1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:	Amit Daniel <amit.kachhap@linaro.org>
10  *		Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 #include <linux/units.h>
25 
26 #include "thermal_trace.h"
27 
28 /*
29  * Cooling state <-> CPUFreq frequency
30  *
31  * Cooling states are translated to frequencies throughout this driver and this
32  * is the relation between them.
33  *
34  * Highest cooling state corresponds to lowest possible frequency.
35  *
36  * i.e.
37  *	level 0 --> 1st Max Freq
38  *	level 1 --> 2nd Max Freq
39  *	...
40  */
41 
42 /**
43  * struct time_in_idle - Idle time stats
44  * @time: previous reading of the absolute time that this cpu was idle
45  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46  */
47 struct time_in_idle {
48 	u64 time;
49 	u64 timestamp;
50 };
51 
52 /**
53  * struct cpufreq_cooling_device - data for cooling device with cpufreq
54  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
55  * @cpufreq_state: integer value representing the current state of cpufreq
56  *	cooling	devices.
57  * @max_level: maximum cooling level. One less than total number of valid
58  *	cpufreq frequencies.
59  * @em: Reference on the Energy Model of the device
60  * @cdev: thermal_cooling_device pointer to keep track of the
61  *	registered cooling device.
62  * @policy: cpufreq policy.
63  * @cooling_ops: cpufreq callbacks to thermal cooling device ops
64  * @idle_time: idle time stats
65  * @qos_req: PM QoS contraint to apply
66  *
67  * This structure is required for keeping information of each registered
68  * cpufreq_cooling_device.
69  */
70 struct cpufreq_cooling_device {
71 	u32 last_load;
72 	unsigned int cpufreq_state;
73 	unsigned int max_level;
74 	struct em_perf_domain *em;
75 	struct cpufreq_policy *policy;
76 	struct thermal_cooling_device_ops cooling_ops;
77 #ifndef CONFIG_SMP
78 	struct time_in_idle *idle_time;
79 #endif
80 	struct freq_qos_request qos_req;
81 };
82 
83 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
84 /**
85  * get_level: Find the level for a particular frequency
86  * @cpufreq_cdev: cpufreq_cdev for which the property is required
87  * @freq: Frequency
88  *
89  * Return: level corresponding to the frequency.
90  */
get_level(struct cpufreq_cooling_device * cpufreq_cdev,unsigned int freq)91 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
92 			       unsigned int freq)
93 {
94 	int i;
95 
96 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
97 		if (freq > cpufreq_cdev->em->table[i].frequency)
98 			break;
99 	}
100 
101 	return cpufreq_cdev->max_level - i - 1;
102 }
103 
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_cdev,u32 freq)104 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
105 			     u32 freq)
106 {
107 	unsigned long power_mw;
108 	int i;
109 
110 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
111 		if (freq > cpufreq_cdev->em->table[i].frequency)
112 			break;
113 	}
114 
115 	power_mw = cpufreq_cdev->em->table[i + 1].power;
116 	power_mw /= MICROWATT_PER_MILLIWATT;
117 
118 	return power_mw;
119 }
120 
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_cdev,u32 power)121 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
122 			     u32 power)
123 {
124 	unsigned long em_power_mw;
125 	int i;
126 
127 	for (i = cpufreq_cdev->max_level; i > 0; i--) {
128 		/* Convert EM power to milli-Watts to make safe comparison */
129 		em_power_mw = cpufreq_cdev->em->table[i].power;
130 		em_power_mw /= MICROWATT_PER_MILLIWATT;
131 		if (power >= em_power_mw)
132 			break;
133 	}
134 
135 	return cpufreq_cdev->em->table[i].frequency;
136 }
137 
138 /**
139  * get_load() - get load for a cpu
140  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
141  * @cpu: cpu number
142  * @cpu_idx: index of the cpu in time_in_idle array
143  *
144  * Return: The average load of cpu @cpu in percentage since this
145  * function was last called.
