1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:	Amit Daniel <amit.kachhap@linaro.org>
10  *		Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 
25 #include <trace/events/thermal.h>
26 
27 /*
28  * Cooling state <-> CPUFreq frequency
29  *
30  * Cooling states are translated to frequencies throughout this driver and this
31  * is the relation between them.
32  *
33  * Highest cooling state corresponds to lowest possible frequency.
34  *
35  * i.e.
36  *	level 0 --> 1st Max Freq
37  *	level 1 --> 2nd Max Freq
38  *	...
39  */
40 
41 /**
42  * struct time_in_idle - Idle time stats
43  * @time: previous reading of the absolute time that this cpu was idle
44  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
45  */
46 struct time_in_idle {
47 	u64 time;
48 	u64 timestamp;
49 };
50 
51 /**
52  * struct cpufreq_cooling_device - data for cooling device with cpufreq
53  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
54  * @cpufreq_state: integer value representing the current state of cpufreq
55  *	cooling	devices.
56  * @max_level: maximum cooling level. One less than total number of valid
57  *	cpufreq frequencies.
58  * @em: Reference on the Energy Model of the device
59  * @cdev: thermal_cooling_device pointer to keep track of the
60  *	registered cooling device.
61  * @policy: cpufreq policy.
62  * @cooling_ops: cpufreq callbacks to thermal cooling device ops
63  * @idle_time: idle time stats
64  * @qos_req: PM QoS contraint to apply
65  *
66  * This structure is required for keeping information of each registered
67  * cpufreq_cooling_device.
68  */
69 struct cpufreq_cooling_device {
70 	u32 last_load;
71 	unsigned int cpufreq_state;
72 	unsigned int max_level;
73 	struct em_perf_domain *em;
74 	struct cpufreq_policy *policy;
75 	struct thermal_cooling_device_ops cooling_ops;
76 #ifndef CONFIG_SMP
77 	struct time_in_idle *idle_time;
78 #endif
79 	struct freq_qos_request qos_req;
80 };
81 
82 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
83 /**
84  * get_level: Find the level for a particular frequency
85  * @cpufreq_cdev: cpufreq_cdev for which the property is required
86  * @freq: Frequency
87  *
88  * Return: level corresponding to the frequency.
89  */
90 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
91 			       unsigned int freq)
92 {
93 	int i;
94 
95 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
96 		if (freq > cpufreq_cdev->em->table[i].frequency)
97 			break;
98 	}
99 
100 	return cpufreq_cdev->max_level - i - 1;
101 }
102 
103 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
104 			     u32 freq)
105 {
106 	int i;
107 
108 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
109 		if (freq > cpufreq_cdev->em->table[i].frequency)
110 			break;
111 	}
112 
113 	return cpufreq_cdev->em->table[i + 1].power;
114 }
115 
116 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
117 			     u32 power)
118 {
119 	int i;
120 
121 	for (i = cpufreq_cdev->max_level; i > 0; i--) {
122 		if (power >= cpufreq_cdev->em->table[i].power)
123 			break;
124 	}
125 
126 	return cpufreq_cdev->em->table[i].frequency;
127 }
128 
129 /**
130  * get_load() - get load for a cpu
131  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
132  * @cpu: cpu number
133  * @cpu_idx: index of the cpu in time_in_idle array
134  *
135  * Return: The average load of cpu @cpu in percentage since this
136  * function was last called.
