1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:	Amit Daniel <amit.kachhap@linaro.org>
10  *		Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 
25 #include <trace/events/thermal.h>
26 
27 /*
28  * Cooling state <-> CPUFreq frequency
29  *
30  * Cooling states are translated to frequencies throughout this driver and this
31  * is the relation between them.
32  *
33  * Highest cooling state corresponds to lowest possible frequency.
34  *
35  * i.e.
36  *	level 0 --> 1st Max Freq
37  *	level 1 --> 2nd Max Freq
38  *	...
39  */
40 
41 /**
42  * struct time_in_idle - Idle time stats
43  * @time: previous reading of the absolute time that this cpu was idle
44  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
45  */
46 struct time_in_idle {
47 	u64 time;
48 	u64 timestamp;
49 };
50 
51 /**
52  * struct cpufreq_cooling_device - data for cooling device with cpufreq
53  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
54  * @cpufreq_state: integer value representing the current state of cpufreq
55  *	cooling	devices.
56  * @max_level: maximum cooling level. One less than total number of valid
57  *	cpufreq frequencies.
58  * @em: Reference on the Energy Model of the device
59  * @cdev: thermal_cooling_device pointer to keep track of the
60  *	registered cooling device.
61  * @policy: cpufreq policy.
62  * @idle_time: idle time stats
63  * @qos_req: PM QoS contraint to apply
64  *
65  * This structure is required for keeping information of each registered
66  * cpufreq_cooling_device.
67  */
68 struct cpufreq_cooling_device {
69 	u32 last_load;
70 	unsigned int cpufreq_state;
71 	unsigned int max_level;
72 	struct em_perf_domain *em;
73 	struct cpufreq_policy *policy;
74 #ifndef CONFIG_SMP
75 	struct time_in_idle *idle_time;
76 #endif
77 	struct freq_qos_request qos_req;
78 };
79 
80 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
81 /**
82  * get_level: Find the level for a particular frequency
83  * @cpufreq_cdev: cpufreq_cdev for which the property is required
84  * @freq: Frequency
85  *
86  * Return: level corresponding to the frequency.
87  */
88 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
89 			       unsigned int freq)
90 {
91 	int i;
92 
93 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
94 		if (freq > cpufreq_cdev->em->table[i].frequency)
95 			break;
96 	}
97 
98 	return cpufreq_cdev->max_level - i - 1;
99 }
100 
101 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
102 			     u32 freq)
103 {
104 	int i;
105 
106 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
107 		if (freq > cpufreq_cdev->em->table[i].frequency)
108 			break;
109 	}
110 
111 	return cpufreq_cdev->em->table[i + 1].power;
112 }
113 
114 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
115 			     u32 power)
116 {
117 	int i;
118 
119 	for (i = cpufreq_cdev->max_level; i > 0; i--) {
120 		if (power >= cpufreq_cdev->em->table[i].power)
121 			break;
122 	}
123 
124 	return cpufreq_cdev->em->table[i].frequency;
125 }
126 
127 /**
128  * get_load() - get load for a cpu
129  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
130  * @cpu: cpu number
131  * @cpu_idx: index of the cpu in time_in_idle array
132  *
133  * Return: The average load of cpu @cpu in percentage since this
134  * function was last called.
135  */
136 #ifdef CONFIG_SMP
137 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
138 		    int cpu_idx)
139 {
140 	unsigned long util = sched_cpu_util(cpu);
141 
142 	return (util * 100) / arch_scale_cpu_capacity(cpu);
143 }
144 #else /* !CONFIG_SMP */
145 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
146 		    int cpu_idx)
147 {
148 	u32 load;
149 	u64 now, now_idle, delta_time, delta_idle;
150 	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
151 
152 	now_idle = get_cpu_idle_time(cpu, &now, 0);
153 	delta_idle = now_idle - idle_time->time;
154 	delta_time = now - idle_time->timestamp;
155 
156 	if (delta_time <= delta_idle)
157 		load = 0;
158 	else
159 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
160 
161 	idle_time->time = now_idle;
162 	idle_time->timestamp = now;
163 
164 	return load;
165 }
166 #endif /* CONFIG_SMP */
167 
168 /**
169  * get_dynamic_power() - calculate the dynamic power
170  * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
171  * @freq:	current frequency
172  *
173  * Return: the dynamic power consumed by the cpus described by
174  * @cpufreq_cdev.
