1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015-2021, Linaro Limited 4 * Copyright (c) 2016, EPAM Systems 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/arm-smccc.h> 10 #include <linux/cpuhotplug.h> 11 #include <linux/errno.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/irqdomain.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/tee_drv.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 #include "optee_private.h" 30 #include "optee_smc.h" 31 #include "optee_rpc_cmd.h" 32 #include <linux/kmemleak.h> 33 #define CREATE_TRACE_POINTS 34 #include "optee_trace.h" 35 36 /* 37 * This file implement the SMC ABI used when communicating with secure world 38 * OP-TEE OS via raw SMCs. 39 * This file is divided into the following sections: 40 * 1. Convert between struct tee_param and struct optee_msg_param 41 * 2. Low level support functions to register shared memory in secure world 42 * 3. Dynamic shared memory pool based on alloc_pages() 43 * 4. Do a normal scheduled call into secure world 44 * 5. Asynchronous notification 45 * 6. Driver initialization. 46 */ 47 48 /* 49 * A typical OP-TEE private shm allocation is 224 bytes (argument struct 50 * with 6 parameters, needed for open session). So with an alignment of 512 51 * we'll waste a bit more than 50%. However, it's only expected that we'll 52 * have a handful of these structs allocated at a time. Most memory will 53 * be allocated aligned to the page size, So all in all this should scale 54 * up and down quite well. 55 */ 56 #define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */ 57 58 /* SMC ABI considers at most a single TEE firmware */ 59 static unsigned int pcpu_irq_num; 60 61 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu) 62 { 63 enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE); 64 65 return 0; 66 } 67 68 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu) 69 { 70 disable_percpu_irq(pcpu_irq_num); 71 72 return 0; 73 } 74 75 /* 76 * 1. Convert between struct tee_param and struct optee_msg_param 77 * 78 * optee_from_msg_param() and optee_to_msg_param() are the main 79 * functions. 80 */ 81 82 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr, 83 const struct optee_msg_param *mp) 84 { 85 struct tee_shm *shm; 86 phys_addr_t pa; 87 int rc; 88 89 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 90 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 91 p->u.memref.size = mp->u.tmem.size; 92 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref; 93 if (!shm) { 94 p->u.memref.shm_offs = 0; 95 p->u.memref.shm = NULL; 96 return 0; 97 } 98 99 rc = tee_shm_get_pa(shm, 0, &pa); 100 if (rc) 101 return rc; 102 103 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa; 104 p->u.memref.shm = shm; 105 106 return 0; 107 } 108 109 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr, 110 const struct optee_msg_param *mp) 111 { 112 struct tee_shm *shm; 113 114 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 115 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 116 p->u.memref.size = mp->u.rmem.size; 117 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref; 118 119 if (shm) { 120 p->u.memref.shm_offs = mp->u.rmem.offs; 121 p->u.memref.shm = shm; 122 } else { 123 p->u.memref.shm_offs = 0; 124 p->u.memref.shm = NULL; 125 } 126 } 127 128 /** 129 * optee_from_msg_param() - convert from OPTEE_MSG parameters to 130 * struct tee_param 131 * @optee: main service struct 132 * @params: subsystem internal parameter representation 133 * @num_params: number of elements in the parameter arrays 134 * @msg_params: OPTEE_MSG parameters 135 * Returns 0 on success or <0 on failure 136 */ 137 static int optee_from_msg_param(struct optee *optee, struct tee_param *params, 138 size_t num_params, 139 const struct optee_msg_param *msg_params) 140 { 141 int rc; 142 size_t n; 143 144 for (n = 0; n < num_params; n++) { 145 struct tee_param *p = params + n; 146 const struct optee_msg_param *mp = msg_params + n; 147 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; 148 149 switch (attr) { 150 case OPTEE_MSG_ATTR_TYPE_NONE: 151 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 152 memset(&p->u, 0, sizeof(p->u)); 153 break; 154 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: 155 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 156 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 157 optee_from_msg_param_value(p, attr, mp); 158 break; 159 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT: 160 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 161 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 162 rc = from_msg_param_tmp_mem(p, attr, mp); 163 if (rc) 164 return rc; 165 break; 166 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT: 167 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 168 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 169 from_msg_param_reg_mem(p, attr, mp); 170 break; 171 172 default: 173 return -EINVAL; 174 } 175 } 176 return 0; 177 } 178 179 static int to_msg_param_tmp_mem(struct optee_msg_param *mp, 180 const struct tee_param *p) 181 { 182 int rc; 183 phys_addr_t pa; 184 185 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr - 186 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 187 188 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm; 189 mp->u.tmem.size = p->u.memref.size; 190 191 if (!p->u.memref.shm) { 192 mp->u.tmem.buf_ptr = 0; 193 return 0; 194 } 195 196 rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa); 197 if (rc) 198 return rc; 199 200 