137  */
138 #ifdef CONFIG_SMP
139 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
140 		    int cpu_idx)
141 {
142 	unsigned long max = arch_scale_cpu_capacity(cpu);
143 	unsigned long util;
144 
145 	util = sched_cpu_util(cpu, max);
146 	return (util * 100) / max;
147 }
148 #else /* !CONFIG_SMP */
149 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
150 		    int cpu_idx)
151 {
152 	u32 load;
153 	u64 now, now_idle, delta_time, delta_idle;
154 	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
155 
156 	now_idle = get_cpu_idle_time(cpu, &now, 0);
157 	delta_idle = now_idle - idle_time->time;
158 	delta_time = now - idle_time->timestamp;
159 
160 	if (delta_time <= delta_idle)
161 		load = 0;
162 	else
163 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
164 
165 	idle_time->time = now_idle;
166 	idle_time->timestamp = now;
167 
168 	return load;
169 }
170 #endif /* CONFIG_SMP */
171 
172 /**
173  * get_dynamic_power() - calculate the dynamic power
174  * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
175  * @freq:	current frequency
176  *
177  * Return: the dynamic power consumed by the cpus described by
178  * @cpufreq_cdev.
179  */
180 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
181 			     unsigned long freq)
182 {
183 	u32 raw_cpu_power;
184 
185 	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
186 	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
187 }
188 
189 /**
190  * cpufreq_get_requested_power() - get the current power
191  * @cdev:	&thermal_cooling_device pointer
192  * @power:	pointer in which to store the resulting power
193  *
194  * Calculate the current power consumption of the cpus in milliwatts
195  * and store it in @power.  This function should actually calculate
196  * the requested power, but it's hard to get the frequency that
197  * cpufreq would have assigned if there were no thermal limits.
198  * Instead, we calculate the current power on the assumption that the
199  * immediate future will look like the immediate past.
200  *
201  * We use the current frequency and the average load since this
202  * function was last called.  In reality, there could have been
203  * multiple opps since this function was last called and that affects
204  * the load calculation.  While it's not perfectly accurate, this
205  * simplification is good enough and works.  REVISIT this, as more
206  * complex code may be needed if experiments show that it's not
207  * accurate enough.
208  *
209  * Return: 0 on success, this function doesn't fail.
210  */
211 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
212 				       u32 *power)
213 {
214 	unsigned long freq;
215 	int i = 0, cpu;
216 	u32 total_load = 0;
217 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
218 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
219 
220 	freq = cpufreq_quick_get(policy->cpu);
221 
222 	for_each_cpu(cpu, policy->related_cpus) {
223 		u32 load;
224 
225 		if (cpu_online(cpu))
226 			load = get_load(cpufreq_cdev, cpu, i);
227 		else
228 			load = 0;
229 
230 		total_load += load;
231 	}
232 
233 	cpufreq_cdev->last_load = total_load;
234 
235 	*power = get_dynamic_power(cpufreq_cdev, freq);
236 
237 	trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
238 
239 	return 0;
240 }
241 
242 /**
243  * cpufreq_state2power() - convert a cpu cdev state to power consumed
244  * @cdev:	&thermal_cooling_device pointer
245  * @state:	cooling device state to be converted
246  * @power:	pointer in which to store the resulting power
247  *
248  * Convert cooling device state @state into power consumption in
249  * milliwatts assuming 100% load.  Store the calculated power in
250  * @power.
251  *
252  * Return: 0 on success, -EINVAL if the cooling device state is bigger
253  * than maximum allowed.
254  */
255 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
256 			       unsigned long state, u32 *power)
257 {
258 	unsigned int freq, num_cpus, idx;
259 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
260 
261 	/* Request state should be less than max_level */
262 	if (state > cpufreq_cdev->max_level)
263 		return -EINVAL;
264 
265 	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
266 
267 	idx = cpufreq_cdev->max_level - state;
268 	freq = cpufreq_cdev->em->table[idx].frequency;
269 	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
270 
271 	return 0;
272 }
273 
274 /**
275  * cpufreq_power2state() - convert power to a cooling device state
276  * @cdev:	&thermal_cooling_device pointer
277  * @power:	power in milliwatts to be converted
278  * @state:	pointer in which to store the resulting state
279  *
280  * Calculate a cooling device state for the cpus described by @cdev
281  * that would allow them to consume at most @power mW and store it in
282  * @state.  Note that this calculation depends on external factors
283  * such as the CPUs load.  Calling this function with the same power
284  * as input can yield different cooling device states depending on those
285  * external factors.