175  */
176 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
177 			     unsigned long freq)
178 {
179 	u32 raw_cpu_power;
180 
181 	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
182 	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
183 }
184 
185 /**
186  * cpufreq_get_requested_power() - get the current power
187  * @cdev:	&thermal_cooling_device pointer
188  * @power:	pointer in which to store the resulting power
189  *
190  * Calculate the current power consumption of the cpus in milliwatts
191  * and store it in @power.  This function should actually calculate
192  * the requested power, but it's hard to get the frequency that
193  * cpufreq would have assigned if there were no thermal limits.
194  * Instead, we calculate the current power on the assumption that the
195  * immediate future will look like the immediate past.
196  *
197  * We use the current frequency and the average load since this
198  * function was last called.  In reality, there could have been
199  * multiple opps since this function was last called and that affects
200  * the load calculation.  While it's not perfectly accurate, this
201  * simplification is good enough and works.  REVISIT this, as more
202  * complex code may be needed if experiments show that it's not
203  * accurate enough.
204  *
205  * Return: 0 on success, -E* if getting the static power failed.
206  */
207 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
208 				       u32 *power)
209 {
210 	unsigned long freq;
211 	int i = 0, cpu;
212 	u32 total_load = 0;
213 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
214 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
215 	u32 *load_cpu = NULL;
216 
217 	freq = cpufreq_quick_get(policy->cpu);
218 
219 	if (trace_thermal_power_cpu_get_power_enabled()) {
220 		u32 ncpus = cpumask_weight(policy->related_cpus);
221 
222 		load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
223 	}
224 
225 	for_each_cpu(cpu, policy->related_cpus) {
226 		u32 load;
227 
228 		if (cpu_online(cpu))
229 			load = get_load(cpufreq_cdev, cpu, i);
230 		else
231 			load = 0;
232 
233 		total_load += load;
234 		if (load_cpu)
235 			load_cpu[i] = load;
236 
237 		i++;
238 	}
239 
240 	cpufreq_cdev->last_load = total_load;
241 
242 	*power = get_dynamic_power(cpufreq_cdev, freq);
243 
244 	if (load_cpu) {
245 		trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
246 						  load_cpu, i, *power);
247 
248 		kfree(load_cpu);
249 	}
250 
251 	return 0;
252 }
253 
254 /**
255  * cpufreq_state2power() - convert a cpu cdev state to power consumed
256  * @cdev:	&thermal_cooling_device pointer
257  * @state:	cooling device state to be converted
258  * @power:	pointer in which to store the resulting power
259  *
260  * Convert cooling device state @state into power consumption in
261  * milliwatts assuming 100% load.  Store the calculated power in
262  * @power.
263  *
264  * Return: 0 on success, -EINVAL if the cooling device state could not
265  * be converted into a frequency or other -E* if there was an error
266  * when calculating the static power.
267  */
268 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
269 			       unsigned long state, u32 *power)
270 {
271 	unsigned int freq, num_cpus, idx;
272 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
273 
274 	/* Request state should be less than max_level */
275 	if (state > cpufreq_cdev->max_level)
276 		return -EINVAL;
277 
278 	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
279 
280 	idx = cpufreq_cdev->max_level - state;
281 	freq = cpufreq_cdev->em->table[idx].frequency;
282 	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
283 
284 	return 0;
285 }
286 
287 /**
288  * cpufreq_power2state() - convert power to a cooling device state
289  * @cdev:	&thermal_cooling_device pointer
290  * @power:	power in milliwatts to be converted
291  * @state:	pointer in which to store the resulting state
292  *
293  * Calculate a cooling device state for the cpus described by @cdev
294  * that would allow them to consume at most @power mW and store it in
295  * @state.  Note that this calculation depends on external factors
296  * such as the cpu load or the current static power.  Calling this
297  * function with the same power as input can yield different cooling
298  * device states depending on those external factors.