mp->u.tmem.buf_ptr = pa; 201 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED << 202 OPTEE_MSG_ATTR_CACHE_SHIFT; 203 204 return 0; 205 } 206 207 static int to_msg_param_reg_mem(struct optee_msg_param *mp, 208 const struct tee_param *p) 209 { 210 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr - 211 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 212 213 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm; 214 mp->u.rmem.size = p->u.memref.size; 215 mp->u.rmem.offs = p->u.memref.shm_offs; 216 return 0; 217 } 218 219 /** 220 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters 221 * @optee: main service struct 222 * @msg_params: OPTEE_MSG parameters 223 * @num_params: number of elements in the parameter arrays 224 * @params: subsystem itnernal parameter representation 225 * Returns 0 on success or <0 on failure 226 */ 227 static int optee_to_msg_param(struct optee *optee, 228 struct optee_msg_param *msg_params, 229 size_t num_params, const struct tee_param *params) 230 { 231 int rc; 232 size_t n; 233 234 for (n = 0; n < num_params; n++) { 235 const struct tee_param *p = params + n; 236 struct optee_msg_param *mp = msg_params + n; 237 238 switch (p->attr) { 239 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: 240 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 241 memset(&mp->u, 0, sizeof(mp->u)); 242 break; 243 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: 244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: 245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: 246 optee_to_msg_param_value(mp, p); 247 break; 248 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: 249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: 250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: 251 if (tee_shm_is_dynamic(p->u.memref.shm)) 252 rc = to_msg_param_reg_mem(mp, p); 253 else 254 rc = to_msg_param_tmp_mem(mp, p); 255 if (rc) 256 return rc; 257 break; 258 default: 259 return -EINVAL; 260 } 261 } 262 return 0; 263 } 264 265 /* 266 * 2. Low level support functions to register shared memory in secure world 267 * 268 * Functions to enable/disable shared memory caching in secure world, that 269 * is, lazy freeing of previously allocated shared memory. Freeing is 270 * performed when a request has been compled. 271 * 272 * Functions to register and unregister shared memory both for normal 273 * clients and for tee-supplicant. 274 */ 275 276 /** 277 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 278 * in OP-TEE 279 * @optee: main service struct 280 */ 281 static void optee_enable_shm_cache(struct optee *optee) 282 { 283 struct optee_call_waiter w; 284 285 /* We need to retry until secure world isn't busy. */ 286 optee_cq_wait_init(&optee->call_queue, &w); 287 while (true) { 288 struct arm_smccc_res res; 289 290 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 291 0, 0, 0, 0, 0, 0, 0, &res); 292 if (res.a0 == OPTEE_SMC_RETURN_OK) 293 break; 294 optee_cq_wait_for_completion(&optee->call_queue, &w); 295 } 296 optee_cq_wait_final(&optee->call_queue, &w); 297 } 298 299 /** 300 * __optee_disable_shm_cache() - Disables caching of some shared memory 301 * allocation in OP-TEE 302 * @optee: main service struct 303 * @is_mapped: true if the cached shared memory addresses were mapped by this 304 * kernel, are safe to dereference, and should be freed 305 */ 306 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped) 307 { 308 struct optee_call_waiter w; 309 310 /* We need to retry until secure world isn't busy. */ 311 optee_cq_wait_init(&optee->call_queue, &w); 312 while (true) { 313 union { 314 struct arm_smccc_res smccc; 315 struct optee_smc_disable_shm_cache_result result; 316 } res; 317 318 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 319 0, 0, 0, 0, 0, 0, 0, &res.smccc); 320 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 321 break; /* All shm's freed */ 322 if (res.result.status == OPTEE_SMC_RETURN_OK) { 323 struct tee_shm *shm; 324 325 /* 326 * Shared memory references that were not mapped by 327 * this kernel must be ignored to prevent a crash. 328 */ 329 if (!is_mapped) 330 continue; 331 332 shm = reg_pair_to_ptr(res.result.shm_upper32, 333 res.result.shm_lower32); 334 tee_shm_free(shm); 335 } else { 336 optee_cq_wait_for_completion(&optee->call_queue, &w); 337 } 338 } 339 optee_cq_wait_final(&optee->call_queue, &w); 340 } 341 342 /** 343 * optee_disable_shm_cache() - Disables caching of mapped shared memory 344 * allocations in OP-TEE 345 * @optee: main service struct 346 */ 347 static void optee_disable_shm_cache(struct optee *optee) 348 { 349 return __optee_disable_shm_cache(optee, true); 350 } 351 352 /** 353 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory 354 * allocations in OP-TEE which are not 355 * currently mapped 356 * @optee: main service struct 357 */ 358 static void optee_disable_unmapped_shm_cache(struct optee *optee) 359 { 360 return __optee_disable_shm_cache(optee, false); 361 } 362 363 #define PAGELIST_ENTRIES_PER_PAGE \ 364 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 365 366 /* 367 * The final entry in each pagelist page is a pointer to the next 368 * pagelist page. 369 */ 370 static size_t get_pages_list_size(size_t num_entries) 371 { 372 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 373 374 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 375 } 376 377 static u64 *optee_allocate_pages_list(size_t num_entries) 378 { 379 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 380 } 381 382 static void optee_free_pages_list(void *list, size_t num_entries) 383 { 384 free_pages_exact(list, get_pages_list_size(num_entries)); 385 } 386 387 /** 388 * optee_fill_pages_list() - write list of user pages to given shared 389 * buffer. 