286  *
287  * Return: 0 on success, this function doesn't fail.
288  */
289 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
290 			       u32 power, unsigned long *state)
291 {
292 	unsigned int target_freq;
293 	u32 last_load, normalised_power;
294 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
295 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
296 
297 	last_load = cpufreq_cdev->last_load ?: 1;
298 	normalised_power = (power * 100) / last_load;
299 	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
300 
301 	*state = get_level(cpufreq_cdev, target_freq);
302 	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
303 				      power);
304 	return 0;
305 }
306 
307 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
308 			      struct em_perf_domain *em) {
309 	struct cpufreq_policy *policy;
310 	unsigned int nr_levels;
311 
312 	if (!em || em_is_artificial(em))
313 		return false;
314 
315 	policy = cpufreq_cdev->policy;
316 	if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
317 		pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
318 			cpumask_pr_args(em_span_cpus(em)),
319 			cpumask_pr_args(policy->related_cpus));
320 		return false;
321 	}
322 
323 	nr_levels = cpufreq_cdev->max_level + 1;
324 	if (em_pd_nr_perf_states(em) != nr_levels) {
325 		pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
326 			cpumask_pr_args(em_span_cpus(em)),
327 			em_pd_nr_perf_states(em), nr_levels);
328 		return false;
329 	}
330 
331 	return true;
332 }
333 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
334 
335 #ifdef CONFIG_SMP
336 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
337 {
338 	return 0;
339 }
340 
341 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
342 {
343 }
344 #else
345 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
346 {
347 	unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
348 
349 	cpufreq_cdev->idle_time = kcalloc(num_cpus,
350 					  sizeof(*cpufreq_cdev->idle_time),
351 					  GFP_KERNEL);
352 	if (!cpufreq_cdev->idle_time)
353 		return -ENOMEM;
354 
355 	return 0;
356 }
357 
358 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
359 {
360 	kfree(cpufreq_cdev->idle_time);
361 	cpufreq_cdev->idle_time = NULL;
362 }
363 #endif /* CONFIG_SMP */
364 
365 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
366 				   unsigned long state)
367 {
368 	struct cpufreq_policy *policy;
369 	unsigned long idx;
370 
371 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
372 	/* Use the Energy Model table if available */
373 	if (cpufreq_cdev->em) {
374 		idx = cpufreq_cdev->max_level - state;
375 		return cpufreq_cdev->em->table[idx].frequency;
376 	}
377 #endif
378 
379 	/* Otherwise, fallback on the CPUFreq table */
380 	policy = cpufreq_cdev->policy;
381 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
382 		idx = cpufreq_cdev->max_level - state;
383 	else
384 		idx = state;
385 
386 	return policy->freq_table[idx].frequency;
387 }
388 
389 /* cpufreq cooling device callback functions are defined below */
390 
391 /**
392  * cpufreq_get_max_state - callback function to get the max cooling state.
393  * @cdev: thermal cooling device pointer.
394  * @state: fill this variable with the max cooling state.
395  *
396  * Callback for the thermal cooling device to return the cpufreq
397  * max cooling state.
398  *
399  * Return: 0 on success, this function doesn't fail.
400  */
401 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
402 				 unsigned long *state)
403 {
404 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
405 
406 	*state = cpufreq_cdev->max_level;
407 	return 0;
408 }
409 
410 /**
411  * cpufreq_get_cur_state - callback function to get the current cooling state.
412  * @cdev: thermal cooling device pointer.
413  * @state: fill this variable with the current cooling state.
414  *
415  * Callback for the thermal cooling device to return the cpufreq
416  * current cooling state.
417  *
418  * Return: 0 on success, this function doesn't fail.