146  */
147 #ifdef CONFIG_SMP
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)148 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
149 		    int cpu_idx)
150 {
151 	unsigned long util = sched_cpu_util(cpu);
152 
153 	return (util * 100) / arch_scale_cpu_capacity(cpu);
154 }
155 #else /* !CONFIG_SMP */
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)156 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
157 		    int cpu_idx)
158 {
159 	u32 load;
160 	u64 now, now_idle, delta_time, delta_idle;
161 	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
162 
163 	now_idle = get_cpu_idle_time(cpu, &now, 0);
164 	delta_idle = now_idle - idle_time->time;
165 	delta_time = now - idle_time->timestamp;
166 
167 	if (delta_time <= delta_idle)
168 		load = 0;
169 	else
170 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
171 
172 	idle_time->time = now_idle;
173 	idle_time->timestamp = now;
174 
175 	return load;
176 }
177 #endif /* CONFIG_SMP */
178 
179 /**
180  * get_dynamic_power() - calculate the dynamic power
181  * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
182  * @freq:	current frequency
183  *
184  * Return: the dynamic power consumed by the cpus described by
185  * @cpufreq_cdev.
186  */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long freq)187 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
188 			     unsigned long freq)
189 {
190 	u32 raw_cpu_power;
191 
192 	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
193 	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
194 }
195 
196 /**
197  * cpufreq_get_requested_power() - get the current power
198  * @cdev:	&thermal_cooling_device pointer
199  * @power:	pointer in which to store the resulting power
200  *
201  * Calculate the current power consumption of the cpus in milliwatts
202  * and store it in @power.  This function should actually calculate
203  * the requested power, but it's hard to get the frequency that
204  * cpufreq would have assigned if there were no thermal limits.
205  * Instead, we calculate the current power on the assumption that the
206  * immediate future will look like the immediate past.
207  *
208  * We use the current frequency and the average load since this
209  * function was last called.  In reality, there could have been
210  * multiple opps since this function was last called and that affects
211  * the load calculation.  While it's not perfectly accurate, this
212  * simplification is good enough and works.  REVISIT this, as more
213  * complex code may be needed if experiments show that it's not
214  * accurate enough.
215  *
216  * Return: 0 on success, this function doesn't fail.
217  */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)218 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
219 				       u32 *power)
220 {
221 	unsigned long freq;
222 	int i = 0, cpu;
223 	u32 total_load = 0;
224 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
225 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
226 
227 	freq = cpufreq_quick_get(policy->cpu);
228 
229 	for_each_cpu(cpu, policy->related_cpus) {
230 		u32 load;
231 
232 		if (cpu_online(cpu))
233 			load = get_load(cpufreq_cdev, cpu, i);
234 		else
235 			load = 0;
236 
237 		total_load += load;
238 	}
239 
240 	cpufreq_cdev->last_load = total_load;
241 
242 	*power = get_dynamic_power(cpufreq_cdev, freq);
243 
244 	trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
245 
246 	return 0;
247 }
248 
249 /**
250  * cpufreq_state2power() - convert a cpu cdev state to power consumed
251  * @cdev:	&thermal_cooling_device pointer
252  * @state:	cooling device state to be converted
253  * @power:	pointer in which to store the resulting power
254  *
255  * Convert cooling device state @state into power consumption in
256  * milliwatts assuming 100% load.  Store the calculated power in
257  * @power.
258  *
259  * Return: 0 on success, -EINVAL if the cooling device state is bigger
260  * than maximum allowed.
261  */
cpufreq_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)262 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
263 			       unsigned long state, u32 *power)
264 {
265 	unsigned int freq, num_cpus, idx;
266 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
267 
268 	/* Request state should be less than max_level */
269 	if (state > cpufreq_cdev->max_level)
270 		return -EINVAL;
271 
272 	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
273 
274 	idx = cpufreq_cdev->max_level - state;
275 	freq = cpufreq_cdev->em->table[idx].frequency;
276 	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
277 
278 	return 0;
279 }
280 
281 /**
282  * cpufreq_power2state() - convert power to a cooling device state
283  * @cdev:	&thermal_cooling_device pointer
284  * @power:	power in milliwatts to be converted
285  * @state:	pointer in which to store the resulting state
286  *
287  * Calculate a cooling device state for the cpus described by @cdev
288  * that would allow them to consume at most @power mW and store it in
289  * @state.  Note that this calculation depends on external factors
290  * such as the CPUs load.  Calling this function with the same power
291  * as input can yield different cooling device states depending on those
292  * external factors.