390 * 391 * @dst: page-aligned buffer where list of pages will be stored 392 * @pages: array of pages that represents shared buffer 393 * @num_pages: number of entries in @pages 394 * @page_offset: offset of user buffer from page start 395 * 396 * @dst should be big enough to hold list of user page addresses and 397 * links to the next pages of buffer 398 */ 399 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 400 size_t page_offset) 401 { 402 int n = 0; 403 phys_addr_t optee_page; 404 /* 405 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 406 * for details. 407 */ 408 struct { 409 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 410 u64 next_page_data; 411 } *pages_data; 412 413 /* 414 * Currently OP-TEE uses 4k page size and it does not looks 415 * like this will change in the future. On other hand, there are 416 * no know ARM architectures with page size < 4k. 417 * Thus the next built assert looks redundant. But the following 418 * code heavily relies on this assumption, so it is better be 419 * safe than sorry. 420 */ 421 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 422 423 pages_data = (void *)dst; 424 /* 425 * If linux page is bigger than 4k, and user buffer offset is 426 * larger than 4k/8k/12k/etc this will skip first 4k pages, 427 * because they bear no value data for OP-TEE. 428 */ 429 optee_page = page_to_phys(*pages) + 430 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 431 432 while (true) { 433 pages_data->pages_list[n++] = optee_page; 434 435 if (n == PAGELIST_ENTRIES_PER_PAGE) { 436 pages_data->next_page_data = 437 virt_to_phys(pages_data + 1); 438 pages_data++; 439 n = 0; 440 } 441 442 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 443 if (!(optee_page & ~PAGE_MASK)) { 444 if (!--num_pages) 445 break; 446 pages++; 447 optee_page = page_to_phys(*pages); 448 } 449 } 450 } 451 452 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 453 struct page **pages, size_t num_pages, 454 unsigned long start) 455 { 456 struct optee *optee = tee_get_drvdata(ctx->teedev); 457 struct optee_msg_arg *msg_arg; 458 struct tee_shm *shm_arg; 459 u64 *pages_list; 460 size_t sz; 461 int rc; 462 463 if (!num_pages) 464 return -EINVAL; 465 466 rc = optee_check_mem_type(start, num_pages); 467 if (rc) 468 return rc; 469 470 pages_list = optee_allocate_pages_list(num_pages); 471 if (!pages_list) 472 return -ENOMEM; 473 474 /* 475 * We're about to register shared memory we can't register shared 476 * memory for this request or there's a catch-22. 477 * 478 * So in this we'll have to do the good old temporary private 479 * allocation instead of using optee_get_msg_arg(). 480 */ 481 sz = optee_msg_arg_size(optee->rpc_param_count); 482 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 483 if (IS_ERR(shm_arg)) { 484 rc = PTR_ERR(shm_arg); 485 goto out; 486 } 487 msg_arg = tee_shm_get_va(shm_arg, 0); 488 if (IS_ERR(msg_arg)) { 489 rc = PTR_ERR(msg_arg); 490 goto out; 491 } 492 493 optee_fill_pages_list(pages_list, pages, num_pages, 494 tee_shm_get_page_offset(shm)); 495 496 memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 497 msg_arg->num_params = 1; 498 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 499 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 500 OPTEE_MSG_ATTR_NONCONTIG; 501 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 502 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 503 /* 504 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 505 * store buffer offset from 4k page, as described in OP-TEE ABI. 506 */ 507 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 508 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 509 510 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) || 511 msg_arg->ret != TEEC_SUCCESS) 512 rc = -EINVAL; 513 514 tee_shm_free(shm_arg); 515 out: 516 optee_free_pages_list(pages_list, num_pages); 517 return rc; 518 } 519 520 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 521 { 522 struct optee *optee = tee_get_drvdata(ctx->teedev); 523 struct optee_msg_arg *msg_arg; 524 struct tee_shm *shm_arg; 525 int rc = 0; 526 size_t sz; 527 528 /* 529 * We're about to unregister shared memory and we may not be able 530 * register shared memory for this request in case we're called 531 * from optee_shm_arg_cache_uninit(). 532 * 533 * So in order to keep things simple in this function just as in 534 * optee_shm_register() we'll use temporary private allocation 535 * instead of using optee_get_msg_arg(). 536 */ 537 sz = optee_msg_arg_size(optee->rpc_param_count); 538 shm_arg = tee_shm_alloc_priv_buf(ctx, sz); 539 if (IS_ERR(shm_arg)) 540 return PTR_ERR(shm_arg); 541 msg_arg = tee_shm_get_va(shm_arg, 0); 542 if (IS_ERR(msg_arg)) { 543 rc = PTR_ERR(msg_arg); 544 goto out; 545 } 546 547 memset(msg_arg, 0, sz); 548 msg_arg->num_params = 1; 549 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 550 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 551 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 552 553 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) || 554 msg_arg->ret != TEEC_SUCCESS) 555 rc = -EINVAL; 556 out: 557 tee_shm_free(shm_arg); 558 return rc; 559 } 560 561 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 562 struct page **pages, size_t num_pages, 563 unsigned long start) 564 { 565 /* 566 * We don't want to register supplicant memory in OP-TEE. 567 * Instead information about it will be passed in RPC code. 568 */ 569 return optee_check_mem_type(start, num_pages); 570 } 571 572 static int optee_shm_unregister_supp(struct tee_context *ctx, 573 struct tee_shm *shm) 574 { 575 return 0; 576 } 577 578 /* 579 * 3. Dynamic shared memory pool based on alloc_pages() 580 * 581 * Implements an OP-TEE specific shared memory pool which is used 582 * when dynamic shared memory is supported by secure world. 