1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12 
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/export.h>
16 #include <linux/idr.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21 
22 #include <trace/events/thermal.h>
23 
24 #define HZ_PER_KHZ		1000
25 #define SCALE_ERROR_MITIGATION	100
26 
27 static DEFINE_IDA(devfreq_ida);
28 
29 /**
30  * struct devfreq_cooling_device - Devfreq cooling device
31  * @id:		unique integer value corresponding to each
32  *		devfreq_cooling_device registered.
33  * @cdev:	Pointer to associated thermal cooling device.
34  * @devfreq:	Pointer to associated devfreq device.
35  * @cooling_state:	Current cooling state.
36  * @power_table:	Pointer to table with maximum power draw for each
37  *			cooling state. State is the index into the table, and
38  *			the power is in mW.
39  * @freq_table:	Pointer to a table with the frequencies sorted in descending
40  *		order.  You can index the table by cooling device state
41  * @freq_table_size:	Size of the @freq_table and @power_table
42  * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
43  *		@power_table.
44  * @res_util:	Resource utilization scaling factor for the power.
45  *		It is multiplied by 100 to minimize the error. It is used
46  *		for estimation of the power budget instead of using
47  *		'utilization' (which is	'busy_time / 'total_time').
48  *		The 'res_util' range is from 100 to (power_table[state] * 100)
49  *		for the corresponding 'state'.
50  * @capped_state:	index to cooling state with in dynamic power budget
51  * @req_max_freq:	PM QoS request for limiting the maximum frequency
52  *			of the devfreq device.
53  */
54 struct devfreq_cooling_device {
55 	int id;
56 	struct thermal_cooling_device *cdev;
57 	struct devfreq *devfreq;
58 	unsigned long cooling_state;
59 	u32 *power_table;
60 	u32 *freq_table;
61 	size_t freq_table_size;
62 	struct devfreq_cooling_power *power_ops;
63 	u32 res_util;
64 	int capped_state;
65 	struct dev_pm_qos_request req_max_freq;
66 };
67 
68 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
69 					 unsigned long *state)
70 {
71 	struct devfreq_cooling_device *dfc = cdev->devdata;
72 
73 	*state = dfc->freq_table_size - 1;
74 
75 	return 0;
76 }
77 
78 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
79 					 unsigned long *state)
80 {
81 	struct devfreq_cooling_device *dfc = cdev->devdata;
82 
83 	*state = dfc->cooling_state;
84 
85 	return 0;
86 }
87 
88 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
89 					 unsigned long state)
90 {
91 	struct devfreq_cooling_device *dfc = cdev->devdata;
92 	struct devfreq *df = dfc->devfreq;
93 	struct device *dev = df->dev.parent;
94 	unsigned long freq;
95 
96 	if (state == dfc->cooling_state)
97 		return 0;
98 
99 	dev_dbg(dev, "Setting cooling state %lu\n", state);
100 
101 	if (state >= dfc->freq_table_size)
102 		return -EINVAL;
103 
104 	freq = dfc->freq_table[state];
105 
106 	dev_pm_qos_update_request(&dfc->req_max_freq,
107 				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
108 
109 	dfc->cooling_state = state;
110 
111 	return 0;
112 }
113 
114 /**
115  * freq_get_state() - get the cooling state corresponding to a frequency
116  * @dfc:	Pointer to devfreq cooling device
117  * @freq:	frequency in Hz
118  *
119  * Return: the cooling state associated with the @freq, or
120  * THERMAL_CSTATE_INVALID if it wasn't found.
121  */
122 static unsigned long
123 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
124 {
125 	int i;
126 
127 	for (i = 0; i < dfc->freq_table_size; i++) {
128 		if (dfc->freq_table[i] == freq)
129 			return i;
130 	}
131 
132 	return THERMAL_CSTATE_INVALID;
133 }
134 
135 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
136 {
137 	struct device *dev = df->dev.parent;
138 	unsigned long voltage;
139 	struct dev_pm_opp *opp;
140 
141 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
142 	if (PTR_ERR(opp) == -ERANGE)
143 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
144 
145 	if (IS_ERR(opp)) {
146 		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
147 				    freq, PTR_ERR(opp));
148 		return 0;
149 	}
150 
151 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
152 	dev_pm_opp_put(opp);
153 
154 	if (voltage == 0) {
155 		dev_err_ratelimited(dev,
156 				    "Failed to get voltage for frequency %lu\n",
157 				    freq);
158 	}
159 
160 	return voltage;
161 }
162 
163 /**
164  * get_static_power() - calculate the static power
165  * @dfc:	Pointer to devfreq cooling device
166  * @freq:	Frequency in Hz
167  *
168  * Calculate the static power in milliwatts using the supplied
169  * get_static_power().  The current voltage is calculated using the
170  * OPP library.  If no get_static_power() was supplied, assume the
171  * static power is negligible.
