
71 	int i;
72 	struct device *dev = dfc->devfreq->dev.parent;
73 
74 	for (i = 0; i < dfc->freq_table_size; i++) {
75 		struct dev_pm_opp *opp;
76 		int ret = 0;
77 		unsigned int freq = dfc->freq_table[i];
78 		bool want_enable = i >= cdev_state ? true : false;
79 
80 		opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
81 
82 		if (PTR_ERR(opp) == -ERANGE)
83 			continue;
84 		else if (IS_ERR(opp))
85 			return PTR_ERR(opp);
86 
87 		dev_pm_opp_put(opp);
88 
89 		if (want_enable)
90 			ret = dev_pm_opp_enable(dev, freq);
91 		else
92 			ret = dev_pm_opp_disable(dev, freq);
93 
94 		if (ret)
95 			return ret;
96 	}
97 
98 	return 0;
99 }
100 
101 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
102 					 unsigned long *state)
103 {
104 	struct devfreq_cooling_device *dfc = cdev->devdata;
105 
106 	*state = dfc->freq_table_size - 1;
107 
108 	return 0;
109 }
110 
111 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
112 					 unsigned long *state)
113 {
114 	struct devfreq_cooling_device *dfc = cdev->devdata;
115 
116 	*state = dfc->cooling_state;
117 
118 	return 0;
119 }
120 
121 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
122 					 unsigned long state)
123 {
124 	struct devfreq_cooling_device *dfc = cdev->devdata;
125 	struct devfreq *df = dfc->devfreq;
126 	struct device *dev = df->dev.parent;
127 	int ret;
128 
129 	if (state == dfc->cooling_state)
130 		return 0;
131 
132 	dev_dbg(dev, "Setting cooling state %lu\n", state);
133 
134 	if (state >= dfc->freq_table_size)
135 		return -EINVAL;
136 
137 	ret = partition_enable_opps(dfc, state);
138 	if (ret)
139 		return ret;
140 
141 	dfc->cooling_state = state;
142 
143 	return 0;
144 }
145 
146 /**
147  * freq_get_state() - get the cooling state corresponding to a frequency
148  * @dfc:	Pointer to devfreq cooling device
149  * @freq:	frequency in Hz
150  *
151  * Return: the cooling state associated with the @freq, or
152  * THERMAL_CSTATE_INVALID if it wasn't found.
153  */
154 static unsigned long
155 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
156 {
157 	int i;
158 
159 	for (i = 0; i < dfc->freq_table_size; i++) {
160 		if (dfc->freq_table[i] == freq)
161 			return i;
162 	}
163 
164 	return THERMAL_CSTATE_INVALID;
165 }
166 
167 /**
168  * get_static_power() - calculate the static power
169  * @dfc:	Pointer to devfreq cooling device
170  * @freq:	Frequency in Hz
171  *
172  * Calculate the static power in milliwatts using the supplied
173  * get_static_power().  The current voltage is calculated using the
174  * OPP library.  If no get_static_power() was supplied, assume the
175  * static power is negligible.
176  */
177 static unsigned long
178 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
179 {
180 	struct devfreq *df = dfc->devfreq;
181 	struct device *dev = df->dev.parent;
182 	unsigned long voltage;
183 	struct dev_pm_opp *opp;
184 
185 	if (!dfc->power_ops->get_static_power)
186 		return 0;
187 
188 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
189 	if (PTR_ERR(opp) == -ERANGE)
190 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
191 
192 	if (IS_ERR(opp)) {
193 		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
194 				    freq, PTR_ERR(opp));
195 		return 0;
196 	}
197 
198 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
199 	dev_pm_opp_put(opp);
200 
201 	if (voltage == 0) {
202 		dev_err_ratelimited(dev,
203 				    "Failed to get voltage for frequency %lu\n",
204 				    freq);
205 		return 0;
206 	}
207 
208 	return dfc->power_ops->get_static_power(df, voltage);
209 }
210 
211 /**
212  * get_dynamic_power - calculate the dynamic power
213  * @dfc:	Pointer to devfreq cooling device
214  * @freq:	Frequency in Hz
215  * @voltage:	Voltage in millivolts
216  *
217  * Calculate the dynamic power in milliwatts consumed by the device at
218  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
219  * was supplied as part of the devfreq_cooling_power struct, then that
220  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
221  * Voltage^2 * Frequency) is used.