583 * 584 * The main function is optee_shm_pool_alloc_pages(). 585 */ 586 587 static int pool_op_alloc(struct tee_shm_pool *pool, 588 struct tee_shm *shm, size_t size, size_t align) 589 { 590 /* 591 * Shared memory private to the OP-TEE driver doesn't need 592 * to be registered with OP-TEE. 593 */ 594 if (shm->flags & TEE_SHM_PRIV) 595 return optee_pool_op_alloc_helper(pool, shm, size, align, NULL); 596 597 return optee_pool_op_alloc_helper(pool, shm, size, align, 598 optee_shm_register); 599 } 600 601 static void pool_op_free(struct tee_shm_pool *pool, 602 struct tee_shm *shm) 603 { 604 if (!(shm->flags & TEE_SHM_PRIV)) 605 optee_pool_op_free_helper(pool, shm, optee_shm_unregister); 606 else 607 optee_pool_op_free_helper(pool, shm, NULL); 608 } 609 610 static void pool_op_destroy_pool(struct tee_shm_pool *pool) 611 { 612 kfree(pool); 613 } 614 615 static const struct tee_shm_pool_ops pool_ops = { 616 .alloc = pool_op_alloc, 617 .free = pool_op_free, 618 .destroy_pool = pool_op_destroy_pool, 619 }; 620 621 /** 622 * optee_shm_pool_alloc_pages() - create page-based allocator pool 623 * 624 * This pool is used when OP-TEE supports dymanic SHM. In this case 625 * command buffers and such are allocated from kernel's own memory. 626 */ 627 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void) 628 { 629 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL); 630 631 if (!pool) 632 return ERR_PTR(-ENOMEM); 633 634 pool->ops = &pool_ops; 635 636 return pool; 637 } 638 639 /* 640 * 4. Do a normal scheduled call into secure world 641 * 642 * The function optee_smc_do_call_with_arg() performs a normal scheduled 643 * call into secure world. During this call may normal world request help 644 * from normal world using RPCs, Remote Procedure Calls. This includes 645 * delivery of non-secure interrupts to for instance allow rescheduling of 646 * the current task. 647 */ 648 649 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx, 650 struct optee_msg_arg *arg) 651 { 652 struct tee_shm *shm; 653 654 arg->ret_origin = TEEC_ORIGIN_COMMS; 655 656 if (arg->num_params != 1 || 657 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 658 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 659 return; 660 } 661 662 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b; 663 switch (arg->params[0].u.value.a) { 664 case OPTEE_RPC_SHM_TYPE_APPL: 665 optee_rpc_cmd_free_suppl(ctx, shm); 666 break; 667 case OPTEE_RPC_SHM_TYPE_KERNEL: 668 tee_shm_free(shm); 669 break; 670 default: 671 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 672 } 673 arg->ret = TEEC_SUCCESS; 674 } 675 676 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx, 677 struct optee *optee, 678 struct optee_msg_arg *arg, 679 struct optee_call_ctx *call_ctx) 680 { 681 phys_addr_t pa; 682 struct tee_shm *shm; 683 size_t sz; 684 size_t n; 685 686 arg->ret_origin = TEEC_ORIGIN_COMMS; 687 688 if (!arg->num_params || 689 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 690 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 691 return; 692 } 693 694 for (n = 1; n < arg->num_params; n++) { 695 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) { 696 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 697 return; 698 } 699 } 700 701 sz = arg->params[0].u.value.b; 702 switch (arg->params[0].u.value.a) { 703 case OPTEE_RPC_SHM_TYPE_APPL: 704 shm = optee_rpc_cmd_alloc_suppl(ctx, sz); 705 break; 706 case OPTEE_RPC_SHM_TYPE_KERNEL: 707 shm = tee_shm_alloc_priv_buf(optee->ctx, sz); 708 break; 709 default: 710 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 711 return; 712 } 713 714 if (IS_ERR(shm)) { 715 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 716 return; 717 } 718 719 if (tee_shm_get_pa(shm, 0, &pa)) { 720 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 721 goto bad; 722 } 723 724 sz = tee_shm_get_size(shm); 725 726 if (tee_shm_is_dynamic(shm)) { 727 struct page **pages; 728 u64 *pages_list; 729 size_t page_num; 730 731 pages = tee_shm_get_pages(shm, &page_num); 732 if (!pages || !page_num) { 733 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 734 goto bad; 735 } 736 737 pages_list = optee_allocate_pages_list(page_num); 738 if (!pages_list) { 739 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 740 goto bad; 741 } 742 743 call_ctx->pages_list = pages_list; 744 call_ctx->num_entries = page_num; 745 746 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 747 OPTEE_MSG_ATTR_NONCONTIG; 748 /* 749 * In the least bits of u.tmem.buf_ptr we store buffer offset 750 * from 4k page, as described in OP-TEE ABI. 751 */ 752 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) | 753 (tee_shm_get_page_offset(shm) & 754 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 755 arg->params[0].u.tmem.size = tee_shm_get_size(shm); 756 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 757 758 optee_fill_pages_list(pages_list, pages, page_num, 759 tee_shm_get_page_offset(shm)); 760 } else { 761 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT; 