419  */
420 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
421 				 unsigned long *state)
422 {
423 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
424 
425 	*state = cpufreq_cdev->cpufreq_state;
426 
427 	return 0;
428 }
429 
430 /**
431  * cpufreq_set_cur_state - callback function to set the current cooling state.
432  * @cdev: thermal cooling device pointer.
433  * @state: set this variable to the current cooling state.
434  *
435  * Callback for the thermal cooling device to change the cpufreq
436  * current cooling state.
437  *
438  * Return: 0 on success, an error code otherwise.
439  */
440 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
441 				 unsigned long state)
442 {
443 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
444 	struct cpumask *cpus;
445 	unsigned int frequency;
446 	int ret;
447 
448 	/* Request state should be less than max_level */
449 	if (state > cpufreq_cdev->max_level)
450 		return -EINVAL;
451 
452 	/* Check if the old cooling action is same as new cooling action */
453 	if (cpufreq_cdev->cpufreq_state == state)
454 		return 0;
455 
456 	frequency = get_state_freq(cpufreq_cdev, state);
457 
458 	ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
459 	if (ret >= 0) {
460 		cpufreq_cdev->cpufreq_state = state;
461 		cpus = cpufreq_cdev->policy->related_cpus;
462 		arch_update_thermal_pressure(cpus, frequency);
463 		ret = 0;
464 	}
465 
466 	return ret;
467 }
468 
469 /**
470  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
471  * @np: a valid struct device_node to the cooling device device tree node
472  * @policy: cpufreq policy
473  * Normally this should be same as cpufreq policy->related_cpus.
474  * @em: Energy Model of the cpufreq policy
475  *
476  * This interface function registers the cpufreq cooling device with the name
477  * "cpufreq-%s". This API can support multiple instances of cpufreq
478  * cooling devices. It also gives the opportunity to link the cooling device
479  * with a device tree node, in order to bind it via the thermal DT code.
480  *
481  * Return: a valid struct thermal_cooling_device pointer on success,
482  * on failure, it returns a corresponding ERR_PTR().
483  */
484 static struct thermal_cooling_device *
485 __cpufreq_cooling_register(struct device_node *np,
486 			struct cpufreq_policy *policy,
487 			struct em_perf_domain *em)
488 {
489 	struct thermal_cooling_device *cdev;
490 	struct cpufreq_cooling_device *cpufreq_cdev;
491 	unsigned int i;
492 	struct device *dev;
493 	int ret;
494 	struct thermal_cooling_device_ops *cooling_ops;
495 	char *name;
496 
497 	dev = get_cpu_device(policy->cpu);
498 	if (unlikely(!dev)) {
499 		pr_warn("No cpu device for cpu %d\n", policy->cpu);
500 		return ERR_PTR(-ENODEV);
501 	}
502 
503 	if (IS_ERR_OR_NULL(policy)) {
504 		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
505 		return ERR_PTR(-EINVAL);
506 	}
507 
508 	i = cpufreq_table_count_valid_entries(policy);
509 	if (!i) {
510 		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
511 			 __func__);
512 		return ERR_PTR(-ENODEV);
513 	}
514 
515 	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
516 	if (!cpufreq_cdev)
517 		return ERR_PTR(-ENOMEM);
518 
519 	cpufreq_cdev->policy = policy;
520 
521 	ret = allocate_idle_time(cpufreq_cdev);
522 	if (ret) {
523 		cdev = ERR_PTR(ret);
524 		goto free_cdev;
525 	}
526 
527 	/* max_level is an index, not a counter */
528 	cpufreq_cdev->max_level = i - 1;
529 
530 	cooling_ops = &cpufreq_cdev->cooling_ops;
531 	cooling_ops->get_max_state = cpufreq_get_max_state;
532 	cooling_ops->get_cur_state = cpufreq_get_cur_state;
533 	cooling_ops->set_cur_state = cpufreq_set_cur_state;
534 
535 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
536 	if (em_is_sane(cpufreq_cdev, em)) {
537 		cpufreq_cdev->em = em;
538 		cooling_ops->get_requested_power = cpufreq_get_requested_power;
539 		cooling_ops->state2power = cpufreq_state2power;