222  */
223 static unsigned long
224 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
225 		  unsigned long voltage)
226 {
227 	u64 power;
228 	u32 freq_mhz;
229 	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
230 
231 	if (dfc_power->get_dynamic_power)
232 		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
233 						    voltage);
234 
235 	freq_mhz = freq / 1000000;
236 	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
237 	do_div(power, 1000000000);
238 
239 	return power;
240 }
241 
242 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
243 					       struct thermal_zone_device *tz,
244 					       u32 *power)
245 {
246 	struct devfreq_cooling_device *dfc = cdev->devdata;
247 	struct devfreq *df = dfc->devfreq;
248 	struct devfreq_dev_status *status = &df->last_status;
249 	unsigned long state;
250 	unsigned long freq = status->current_frequency;
251 	u32 dyn_power, static_power;
252 
253 	/* Get dynamic power for state */
254 	state = freq_get_state(dfc, freq);
255 	if (state == THERMAL_CSTATE_INVALID)
256 		return -EAGAIN;
257 
258 	dyn_power = dfc->power_table[state];
259 
260 	/* Scale dynamic power for utilization */
261 	dyn_power = (dyn_power * status->busy_time) / status->total_time;
262 
263 	/* Get static power */
264 	static_power = get_static_power(dfc, freq);
265 
266 	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
267 					      static_power);
268 
269 	*power = dyn_power + static_power;
270 
271 	return 0;
272 }
273 
274 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
275 				       struct thermal_zone_device *tz,
276 				       unsigned long state,
277 				       u32 *power)
278 {
279 	struct devfreq_cooling_device *dfc = cdev->devdata;
280 	unsigned long freq;
281 	u32 static_power;
282 
283 	if (state >= dfc->freq_table_size)
284 		return -EINVAL;
285 
286 	freq = dfc->freq_table[state];
287 	static_power = get_static_power(dfc, freq);
288 
289 	*power = dfc->power_table[state] + static_power;
290 	return 0;
291 }
292 
293 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
294 				       struct thermal_zone_device *tz,
295 				       u32 power, unsigned long *state)
296 {
297 	struct devfreq_cooling_device *dfc = cdev->devdata;
298 	struct devfreq *df = dfc->devfreq;
299 	struct devfreq_dev_status *status = &df->last_status;
300 	unsigned long freq = status->current_frequency;
301 	unsigned long busy_time;
302 	s32 dyn_power;
303 	u32 static_power;
304 	int i;
305 
306 	static_power = get_static_power(dfc, freq);
307 
308 	dyn_power = power - static_power;
309 	dyn_power = dyn_power > 0 ? dyn_power : 0;
310 
311 	/* Scale dynamic power for utilization */
312 	busy_time = status->busy_time ?: 1;
313 	dyn_power = (dyn_power * status->total_time) / busy_time;
314 
315 	/*
316 	 * Find the first cooling state that is within the power
317 	 * budget for dynamic power.
318 	 */
319 	for (i = 0; i < dfc->freq_table_size - 1; i++)
320 		if (dyn_power >= dfc->power_table[i])
321 			break;
322 
323 	*state = i;
324 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
325 	return 0;
326 }
327 
328 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
329 	.get_max_state = devfreq_cooling_get_max_state,
330 	.get_cur_state = devfreq_cooling_get_cur_state,
331 	.set_cur_state = devfreq_cooling_set_cur_state,
332 };
333 
334 /**
335  * devfreq_cooling_gen_tables() - Generate power and freq tables.
336  * @dfc: Pointer to devfreq cooling device.
337  *
338  * Generate power and frequency tables: the power table hold the
339  * device's maximum power usage at each cooling state (OPP).  The
340  * static and dynamic power using the appropriate voltage and
341  * frequency for the state, is acquired from the struct
342  * devfreq_cooling_power, and summed to make the maximum power draw.
343  *
344  * The frequency table holds the frequencies in descending order.
345  * That way its indexed by cooling device state.
346  *
347  * The tables are malloced, and pointers put in dfc.  They must be
348  * freed when unregistering the devfreq cooling device.
349  *
350  * Return: 0 on success, negative error code on failure.