762 arg->params[0].u.tmem.buf_ptr = pa; 763 arg->params[0].u.tmem.size = sz; 764 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 765 } 766 767 arg->ret = TEEC_SUCCESS; 768 return; 769 bad: 770 tee_shm_free(shm); 771 } 772 773 static void free_pages_list(struct optee_call_ctx *call_ctx) 774 { 775 if (call_ctx->pages_list) { 776 optee_free_pages_list(call_ctx->pages_list, 777 call_ctx->num_entries); 778 call_ctx->pages_list = NULL; 779 call_ctx->num_entries = 0; 780 } 781 } 782 783 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx) 784 { 785 free_pages_list(call_ctx); 786 } 787 788 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee, 789 struct optee_msg_arg *arg, 790 struct optee_call_ctx *call_ctx) 791 { 792 793 switch (arg->cmd) { 794 case OPTEE_RPC_CMD_SHM_ALLOC: 795 free_pages_list(call_ctx); 796 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx); 797 break; 798 case OPTEE_RPC_CMD_SHM_FREE: 799 handle_rpc_func_cmd_shm_free(ctx, arg); 800 break; 801 default: 802 optee_rpc_cmd(ctx, optee, arg); 803 } 804 } 805 806 /** 807 * optee_handle_rpc() - handle RPC from secure world 808 * @ctx: context doing the RPC 809 * @param: value of registers for the RPC 810 * @call_ctx: call context. Preserved during one OP-TEE invocation 811 * 812 * Result of RPC is written back into @param. 813 */ 814 static void optee_handle_rpc(struct tee_context *ctx, 815 struct optee_msg_arg *rpc_arg, 816 struct optee_rpc_param *param, 817 struct optee_call_ctx *call_ctx) 818 { 819 struct tee_device *teedev = ctx->teedev; 820 struct optee *optee = tee_get_drvdata(teedev); 821 struct optee_msg_arg *arg; 822 struct tee_shm *shm; 823 phys_addr_t pa; 824 825 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) { 826 case OPTEE_SMC_RPC_FUNC_ALLOC: 827 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1); 828 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) { 829 reg_pair_from_64(¶m->a1, ¶m->a2, pa); 830 reg_pair_from_64(¶m->a4, ¶m->a5, 831 (unsigned long)shm); 832 } else { 833 param->a1 = 0; 834 param->a2 = 0; 835 param->a4 = 0; 836 param->a5 = 0; 837 } 838 kmemleak_not_leak(shm); 839 break; 840 case OPTEE_SMC_RPC_FUNC_FREE: 841 shm = reg_pair_to_ptr(param->a1, param->a2); 842 tee_shm_free(shm); 843 break; 844 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR: 845 /* 846 * A foreign interrupt was raised while secure world was 847 * executing, since they are handled in Linux a dummy RPC is 848 * performed to let Linux take the interrupt through the normal 849 * vector. 850 */ 851 break; 852 case OPTEE_SMC_RPC_FUNC_CMD: 853 if (rpc_arg) { 854 arg = rpc_arg; 855 } else { 856 shm = reg_pair_to_ptr(param->a1, param->a2); 857 arg = tee_shm_get_va(shm, 0); 858 if (IS_ERR(arg)) { 859 pr_err("%s: tee_shm_get_va %p failed\n", 860 __func__, shm); 861 break; 862 } 863 } 864 865 handle_rpc_func_cmd(ctx, optee, arg, call_ctx); 866 break; 867 default: 868 pr_warn("Unknown RPC func 0x%x\n", 869 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)); 870 break; 871 } 872 873 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC; 874 } 875 876 /** 877 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world 878 * @ctx: calling context 879 * @shm: shared memory holding the message to pass to secure world 880 * @offs: offset of the message in @shm 881 * 882 * Does and SMC to OP-TEE in secure world and handles eventual resulting 883 * Remote Procedure Calls (RPC) from OP-TEE. 884 * 885 * Returns return code from secure world, 0 is OK 886 */ 887 static int optee_smc_do_call_with_arg(struct tee_context *ctx, 888 struct tee_shm *shm, u_int offs) 889 { 890 struct optee *optee = tee_get_drvdata(ctx->teedev); 891 struct optee_call_waiter w; 892 struct optee_rpc_param param = { }; 893 struct optee_call_ctx call_ctx = { }; 894 struct optee_msg_arg *rpc_arg = NULL; 895 int rc; 896 897 if (optee->rpc_param_count) { 898 struct optee_msg_arg *arg; 899 unsigned int rpc_arg_offs; 900 901 arg = tee_shm_get_va(shm, offs); 902 if (IS_ERR(arg)) 903 return PTR_ERR(arg); 904 905 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params); 906 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs); 907 if (IS_ERR(rpc_arg)) 908 return PTR_ERR(rpc_arg); 909 } 910 911 if (rpc_arg && tee_shm_is_dynamic(shm)) { 912 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG; 913 reg_pair_from_64(¶m.a1, ¶m.a2, (u_long)shm); 914 param.a3 = offs; 915 } else { 916 phys_addr_t parg; 917 918 rc = tee_shm_get_pa(shm, offs, &parg); 919 if (rc) 920 return rc; 921 922 if (rpc_arg) 923 param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG; 924 else 925 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 926 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 927 } 928 /* Initialize waiter */ 929 optee_cq_wait_init(&optee->call_queue, &w); 930 while (true) { 931 struct arm_smccc_res res; 932 933 trace_optee_invoke_fn_begin(¶m); 934 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3, 935 param.a4, param.a5, param.a6, param.a7, 936 &res); 937 trace_optee_invoke_fn_end(¶m, &res); 938 939 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 940 /* 941 * Out of threads in secure world, wait for a thread 942 * become available. 