299  *
300  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
301  * the calculated frequency could not be converted to a valid state.
302  * The latter should not happen unless the frequencies available to
303  * cpufreq have changed since the initialization of the cpu cooling
304  * device.
305  */
306 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
307 			       u32 power, unsigned long *state)
308 {
309 	unsigned int target_freq;
310 	u32 last_load, normalised_power;
311 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
312 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
313 
314 	last_load = cpufreq_cdev->last_load ?: 1;
315 	normalised_power = (power * 100) / last_load;
316 	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
317 
318 	*state = get_level(cpufreq_cdev, target_freq);
319 	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
320 				      power);
321 	return 0;
322 }
323 
324 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
325 			      struct em_perf_domain *em) {
326 	struct cpufreq_policy *policy;
327 	unsigned int nr_levels;
328 
329 	if (!em || em_is_artificial(em))
330 		return false;
331 
332 	policy = cpufreq_cdev->policy;
333 	if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
334 		pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
335 			cpumask_pr_args(em_span_cpus(em)),
336 			cpumask_pr_args(policy->related_cpus));
337 		return false;
338 	}
339 
340 	nr_levels = cpufreq_cdev->max_level + 1;
341 	if (em_pd_nr_perf_states(em) != nr_levels) {
342 		pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
343 			cpumask_pr_args(em_span_cpus(em)),
344 			em_pd_nr_perf_states(em), nr_levels);
345 		return false;
346 	}
347 
348 	return true;
349 }
350 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
351 
352 #ifdef CONFIG_SMP
353 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
354 {
355 	return 0;
356 }
357 
358 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
359 {
360 }
361 #else
362 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
363 {
364 	unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
365 
366 	cpufreq_cdev->idle_time = kcalloc(num_cpus,
367 					  sizeof(*cpufreq_cdev->idle_time),
368 					  GFP_KERNEL);
369 	if (!cpufreq_cdev->idle_time)
370 		return -ENOMEM;
371 
372 	return 0;
373 }
374 
375 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
376 {
377 	kfree(cpufreq_cdev->idle_time);
378 	cpufreq_cdev->idle_time = NULL;
379 }
380 #endif /* CONFIG_SMP */
381 
382 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
383 				   unsigned long state)
384 {
385 	struct cpufreq_policy *policy;
386 	unsigned long idx;
387 
388 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
389 	/* Use the Energy Model table if available */
390 	if (cpufreq_cdev->em) {
391 		idx = cpufreq_cdev->max_level - state;
392 		return cpufreq_cdev->em->table[idx].frequency;
393 	}
394 #endif
395 
396 	/* Otherwise, fallback on the CPUFreq table */
397 	policy = cpufreq_cdev->policy;
398 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
399 		idx = cpufreq_cdev->max_level - state;
400 	else
401 		idx = state;
402 
403 	return policy->freq_table[idx].frequency;
404 }
405 
406 /* cpufreq cooling device callback functions are defined below */
407 
408 /**
409  * cpufreq_get_max_state - callback function to get the max cooling state.
410  * @cdev: thermal cooling device pointer.
411  * @state: fill this variable with the max cooling state.
412  *
413  * Callback for the thermal cooling device to return the cpufreq
414  * max cooling state.
415  *
416  * Return: 0 on success, an error code otherwise.
417  */
418 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
419 				 unsigned long *state)
420 {
421 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
422 
423 	*state = cpufreq_cdev->max_level;
424 	return 0;
425 }
426 
427 /**
428  * cpufreq_get_cur_state - callback function to get the current cooling state.
429  * @cdev: thermal cooling device pointer.
430  * @state: fill this variable with the current cooling state.