172  */
173 static unsigned long
174 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
175 {
176 	struct devfreq *df = dfc->devfreq;
177 	unsigned long voltage;
178 
179 	if (!dfc->power_ops->get_static_power)
180 		return 0;
181 
182 	voltage = get_voltage(df, freq);
183 
184 	if (voltage == 0)
185 		return 0;
186 
187 	return dfc->power_ops->get_static_power(df, voltage);
188 }
189 
190 /**
191  * get_dynamic_power - calculate the dynamic power
192  * @dfc:	Pointer to devfreq cooling device
193  * @freq:	Frequency in Hz
194  * @voltage:	Voltage in millivolts
195  *
196  * Calculate the dynamic power in milliwatts consumed by the device at
197  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
198  * was supplied as part of the devfreq_cooling_power struct, then that
199  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
200  * Voltage^2 * Frequency) is used.
201  */
202 static unsigned long
203 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
204 		  unsigned long voltage)
205 {
206 	u64 power;
207 	u32 freq_mhz;
208 	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
209 
210 	if (dfc_power->get_dynamic_power)
211 		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
212 						    voltage);
213 
214 	freq_mhz = freq / 1000000;
215 	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
216 	do_div(power, 1000000000);
217 
218 	return power;
219 }
220 
221 
222 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
223 					    unsigned long freq,
224 					    unsigned long voltage)
225 {
226 	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
227 							       voltage);
228 }
229 
230 
231 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
232 					       struct thermal_zone_device *tz,
233 					       u32 *power)
234 {
235 	struct devfreq_cooling_device *dfc = cdev->devdata;
236 	struct devfreq *df = dfc->devfreq;
237 	struct devfreq_dev_status *status = &df->last_status;
238 	unsigned long state;
239 	unsigned long freq = status->current_frequency;
240 	unsigned long voltage;
241 	u32 dyn_power = 0;
242 	u32 static_power = 0;
243 	int res;
244 
245 	state = freq_get_state(dfc, freq);
246 	if (state == THERMAL_CSTATE_INVALID) {
247 		res = -EAGAIN;
248 		goto fail;
249 	}
250 
251 	if (dfc->power_ops->get_real_power) {
252 		voltage = get_voltage(df, freq);
253 		if (voltage == 0) {
254 			res = -EINVAL;
255 			goto fail;
256 		}
257 
258 		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
259 		if (!res) {
260 			state = dfc->capped_state;
261 			dfc->res_util = dfc->power_table[state];
262 			dfc->res_util *= SCALE_ERROR_MITIGATION;
263 
264 			if (*power > 1)
265 				dfc->res_util /= *power;
266 		} else {
267 			goto fail;
268 		}
269 	} else {
270 		dyn_power = dfc->power_table[state];
271 
272 		/* Scale dynamic power for utilization */
273 		dyn_power *= status->busy_time;
274 		dyn_power /= status->total_time;
275 		/* Get static power */
276 		static_power = get_static_power(dfc, freq);
277 
278 		*power = dyn_power + static_power;
279 	}
280 
281 	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
282 					      static_power, *power);
283 
284 	return 0;
285 fail:
286 	/* It is safe to set max in this case */
287 	dfc->res_util = SCALE_ERROR_MITIGATION;
288 	return res;
289 }
290 
291 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
292 				       struct thermal_zone_device *tz,
293 				       unsigned long state,
294 				       u32 *power)
295 {
296 	struct devfreq_cooling_device *dfc = cdev->devdata;
297 	unsigned long freq;
298 	u32 static_power;
299 
300 	if (state >= dfc->freq_table_size)
301 		return -EINVAL;
302 
303 	freq = dfc->freq_table[state];
304 	static_power = get_static_power(dfc, freq);
305 
306 	*power = dfc->power_table[state] + static_power;
307 	return 0;
308 }
309 
310 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
311 				       struct thermal_zone_device *tz,
312 				       u32 power, unsigned long *state)
313 {
314 	struct devfreq_cooling_device *dfc = cdev->devdata;