293  *
294  * Return: 0 on success, this function doesn't fail.
295  */
cpufreq_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)296 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
297 			       u32 power, unsigned long *state)
298 {
299 	unsigned int target_freq;
300 	u32 last_load, normalised_power;
301 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
302 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
303 
304 	last_load = cpufreq_cdev->last_load ?: 1;
305 	normalised_power = (power * 100) / last_load;
306 	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
307 
308 	*state = get_level(cpufreq_cdev, target_freq);
309 	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
310 				      power);
311 	return 0;
312 }
313 
em_is_sane(struct cpufreq_cooling_device * cpufreq_cdev,struct em_perf_domain * em)314 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
315 			      struct em_perf_domain *em) {
316 	struct cpufreq_policy *policy;
317 	unsigned int nr_levels;
318 
319 	if (!em || em_is_artificial(em))
320 		return false;
321 
322 	policy = cpufreq_cdev->policy;
323 	if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
324 		pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
325 			cpumask_pr_args(em_span_cpus(em)),
326 			cpumask_pr_args(policy->related_cpus));
327 		return false;
328 	}
329 
330 	nr_levels = cpufreq_cdev->max_level + 1;
331 	if (em_pd_nr_perf_states(em) != nr_levels) {
332 		pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
333 			cpumask_pr_args(em_span_cpus(em)),
334 			em_pd_nr_perf_states(em), nr_levels);
335 		return false;
336 	}
337 
338 	return true;
339 }
340 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
341 
342 #ifdef CONFIG_SMP
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)343 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
344 {
345 	return 0;
346 }
347 
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)348 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
349 {
350 }
351 #else
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)352 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
353 {
354 	unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
355 
356 	cpufreq_cdev->idle_time = kcalloc(num_cpus,
357 					  sizeof(*cpufreq_cdev->idle_time),
358 					  GFP_KERNEL);
359 	if (!cpufreq_cdev->idle_time)
360 		return -ENOMEM;
361 
362 	return 0;
363 }
364 
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)365 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
366 {
367 	kfree(cpufreq_cdev->idle_time);
368 	cpufreq_cdev->idle_time = NULL;
369 }
370 #endif /* CONFIG_SMP */
371 
get_state_freq(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long state)372 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
373 				   unsigned long state)
374 {
375 	struct cpufreq_policy *policy;
376 	unsigned long idx;
377 
378 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
379 	/* Use the Energy Model table if available */
380 	if (cpufreq_cdev->em) {
381 		idx = cpufreq_cdev->max_level - state;
382 		return cpufreq_cdev->em->table[idx].frequency;
383 	}
384 #endif
385 
386 	/* Otherwise, fallback on the CPUFreq table */
387 	policy = cpufreq_cdev->policy;
388 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
389 		idx = cpufreq_cdev->max_level - state;
390 	else
391 		idx = state;
392 
393 	return policy->freq_table[idx].frequency;
394 }
395 
396 /* cpufreq cooling device callback functions are defined below */
397 
398 /**
399  * cpufreq_get_max_state - callback function to get the max cooling state.
400  * @cdev: thermal cooling device pointer.
401  * @state: fill this variable with the max cooling state.
402  *
403  * Callback for the thermal cooling device to return the cpufreq
404  * max cooling state.
405  *
406  * Return: 0 on success, this function doesn't fail.
407  */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)408 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
409 				 unsigned long *state)
410 {
411 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
412 
413 	*state = cpufreq_cdev->max_level;
414 	return 0;
415 }
416 
417 /**
418  * cpufreq_get_cur_state - callback function to get the current cooling state.