431  *
432  * Callback for the thermal cooling device to return the cpufreq
433  * current cooling state.
434  *
435  * Return: 0 on success, an error code otherwise.
436  */
437 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
438 				 unsigned long *state)
439 {
440 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
441 
442 	*state = cpufreq_cdev->cpufreq_state;
443 
444 	return 0;
445 }
446 
447 /**
448  * cpufreq_set_cur_state - callback function to set the current cooling state.
449  * @cdev: thermal cooling device pointer.
450  * @state: set this variable to the current cooling state.
451  *
452  * Callback for the thermal cooling device to change the cpufreq
453  * current cooling state.
454  *
455  * Return: 0 on success, an error code otherwise.
456  */
457 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
458 				 unsigned long state)
459 {
460 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
461 	struct cpumask *cpus;
462 	unsigned int frequency;
463 	int ret;
464 
465 	/* Request state should be less than max_level */
466 	if (state > cpufreq_cdev->max_level)
467 		return -EINVAL;
468 
469 	/* Check if the old cooling action is same as new cooling action */
470 	if (cpufreq_cdev->cpufreq_state == state)
471 		return 0;
472 
473 	frequency = get_state_freq(cpufreq_cdev, state);
474 
475 	ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
476 	if (ret >= 0) {
477 		cpufreq_cdev->cpufreq_state = state;
478 		cpus = cpufreq_cdev->policy->related_cpus;
479 		arch_update_thermal_pressure(cpus, frequency);
480 		ret = 0;
481 	}
482 
483 	return ret;
484 }
485 
486 /* Bind cpufreq callbacks to thermal cooling device ops */
487 
488 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
489 	.get_max_state		= cpufreq_get_max_state,
490 	.get_cur_state		= cpufreq_get_cur_state,
491 	.set_cur_state		= cpufreq_set_cur_state,
492 };
493 
494 /**
495  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
496  * @np: a valid struct device_node to the cooling device device tree node
497  * @policy: cpufreq policy
498  * Normally this should be same as cpufreq policy->related_cpus.
499  * @em: Energy Model of the cpufreq policy
500  *
501  * This interface function registers the cpufreq cooling device with the name
502  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
503  * cooling devices. It also gives the opportunity to link the cooling device
504  * with a device tree node, in order to bind it via the thermal DT code.
505  *
506  * Return: a valid struct thermal_cooling_device pointer on success,
507  * on failure, it returns a corresponding ERR_PTR().
508  */
509 static struct thermal_cooling_device *
510 __cpufreq_cooling_register(struct device_node *np,
511 			struct cpufreq_policy *policy,
512 			struct em_perf_domain *em)
513 {
514 	struct thermal_cooling_device *cdev;
515 	struct cpufreq_cooling_device *cpufreq_cdev;
516 	unsigned int i;
517 	struct device *dev;
518 	int ret;
519 	struct thermal_cooling_device_ops *cooling_ops;
520 	char *name;
521 
522 	dev = get_cpu_device(policy->cpu);
523 	if (unlikely(!dev)) {
524 		pr_warn("No cpu device for cpu %d\n", policy->cpu);
525 		return ERR_PTR(-ENODEV);
526 	}
527 
528 	if (IS_ERR_OR_NULL(policy)) {
529 		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
530 		return ERR_PTR(-EINVAL);
531 	}
532 
533 	i = cpufreq_table_count_valid_entries(policy);
534 	if (!i) {
535 		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
536 			 __func__);
537 		return ERR_PTR(-ENODEV);
538 	}
539 
540 	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
541 	if (!cpufreq_cdev)
542 		return ERR_PTR(-ENOMEM);
543 
544 	cpufreq_cdev->policy = policy;
545 
546 	ret = allocate_idle_time(cpufreq_cdev);
547 	if (ret) {
548 		cdev = ERR_PTR(ret);
549 		goto free_cdev;
550 	}
551 
552 	/* max_level is an index, not a counter */
553 	cpufreq_cdev->max_level = i - 1;
554 
555 	cooling_ops = &cpufreq_cooling_ops;
556 
557 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
558 	if (em_is_sane(cpufreq_cdev, em)) {
559 		cpufreq_cdev->em = em;
560 		cooling_ops->get_requested_power = cpufreq_get_requested_power;