315 	struct devfreq *df = dfc->devfreq;
316 	struct devfreq_dev_status *status = &df->last_status;
317 	unsigned long freq = status->current_frequency;
318 	unsigned long busy_time;
319 	s32 dyn_power;
320 	u32 static_power;
321 	s32 est_power;
322 	int i;
323 
324 	if (dfc->power_ops->get_real_power) {
325 		/* Scale for resource utilization */
326 		est_power = power * dfc->res_util;
327 		est_power /= SCALE_ERROR_MITIGATION;
328 	} else {
329 		static_power = get_static_power(dfc, freq);
330 
331 		dyn_power = power - static_power;
332 		dyn_power = dyn_power > 0 ? dyn_power : 0;
333 
334 		/* Scale dynamic power for utilization */
335 		busy_time = status->busy_time ?: 1;
336 		est_power = (dyn_power * status->total_time) / busy_time;
337 	}
338 
339 	/*
340 	 * Find the first cooling state that is within the power
341 	 * budget for dynamic power.
342 	 */
343 	for (i = 0; i < dfc->freq_table_size - 1; i++)
344 		if (est_power >= dfc->power_table[i])
345 			break;
346 
347 	*state = i;
348 	dfc->capped_state = i;
349 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
350 	return 0;
351 }
352 
353 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
354 	.get_max_state = devfreq_cooling_get_max_state,
355 	.get_cur_state = devfreq_cooling_get_cur_state,
356 	.set_cur_state = devfreq_cooling_set_cur_state,
357 };
358 
359 /**
360  * devfreq_cooling_gen_tables() - Generate power and freq tables.
361  * @dfc: Pointer to devfreq cooling device.
362  *
363  * Generate power and frequency tables: the power table hold the
364  * device's maximum power usage at each cooling state (OPP).  The
365  * static and dynamic power using the appropriate voltage and
366  * frequency for the state, is acquired from the struct
367  * devfreq_cooling_power, and summed to make the maximum power draw.
368  *
369  * The frequency table holds the frequencies in descending order.
370  * That way its indexed by cooling device state.
371  *
372  * The tables are malloced, and pointers put in dfc.  They must be
373  * freed when unregistering the devfreq cooling device.
374  *
375  * Return: 0 on success, negative error code on failure.
376  */
377 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
378 {
379 	struct devfreq *df = dfc->devfreq;
380 	struct device *dev = df->dev.parent;
381 	int ret, num_opps;
382 	unsigned long freq;
383 	u32 *power_table = NULL;
384 	u32 *freq_table;
385 	int i;
386 
387 	num_opps = dev_pm_opp_get_opp_count(dev);
388 
389 	if (dfc->power_ops) {
390 		power_table = kcalloc(num_opps, sizeof(*power_table),
391 				      GFP_KERNEL);
392 		if (!power_table)
393 			return -ENOMEM;
394 	}
395 
396 	freq_table = kcalloc(num_opps, sizeof(*freq_table),
397 			     GFP_KERNEL);
398 	if (!freq_table) {
399 		ret = -ENOMEM;
400 		goto free_power_table;
401 	}
402 
403 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
404 		unsigned long power, voltage;
405 		struct dev_pm_opp *opp;
406 
407 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
408 		if (IS_ERR(opp)) {
409 			ret = PTR_ERR(opp);
410 			goto free_tables;
411 		}
412 
413 		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
414 		dev_pm_opp_put(opp);
415 
416 		if (dfc->power_ops) {
417 			if (dfc->power_ops->get_real_power)
418 				power = get_total_power(dfc, freq, voltage);
419 			else
420 				power = get_dynamic_power(dfc, freq, voltage);
421 
422 			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
423 				freq / 1000000, voltage, power, power);
424 
425 			power_table[i] = power;
426 		}
427 
428 		freq_table[i] = freq;
429 	}
430 
431 	if (dfc->power_ops)
432 		dfc->power_table = power_table;
433 
434 	dfc->freq_table = freq_table;
435 	dfc->freq_table_size = num_opps;
436 
437 	return 0;
438 
439 free_tables:
440 	kfree(freq_table);
441 free_power_table:
442 	kfree(power_table);
443 
444 	return ret;
445 }
446 
447 /**
448  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
449  *                                      with OF and power information.