540 		cooling_ops->power2state = cpufreq_power2state;
541 	} else
542 #endif
543 	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
544 		pr_err("%s: unsorted frequency tables are not supported\n",
545 		       __func__);
546 		cdev = ERR_PTR(-EINVAL);
547 		goto free_idle_time;
548 	}
549 
550 	ret = freq_qos_add_request(&policy->constraints,
551 				   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
552 				   get_state_freq(cpufreq_cdev, 0));
553 	if (ret < 0) {
554 		pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
555 		       ret);
556 		cdev = ERR_PTR(ret);
557 		goto free_idle_time;
558 	}
559 
560 	cdev = ERR_PTR(-ENOMEM);
561 	name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
562 	if (!name)
563 		goto remove_qos_req;
564 
565 	cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
566 						  cooling_ops);
567 	kfree(name);
568 
569 	if (IS_ERR(cdev))
570 		goto remove_qos_req;
571 
572 	return cdev;
573 
574 remove_qos_req:
575 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
576 free_idle_time:
577 	free_idle_time(cpufreq_cdev);
578 free_cdev:
579 	kfree(cpufreq_cdev);
580 	return cdev;
581 }
582 
583 /**
584  * cpufreq_cooling_register - function to create cpufreq cooling device.
585  * @policy: cpufreq policy
586  *
587  * This interface function registers the cpufreq cooling device with the name
588  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
589  * devices.
590  *
591  * Return: a valid struct thermal_cooling_device pointer on success,
592  * on failure, it returns a corresponding ERR_PTR().
593  */
594 struct thermal_cooling_device *
595 cpufreq_cooling_register(struct cpufreq_policy *policy)
596 {
597 	return __cpufreq_cooling_register(NULL, policy, NULL);
598 }
599 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
600 
601 /**
602  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
603  * @policy: cpufreq policy
604  *
605  * This interface function registers the cpufreq cooling device with the name
606  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
607  * devices. Using this API, the cpufreq cooling device will be linked to the
608  * device tree node provided.
609  *
610  * Using this function, the cooling device will implement the power
611  * extensions by using the Energy Model (if present).  The cpus must have
612  * registered their OPPs using the OPP library.
613  *
614  * Return: a valid struct thermal_cooling_device pointer on success,
615  * and NULL on failure.
616  */
617 struct thermal_cooling_device *
618 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
619 {
620 	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
621 	struct thermal_cooling_device *cdev = NULL;
622 
623 	if (!np) {
624 		pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
625 		       policy->cpu);
626 		return NULL;
627 	}
628 
629 	if (of_find_property(np, "#cooling-cells", NULL)) {
630 		struct em_perf_domain *em = em_cpu_get(policy->cpu);
631 
632 		cdev = __cpufreq_cooling_register(np, policy, em);
633 		if (IS_ERR(cdev)) {
634 			pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
635 			       policy->cpu, PTR_ERR(cdev));
636 			cdev = NULL;
637 		}
638 	}
639 
640 	of_node_put(np);
641 	return cdev;
642 }
643 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
644 
645 /**
646  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
647  * @cdev: thermal cooling device pointer.
648  *
649  * This interface function unregisters the "cpufreq-%x" cooling device.
650  */
651 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
652 {
653 	struct cpufreq_cooling_device *cpufreq_cdev;
654 
655 	if (!cdev)
656 		return;
657 
658 	cpufreq_cdev = cdev->devdata;
659 
660 	thermal_cooling_device_unregister(cdev);
661 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
662 	free_idle_time(cpufreq_cdev);
663 	kfree(cpufreq_cdev);
664 }
665 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
666