561 		cooling_ops->state2power = cpufreq_state2power;
562 		cooling_ops->power2state = cpufreq_power2state;
563 	} else
564 #endif
565 	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
566 		pr_err("%s: unsorted frequency tables are not supported\n",
567 		       __func__);
568 		cdev = ERR_PTR(-EINVAL);
569 		goto free_idle_time;
570 	}
571 
572 	ret = freq_qos_add_request(&policy->constraints,
573 				   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
574 				   get_state_freq(cpufreq_cdev, 0));
575 	if (ret < 0) {
576 		pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
577 		       ret);
578 		cdev = ERR_PTR(ret);
579 		goto free_idle_time;
580 	}
581 
582 	cdev = ERR_PTR(-ENOMEM);
583 	name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
584 	if (!name)
585 		goto remove_qos_req;
586 
587 	cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
588 						  cooling_ops);
589 	kfree(name);
590 
591 	if (IS_ERR(cdev))
592 		goto remove_qos_req;
593 
594 	return cdev;
595 
596 remove_qos_req:
597 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
598 free_idle_time:
599 	free_idle_time(cpufreq_cdev);
600 free_cdev:
601 	kfree(cpufreq_cdev);
602 	return cdev;
603 }
604 
605 /**
606  * cpufreq_cooling_register - function to create cpufreq cooling device.
607  * @policy: cpufreq policy
608  *
609  * This interface function registers the cpufreq cooling device with the name
610  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
611  * cooling devices.
612  *
613  * Return: a valid struct thermal_cooling_device pointer on success,
614  * on failure, it returns a corresponding ERR_PTR().
615  */
616 struct thermal_cooling_device *
617 cpufreq_cooling_register(struct cpufreq_policy *policy)
618 {
619 	return __cpufreq_cooling_register(NULL, policy, NULL);
620 }
621 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
622 
623 /**
624  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
625  * @policy: cpufreq policy
626  *
627  * This interface function registers the cpufreq cooling device with the name
628  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
629  * cooling devices. Using this API, the cpufreq cooling device will be
630  * linked to the device tree node provided.
631  *
632  * Using this function, the cooling device will implement the power
633  * extensions by using a simple cpu power model.  The cpus must have
634  * registered their OPPs using the OPP library.
635  *
636  * It also takes into account, if property present in policy CPU node, the
637  * static power consumed by the cpu.
638  *
639  * Return: a valid struct thermal_cooling_device pointer on success,
640  * and NULL on failure.
641  */
642 struct thermal_cooling_device *
643 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
644 {
645 	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
646 	struct thermal_cooling_device *cdev = NULL;
647 
648 	if (!np) {
649 		pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
650 		       policy->cpu);
651 		return NULL;
652 	}
653 
654 	if (of_find_property(np, "#cooling-cells", NULL)) {
655 		struct em_perf_domain *em = em_cpu_get(policy->cpu);
656 
657 		cdev = __cpufreq_cooling_register(np, policy, em);
658 		if (IS_ERR(cdev)) {
659 			pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
660 			       policy->cpu, PTR_ERR(cdev));
661 			cdev = NULL;
662 		}
663 	}
664 
665 	of_node_put(np);
666 	return cdev;
667 }
668 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
669 
670 /**
671  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
672  * @cdev: thermal cooling device pointer.
673  *
674  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
675  */
676 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
677 {
678 	struct cpufreq_cooling_device *cpufreq_cdev;
679 
680 	if (!cdev)
681 		return;
682 
683 	cpufreq_cdev = cdev->devdata;
684 
685 	thermal_cooling_device_unregister(cdev);
686 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
687 	free_idle_time(cpufreq_cdev);
688 	kfree(cpufreq_cdev);
689 }
690 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
691