450  * @np:	Pointer to OF device_node.
451  * @df:	Pointer to devfreq device.
452  * @dfc_power:	Pointer to devfreq_cooling_power.
453  *
454  * Register a devfreq cooling device.  The available OPPs must be
455  * registered on the device.
456  *
457  * If @dfc_power is provided, the cooling device is registered with the
458  * power extensions.  For the power extensions to work correctly,
459  * devfreq should use the simple_ondemand governor, other governors
460  * are not currently supported.
461  */
462 struct thermal_cooling_device *
463 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
464 				  struct devfreq_cooling_power *dfc_power)
465 {
466 	struct thermal_cooling_device *cdev;
467 	struct devfreq_cooling_device *dfc;
468 	char dev_name[THERMAL_NAME_LENGTH];
469 	int err;
470 
471 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
472 	if (!dfc)
473 		return ERR_PTR(-ENOMEM);
474 
475 	dfc->devfreq = df;
476 
477 	if (dfc_power) {
478 		dfc->power_ops = dfc_power;
479 
480 		devfreq_cooling_ops.get_requested_power =
481 			devfreq_cooling_get_requested_power;
482 		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
483 		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
484 	}
485 
486 	err = devfreq_cooling_gen_tables(dfc);
487 	if (err)
488 		goto free_dfc;
489 
490 	err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
491 				     DEV_PM_QOS_MAX_FREQUENCY,
492 				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
493 	if (err < 0)
494 		goto free_tables;
495 
496 	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
497 	if (err < 0)
498 		goto remove_qos_req;
499 	dfc->id = err;
500 
501 	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
502 
503 	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
504 						  &devfreq_cooling_ops);
505 	if (IS_ERR(cdev)) {
506 		err = PTR_ERR(cdev);
507 		dev_err(df->dev.parent,
508 			"Failed to register devfreq cooling device (%d)\n",
509 			err);
510 		goto release_ida;
511 	}
512 
513 	dfc->cdev = cdev;
514 
515 	return cdev;
516 
517 release_ida:
518 	ida_simple_remove(&devfreq_ida, dfc->id);
519 
520 remove_qos_req:
521 	dev_pm_qos_remove_request(&dfc->req_max_freq);
522 
523 free_tables:
524 	kfree(dfc->power_table);
525 	kfree(dfc->freq_table);
526 free_dfc:
527 	kfree(dfc);
528 
529 	return ERR_PTR(err);
530 }
531 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
532 
533 /**
534  * of_devfreq_cooling_register() - Register devfreq cooling device,
535  *                                with OF information.
536  * @np: Pointer to OF device_node.
537  * @df: Pointer to devfreq device.
538  */
539 struct thermal_cooling_device *
540 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
541 {
542 	return of_devfreq_cooling_register_power(np, df, NULL);
543 }
544 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
545 
546 /**
547  * devfreq_cooling_register() - Register devfreq cooling device.
548  * @df: Pointer to devfreq device.
549  */
550 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
551 {
552 	return of_devfreq_cooling_register(NULL, df);
553 }
554 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
555 
556 /**
557  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
558  * @cdev: Pointer to devfreq cooling device to unregister.
559  */
560 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
561 {
562 	struct devfreq_cooling_device *dfc;
563 
564 	if (!cdev)
565 		return;
566 
567 	dfc = cdev->devdata;
568 
569 	thermal_cooling_device_unregister(dfc->cdev);
570 	ida_simple_remove(&devfreq_ida, dfc->id);
571 	dev_pm_qos_remove_request(&dfc->req_max_freq);
572 	kfree(dfc->power_table);
573 	kfree(dfc->freq_table);
574 
575 	kfree(dfc);
576 }
577 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
578