419  * @cdev: thermal cooling device pointer.
420  * @state: fill this variable with the current cooling state.
421  *
422  * Callback for the thermal cooling device to return the cpufreq
423  * current cooling state.
424  *
425  * Return: 0 on success, this function doesn't fail.
426  */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)427 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
428 				 unsigned long *state)
429 {
430 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
431 
432 	*state = cpufreq_cdev->cpufreq_state;
433 
434 	return 0;
435 }
436 
437 /**
438  * cpufreq_set_cur_state - callback function to set the current cooling state.
439  * @cdev: thermal cooling device pointer.
440  * @state: set this variable to the current cooling state.
441  *
442  * Callback for the thermal cooling device to change the cpufreq
443  * current cooling state.
444  *
445  * Return: 0 on success, an error code otherwise.
446  */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)447 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
448 				 unsigned long state)
449 {
450 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
451 	struct cpumask *cpus;
452 	unsigned int frequency;
453 	int ret;
454 
455 	/* Request state should be less than max_level */
456 	if (state > cpufreq_cdev->max_level)
457 		return -EINVAL;
458 
459 	/* Check if the old cooling action is same as new cooling action */
460 	if (cpufreq_cdev->cpufreq_state == state)
461 		return 0;
462 
463 	frequency = get_state_freq(cpufreq_cdev, state);
464 
465 	ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
466 	if (ret >= 0) {
467 		cpufreq_cdev->cpufreq_state = state;
468 		cpus = cpufreq_cdev->policy->related_cpus;
469 		arch_update_thermal_pressure(cpus, frequency);
470 		ret = 0;
471 	}
472 
473 	return ret;
474 }
475 
476 /**
477  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
478  * @np: a valid struct device_node to the cooling device tree node
479  * @policy: cpufreq policy
480  * Normally this should be same as cpufreq policy->related_cpus.
481  * @em: Energy Model of the cpufreq policy
482  *
483  * This interface function registers the cpufreq cooling device with the name
484  * "cpufreq-%s". This API can support multiple instances of cpufreq
485  * cooling devices. It also gives the opportunity to link the cooling device
486  * with a device tree node, in order to bind it via the thermal DT code.
487  *
488  * Return: a valid struct thermal_cooling_device pointer on success,
489  * on failure, it returns a corresponding ERR_PTR().
490  */
491 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,struct cpufreq_policy * policy,struct em_perf_domain * em)492 __cpufreq_cooling_register(struct device_node *np,
493 			struct cpufreq_policy *policy,
494 			struct em_perf_domain *em)
495 {
496 	struct thermal_cooling_device *cdev;
497 	struct cpufreq_cooling_device *cpufreq_cdev;
498 	unsigned int i;
499 	struct device *dev;
500 	int ret;
501 	struct thermal_cooling_device_ops *cooling_ops;
502 	char *name;
503 
504 	if (IS_ERR_OR_NULL(policy)) {
505 		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
506 		return ERR_PTR(-EINVAL);
507 	}
508 
509 	dev = get_cpu_device(policy->cpu);
510 	if (unlikely(!dev)) {
511 		pr_warn("No cpu device for cpu %d\n", policy->cpu);
512 		return ERR_PTR(-ENODEV);
513 	}
514 
515 	i = cpufreq_table_count_valid_entries(policy);
516 	if (!i) {
517 		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
518 			 __func__);
519 		return ERR_PTR(-ENODEV);
520 	}
521 
522 	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
523 	if (!cpufreq_cdev)
524 		return ERR_PTR(-ENOMEM);
525 
526 	cpufreq_cdev->policy = policy;
527 
528 	ret = allocate_idle_time(cpufreq_cdev);
529 	if (ret) {
530 		cdev = ERR_PTR(ret);
531 		goto free_cdev;
532 	}
533 
534 	/* max_level is an index, not a counter */
535 	cpufreq_cdev->max_level = i - 1;
536 
537 	cooling_ops = &cpufreq_cdev->cooling_ops;
538 	cooling_ops->get_max_state = cpufreq_get_max_state;
539 	cooling_ops->get_cur_state = cpufreq_get_cur_state;
540 	cooling_ops->set_cur_state = cpufreq_set_cur_state;
541 
542 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