943 */ 944 optee_cq_wait_for_completion(&optee->call_queue, &w); 945 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 946 cond_resched(); 947 param.a0 = res.a0; 948 param.a1 = res.a1; 949 param.a2 = res.a2; 950 param.a3 = res.a3; 951 optee_handle_rpc(ctx, rpc_arg, ¶m, &call_ctx); 952 } else { 953 rc = res.a0; 954 break; 955 } 956 } 957 958 optee_rpc_finalize_call(&call_ctx); 959 /* 960 * We're done with our thread in secure world, if there's any 961 * thread waiters wake up one. 962 */ 963 optee_cq_wait_final(&optee->call_queue, &w); 964 965 return rc; 966 } 967 968 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd) 969 { 970 struct optee_shm_arg_entry *entry; 971 struct optee_msg_arg *msg_arg; 972 struct tee_shm *shm; 973 u_int offs; 974 975 msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs); 976 if (IS_ERR(msg_arg)) 977 return PTR_ERR(msg_arg); 978 979 msg_arg->cmd = cmd; 980 optee_smc_do_call_with_arg(ctx, shm, offs); 981 982 optee_free_msg_arg(ctx, entry, offs); 983 return 0; 984 } 985 986 static int optee_smc_do_bottom_half(struct tee_context *ctx) 987 { 988 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF); 989 } 990 991 static int optee_smc_stop_async_notif(struct tee_context *ctx) 992 { 993 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF); 994 } 995 996 /* 997 * 5. Asynchronous notification 998 */ 999 1000 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid, 1001 bool *value_pending) 1002 { 1003 struct arm_smccc_res res; 1004 1005 invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res); 1006 1007 if (res.a0) 1008 return 0; 1009 *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID); 1010 *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING); 1011 return res.a1; 1012 } 1013 1014 static irqreturn_t irq_handler(struct optee *optee) 1015 { 1016 bool do_bottom_half = false; 1017 bool value_valid; 1018 bool value_pending; 1019 u32 value; 1020 1021 do { 1022 value = get_async_notif_value(optee->smc.invoke_fn, 1023 &value_valid, &value_pending); 1024 if (!value_valid) 1025 break; 1026 1027 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF) 1028 do_bottom_half = true; 1029 else 1030 optee_notif_send(optee, value); 1031 } while (value_pending); 1032 1033 if (do_bottom_half) 1034 return IRQ_WAKE_THREAD; 1035 return IRQ_HANDLED; 1036 } 1037 1038 static irqreturn_t notif_irq_handler(int irq, void *dev_id) 1039 { 1040 struct optee *optee = dev_id; 1041 1042 return irq_handler(optee); 1043 } 1044 1045 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id) 1046 { 1047 struct optee *optee = dev_id; 1048 1049 optee_smc_do_bottom_half(optee->ctx); 1050 1051 return IRQ_HANDLED; 1052 } 1053 1054 static int init_irq(struct optee *optee, u_int irq) 1055 { 1056 int rc; 1057 1058 rc = request_threaded_irq(irq, notif_irq_handler, 1059 notif_irq_thread_fn, 1060 0, "optee_notification", optee); 1061 if (rc) 1062 return rc; 1063 1064 optee->smc.notif_irq = irq; 1065 1066 return 0; 1067 } 1068 1069 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id) 1070 { 1071 struct optee_pcpu *pcpu = dev_id; 1072 struct optee *optee = pcpu->optee; 1073 1074 if (irq_handler(optee) == IRQ_WAKE_THREAD) 1075 queue_work(optee->smc.notif_pcpu_wq, 1076 &optee->smc.notif_pcpu_work); 1077 1078 return IRQ_HANDLED; 1079 } 1080 1081 static void notif_pcpu_irq_work_fn(struct work_struct *work) 1082 { 1083 struct optee_smc *optee_smc = container_of(work, struct optee_smc, 1084 notif_pcpu_work); 1085 struct optee *optee = container_of(optee_smc, struct optee, smc); 1086 1087 optee_smc_do_bottom_half(optee->ctx); 1088 } 1089 1090 static int init_pcpu_irq(struct optee *optee, u_int irq) 1091 { 1092 struct optee_pcpu __percpu *optee_pcpu; 1093 int cpu, rc; 1094 1095 optee_pcpu = alloc_percpu(struct optee_pcpu); 1096 if (!optee_pcpu) 1097 return -ENOMEM; 1098 1099 for_each_present_cpu(cpu) 1100 per_cpu_ptr(optee_pcpu, cpu)->optee = optee; 1101 1102 rc = request_percpu_irq(irq, notif_pcpu_irq_handler, 1103 "optee_pcpu_notification", optee_pcpu); 1104 if (rc) 1105 goto err_free_pcpu; 1106 1107 INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn); 1108 optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification"); 1109 if (!optee->smc.notif_pcpu_wq) { 1110 rc = -EINVAL; 1111 goto err_free_pcpu_irq; 1112 } 1113 1114 optee->smc.optee_pcpu = optee_pcpu; 1115 optee->smc.notif_irq = irq; 1116 1117 pcpu_irq_num = irq; 1118 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting", 1119 optee_cpuhp_enable_pcpu_irq, 1120 optee_cpuhp_disable_pcpu_irq); 1121 if (!rc) 1122 rc = -EINVAL; 1123 if (rc < 0) 1124 goto err_free_pcpu_irq; 1125 1126 optee->smc.notif_cpuhp_state = rc; 1127 1128 return 0; 1129 1130 err_free_pcpu_irq: 1131 free_percpu_irq(irq, optee_pcpu); 1132 err_free_pcpu: 1133 free_percpu(optee_pcpu); 1134 1135 return rc; 1136 } 1137 1138 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq) 1139 { 1140 if (irq_is_percpu_devid(irq)) 1141 return init_pcpu_irq(optee, irq); 1142 else 1143 return init_irq(optee, irq); 1144 } 1145 1146 static void uninit_pcpu_irq(struct optee *optee) 1147 { 1148 cpuhp_remove_state(optee->smc.notif_cpuhp_state); 1149 1150 destroy_workqueue(optee->smc.notif_pcpu_wq); 1151 1152 free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu); 1153 free_percpu(optee->smc.optee_pcpu); 1154 } 1155 1156 static void optee_smc_notif_uninit_irq(struct optee *optee) 1157 { 1158 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1159 optee_smc_stop_async_notif(optee->ctx); 1160 if (optee->smc.notif_irq) { 1161 if (irq_is_percpu_devid(optee->smc.notif_irq)) 1162 uninit_pcpu_irq(optee); 1163 else 1164 free_irq(optee->smc.notif_irq, optee); 1165 1166 irq_dispose_mapping(optee->smc.notif_irq); 1167 } 1168 } 1169 } 1170 1171 /* 1172 * 6. Driver initialization 1173 * 1174 * During driver initialization is secure world probed to find out which 1175 * features it supports so the driver can be initialized with a matching 1176 * configuration. This involves for instance support for dynamic shared 1177 * memory instead of a static memory carvout. 