351  */
352 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
353 {
354 	struct devfreq *df = dfc->devfreq;
355 	struct device *dev = df->dev.parent;
356 	int ret, num_opps;
357 	unsigned long freq;
358 	u32 *power_table = NULL;
359 	u32 *freq_table;
360 	int i;
361 
362 	num_opps = dev_pm_opp_get_opp_count(dev);
363 
364 	if (dfc->power_ops) {
365 		power_table = kcalloc(num_opps, sizeof(*power_table),
366 				      GFP_KERNEL);
367 		if (!power_table)
368 			return -ENOMEM;
369 	}
370 
371 	freq_table = kcalloc(num_opps, sizeof(*freq_table),
372 			     GFP_KERNEL);
373 	if (!freq_table) {
374 		ret = -ENOMEM;
375 		goto free_power_table;
376 	}
377 
378 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
379 		unsigned long power_dyn, voltage;
380 		struct dev_pm_opp *opp;
381 
382 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
383 		if (IS_ERR(opp)) {
384 			ret = PTR_ERR(opp);
385 			goto free_tables;
386 		}
387 
388 		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
389 		dev_pm_opp_put(opp);
390 
391 		if (dfc->power_ops) {
392 			power_dyn = get_dynamic_power(dfc, freq, voltage);
393 
394 			dev_dbg(dev, "Dynamic power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
395 				freq / 1000000, voltage, power_dyn, power_dyn);
396 
397 			power_table[i] = power_dyn;
398 		}
399 
400 		freq_table[i] = freq;
401 	}
402 
403 	if (dfc->power_ops)
404 		dfc->power_table = power_table;
405 
406 	dfc->freq_table = freq_table;
407 	dfc->freq_table_size = num_opps;
408 
409 	return 0;
410 
411 free_tables:
412 	kfree(freq_table);
413 free_power_table:
414 	kfree(power_table);
415 
416 	return ret;
417 }
418 
419 /**
420  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
421  *                                      with OF and power information.
422  * @np:	Pointer to OF device_node.
423  * @df:	Pointer to devfreq device.
424  * @dfc_power:	Pointer to devfreq_cooling_power.
425  *
426  * Register a devfreq cooling device.  The available OPPs must be
427  * registered on the device.
428  *
429  * If @dfc_power is provided, the cooling device is registered with the
430  * power extensions.  For the power extensions to work correctly,
431  * devfreq should use the simple_ondemand governor, other governors
432  * are not currently supported.
433  */
434 struct thermal_cooling_device *
435 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
436 				  struct devfreq_cooling_power *dfc_power)
437 {
438 	struct thermal_cooling_device *cdev;
439 	struct devfreq_cooling_device *dfc;
440 	char dev_name[THERMAL_NAME_LENGTH];
441 	int err;
442 
443 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
444 	if (!dfc)
445 		return ERR_PTR(-ENOMEM);
446 
447 	dfc->devfreq = df;
448 
449 	if (dfc_power) {
450 		dfc->power_ops = dfc_power;
451 
452 		devfreq_cooling_ops.get_requested_power =
453 			devfreq_cooling_get_requested_power;
454 		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
455 		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
456 	}
457 
458 	err = devfreq_cooling_gen_tables(dfc);
459 	if (err)
460 		goto free_dfc;
461 
462 	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
463 	if (err < 0)
464 		goto free_tables;
465 	dfc->id = err;
466 
467 	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
468 
469 	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
470 						  &devfreq_cooling_ops);
471 	if (IS_ERR(cdev)) {
472 		err = PTR_ERR(cdev);
473 		dev_err(df->dev.parent,
474 			"Failed to register devfreq cooling device (%d)\n",
475 			err);
476 		goto release_ida;
477 	}
478 
479 	dfc->cdev = cdev;
480 
481 	return cdev;
482 
483 release_ida:
484 	ida_simple_remove(&devfreq_ida, dfc->id);
485 free_tables:
486 	kfree(dfc->power_table);
487 	kfree(dfc->freq_table);
488 free_dfc:
489 	kfree(dfc);
490 
491 	return ERR_PTR(err);
492 }
493 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
494 
495 /**
496  * of_devfreq_cooling_register() - Register devfreq cooling device,
497  *                                with OF information.
498  * @np: Pointer to OF device_node.
499  * @df: Pointer to devfreq device.
500  */
501 struct thermal_cooling_device *
502 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
503 {
504 	return of_devfreq_cooling_register_power(np, df, NULL);
505 }
506 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
507 
508 /**
509  * devfreq_cooling_register() - Register devfreq cooling device.
510  * @df: Pointer to devfreq device.
511  */
512 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
513 {
514 	return of_devfreq_cooling_register(NULL, df);
515 }
516 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
517 
518 /**
519  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
520  * @dfc: Pointer to devfreq cooling device to unregister.
521  */
522 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
523 {
524 	struct devfreq_cooling_device *dfc;
525 
526 	if (!cdev)
527 		return;
528 
529 	dfc = cdev->devdata;
530 
531 	thermal_cooling_device_unregister(dfc->cdev);
532 	ida_simple_remove(&devfreq_ida, dfc->id);
533 	kfree(dfc->power_table);
534 	kfree(dfc->freq_table);
535 
536 	kfree(dfc);
537 }
538 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
539