543 	if (em_is_sane(cpufreq_cdev, em)) {
544 		cpufreq_cdev->em = em;
545 		cooling_ops->get_requested_power = cpufreq_get_requested_power;
546 		cooling_ops->state2power = cpufreq_state2power;
547 		cooling_ops->power2state = cpufreq_power2state;
548 	} else
549 #endif
550 	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
551 		pr_err("%s: unsorted frequency tables are not supported\n",
552 		       __func__);
553 		cdev = ERR_PTR(-EINVAL);
554 		goto free_idle_time;
555 	}
556 
557 	ret = freq_qos_add_request(&policy->constraints,
558 				   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
559 				   get_state_freq(cpufreq_cdev, 0));
560 	if (ret < 0) {
561 		pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
562 		       ret);
563 		cdev = ERR_PTR(ret);
564 		goto free_idle_time;
565 	}
566 
567 	cdev = ERR_PTR(-ENOMEM);
568 	name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
569 	if (!name)
570 		goto remove_qos_req;
571 
572 	cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
573 						  cooling_ops);
574 	kfree(name);
575 
576 	if (IS_ERR(cdev))
577 		goto remove_qos_req;
578 
579 	return cdev;
580 
581 remove_qos_req:
582 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
583 free_idle_time:
584 	free_idle_time(cpufreq_cdev);
585 free_cdev:
586 	kfree(cpufreq_cdev);
587 	return cdev;
588 }
589 
590 /**
591  * cpufreq_cooling_register - function to create cpufreq cooling device.
592  * @policy: cpufreq policy
593  *
594  * This interface function registers the cpufreq cooling device with the name
595  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
596  * devices.
597  *
598  * Return: a valid struct thermal_cooling_device pointer on success,
599  * on failure, it returns a corresponding ERR_PTR().
600  */
601 struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy * policy)602 cpufreq_cooling_register(struct cpufreq_policy *policy)
603 {
604 	return __cpufreq_cooling_register(NULL, policy, NULL);
605 }
606 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
607 
608 /**
609  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
610  * @policy: cpufreq policy
611  *
612  * This interface function registers the cpufreq cooling device with the name
613  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
614  * devices. Using this API, the cpufreq cooling device will be linked to the
615  * device tree node provided.
616  *
617  * Using this function, the cooling device will implement the power
618  * extensions by using the Energy Model (if present).  The cpus must have
619  * registered their OPPs using the OPP library.
620  *
621  * Return: a valid struct thermal_cooling_device pointer on success,
622  * and NULL on failure.
623  */
624 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy * policy)625 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
626 {
627 	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
628 	struct thermal_cooling_device *cdev = NULL;
629 
630 	if (!np) {
631 		pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
632 		       policy->cpu);
633 		return NULL;
634 	}
635 
636 	if (of_property_present(np, "#cooling-cells")) {
637 		struct em_perf_domain *em = em_cpu_get(policy->cpu);
638 
639 		cdev = __cpufreq_cooling_register(np, policy, em);
640 		if (IS_ERR(cdev)) {
641 			pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
642 			       policy->cpu, PTR_ERR(cdev));
643 			cdev = NULL;
644 		}
645 	}
646 
647 	of_node_put(np);
648 	return cdev;
649 }
650 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
651 
652 /**
653  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
654  * @cdev: thermal cooling device pointer.
655  *
656  * This interface function unregisters the "cpufreq-%x" cooling device.
657  */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)658 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
659 {
660 	struct cpufreq_cooling_device *cpufreq_cdev;
661 
662 	if (!cdev)
663 		return;
664 
665 	cpufreq_cdev = cdev->devdata;
666 
667 	thermal_cooling_device_unregister(cdev);
668 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
669 	free_idle_time(cpufreq_cdev);
670 	kfree(cpufreq_cdev);
671 }
672 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
673