1178 */ 1179 1180 static void optee_get_version(struct tee_device *teedev, 1181 struct tee_ioctl_version_data *vers) 1182 { 1183 struct tee_ioctl_version_data v = { 1184 .impl_id = TEE_IMPL_ID_OPTEE, 1185 .impl_caps = TEE_OPTEE_CAP_TZ, 1186 .gen_caps = TEE_GEN_CAP_GP, 1187 }; 1188 struct optee *optee = tee_get_drvdata(teedev); 1189 1190 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1191 v.gen_caps |= TEE_GEN_CAP_REG_MEM; 1192 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL) 1193 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL; 1194 *vers = v; 1195 } 1196 1197 static int optee_smc_open(struct tee_context *ctx) 1198 { 1199 struct optee *optee = tee_get_drvdata(ctx->teedev); 1200 u32 sec_caps = optee->smc.sec_caps; 1201 1202 return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL); 1203 } 1204 1205 static const struct tee_driver_ops optee_clnt_ops = { 1206 .get_version = optee_get_version, 1207 .open = optee_smc_open, 1208 .release = optee_release, 1209 .open_session = optee_open_session, 1210 .close_session = optee_close_session, 1211 .invoke_func = optee_invoke_func, 1212 .cancel_req = optee_cancel_req, 1213 .shm_register = optee_shm_register, 1214 .shm_unregister = optee_shm_unregister, 1215 }; 1216 1217 static const struct tee_desc optee_clnt_desc = { 1218 .name = DRIVER_NAME "-clnt", 1219 .ops = &optee_clnt_ops, 1220 .owner = THIS_MODULE, 1221 }; 1222 1223 static const struct tee_driver_ops optee_supp_ops = { 1224 .get_version = optee_get_version, 1225 .open = optee_smc_open, 1226 .release = optee_release_supp, 1227 .supp_recv = optee_supp_recv, 1228 .supp_send = optee_supp_send, 1229 .shm_register = optee_shm_register_supp, 1230 .shm_unregister = optee_shm_unregister_supp, 1231 }; 1232 1233 static const struct tee_desc optee_supp_desc = { 1234 .name = DRIVER_NAME "-supp", 1235 .ops = &optee_supp_ops, 1236 .owner = THIS_MODULE, 1237 .flags = TEE_DESC_PRIVILEGED, 1238 }; 1239 1240 static const struct optee_ops optee_ops = { 1241 .do_call_with_arg = optee_smc_do_call_with_arg, 1242 .to_msg_param = optee_to_msg_param, 1243 .from_msg_param = optee_from_msg_param, 1244 }; 1245 1246 static int enable_async_notif(optee_invoke_fn *invoke_fn) 1247 { 1248 struct arm_smccc_res res; 1249 1250 invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res); 1251 1252 if (res.a0) 1253 return -EINVAL; 1254 return 0; 1255 } 1256 1257 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn) 1258 { 1259 struct arm_smccc_res res; 1260 1261 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1262 1263 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 && 1264 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) 1265 return true; 1266 return false; 1267 } 1268 1269 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1270 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn) 1271 { 1272 struct arm_smccc_res res; 1273 1274 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 1275 1276 if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 && 1277 res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 && 1278 res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 && 1279 res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3) 1280 return true; 1281 return false; 1282 } 1283 #endif 1284 1285 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn) 1286 { 1287 union { 1288 struct arm_smccc_res smccc; 1289 struct optee_smc_call_get_os_revision_result result; 1290 } res = { 1291 .result = { 1292 .build_id = 0 1293 } 1294 }; 1295 1296 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, 1297 &res.smccc); 1298 1299 if (res.result.build_id) 1300 pr_info("revision %lu.%lu (%08lx)", res.result.major, 1301 res.result.minor, res.result.build_id); 1302 else 1303 pr_info("revision %lu.%lu", res.result.major, res.result.minor); 1304 } 1305 1306 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn) 1307 { 1308 union { 1309 struct arm_smccc_res smccc; 1310 struct optee_smc_calls_revision_result result; 1311 } res; 1312 1313 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1314 1315 if (res.result.major == OPTEE_MSG_REVISION_MAJOR && 1316 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR) 1317 return true; 1318 return false; 1319 } 1320 1321 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn, 1322 u32 *sec_caps, u32 *max_notif_value, 1323 unsigned int *rpc_param_count) 1324 { 1325 union { 1326 struct arm_smccc_res smccc; 1327 struct optee_smc_exchange_capabilities_result result; 1328 } res; 1329 u32 a1 = 0; 1330 1331 /* 1332 * TODO This isn't enough to tell if it's UP system (from kernel 1333 * point of view) or not, is_smp() returns the information 1334 * needed, but can't be called directly from here. 1335 */ 1336 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1) 1337 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR; 1338 1339 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, 1340 &res.smccc); 1341 1342 if (res.result.status != OPTEE_SMC_RETURN_OK) 1343 return false; 1344 1345 *sec_caps = res.result.capabilities; 1346 if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) 1347 *max_notif_value = res.result.max_notif_value; 1348 else 1349 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE; 1350 if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1351 *rpc_param_count = (u8)res.result.data; 1352 else 1353 *rpc_param_count = 0; 1354 1355 return true; 1356 } 1357 1358 static struct tee_shm_pool * 1359 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm) 1360 { 1361 union { 1362 struct arm_smccc_res smccc; 1363 struct optee_smc_get_shm_config_result result; 1364 } res; 1365 unsigned long vaddr; 1366 phys_addr_t paddr; 1367 size_t size; 1368 phys_addr_t begin; 1369 phys_addr_t end; 1370 void *va; 1371 void *rc; 1372 1373 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1374 if (res.result.status != OPTEE_SMC_RETURN_OK) { 1375 pr_err("static shm service not available\n"); 1376 return ERR_PTR(-ENOENT); 1377 } 1378 1379 if (res.result.settings != OPTEE_SMC_SHM_CACHED) { 1380 pr_err("only normal cached shared memory supported\n"); 1381 return ERR_PTR(-EINVAL); 1382 } 1383 1384 begin = roundup(res.result.start, PAGE_SIZE); 1385 end = rounddown(res.result.start + res.result.size, PAGE_SIZE); 1386 paddr = begin; 1387 size = end - begin; 1388 1389 va = memremap(paddr, size, MEMREMAP_WB); 1390 if (!va) { 1391 pr_err("shared memory ioremap failed\n"); 1392 return ERR_PTR(-EINVAL); 1393 } 1394 vaddr = (unsigned long)va; 1395 1396 rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size, 1397 OPTEE_MIN_STATIC_POOL_ALIGN); 1398 if (IS_ERR(rc)) 1399 memunmap(va); 1400 else 1401 *memremaped_shm = va; 1402 1403 return rc; 1404 } 1405 1406 /* Simple wrapper functions to be able to use a function pointer */ 1407 static void optee_smccc_smc(unsigned long a0, unsigned long a1, 1408 unsigned long a2, unsigned long a3, 1409 unsigned long a4, unsigned long a5, 1410 unsigned long a6, unsigned long a7, 1411 struct arm_smccc_res *res) 1412 { 1413 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1414 } 1415 1416 static void optee_smccc_hvc(unsigned long a0, unsigned long a1, 1417 unsigned long a2, unsigned long a3, 1418 unsigned long a4, unsigned long a5, 1419 unsigned long a6, unsigned long a7, 1420 struct arm_smccc_res *res) 1421 { 1422 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1423 } 1424 1425 static optee_invoke_fn *get_invoke_func(struct device *dev) 1426 { 1427 const char *method; 1428 1429 pr_info("probing for conduit method.\n"); 1430 1431 if (device_property_read_string(dev, "method", &method)) { 1432 pr_warn("missing \"method\" property\n"); 1433 return ERR_PTR(-ENXIO); 1434 } 1435 1436 if (!strcmp("hvc", method)) 1437 return optee_smccc_hvc; 1438 else if (!strcmp("smc", method)) 1439 return optee_smccc_smc; 1440 1441 pr_warn("invalid \"method\" property: %s\n", method); 1442 return ERR_PTR(-EINVAL); 1443 } 1444 1445 /* optee_remove - Device Removal Routine 1446 * @pdev: platform device information struct 1447 * 1448 * optee_remove is called by platform subsystem to alert the driver 1449 * that it should release the device 1450 */ 1451 static int optee_smc_remove(struct platform_device *pdev) 1452 { 1453 struct optee *optee = platform_get_drvdata(pdev); 1454 1455 /* 1456 * Ask OP-TEE to free all cached shared memory objects to decrease 1457 * reference counters and also avoid wild pointers in secure world 1458 * into the old shared memory range. 1459 */ 1460 if (!optee->rpc_param_count) 1461 optee_disable_shm_cache(optee); 1462 1463 optee_smc_notif_uninit_irq(optee); 1464 1465 optee_remove_common(optee); 1466 1467 if (optee->smc.memremaped_shm) 1468 memunmap(optee->smc.memremaped_shm); 1469 1470 kfree(optee); 1471 1472 return 0; 1473 } 1474 1475 /* optee_shutdown - Device Removal Routine 1476 * @pdev: platform device information struct 1477 * 1478 * platform_shutdown is called by the platform subsystem to alert 1479 * the driver that a shutdown, reboot, or kexec is happening and 1480 * device must be disabled. 1481 */ 1482 static void optee_shutdown(struct platform_device *pdev) 1483 { 1484 struct optee *optee = platform_get_drvdata(pdev); 1485 1486 if (!optee->rpc_param_count) 1487 optee_disable_shm_cache(optee); 1488 } 1489 1490 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE 1491 1492 #define OPTEE_FW_IMAGE "optee/tee.bin" 1493 1494 static optee_invoke_fn *cpuhp_invoke_fn; 1495 1496 static int optee_cpuhp_probe(unsigned int cpu) 1497 { 1498 /* 1499 * Invoking a call on a CPU will cause OP-TEE to perform the required 1500 * setup for that CPU. Just invoke the call to get the UID since that 1501 * has no side effects. 1502 */ 1503 if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn)) 1504 return 0; 1505 else 1506 return -EINVAL; 1507 } 1508 1509 static int optee_load_fw(struct platform_device *pdev, 1510 optee_invoke_fn *invoke_fn) 1511 { 1512 const struct firmware *fw = NULL; 1513 struct arm_smccc_res res; 1514 phys_addr_t data_pa; 1515 u8 *data_buf = NULL; 1516 u64 data_size; 1517 u32 data_pa_high, data_pa_low; 1518 u32 data_size_high, data_size_low; 1519 int rc; 1520 int hp_state; 1521 1522 if (!optee_msg_api_uid_is_optee_image_load(invoke_fn)) 1523 return 0; 1524 1525 rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev); 1526 if (rc) { 1527 /* 1528 * The firmware in the rootfs will not be accessible until we 1529 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until 1530 * that point. 1531 */ 1532 if (system_state < SYSTEM_RUNNING) 1533 return -EPROBE_DEFER; 1534 goto fw_err; 1535 } 1536 1537 data_size = fw->size; 1538 /* 1539 * This uses the GFP_DMA flag to ensure we are allocated memory in the 1540 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary. 1541 */ 1542 data_buf = kmalloc(fw->size, GFP_KERNEL | GFP_DMA); 1543 if (!data_buf) { 1544 rc = -ENOMEM; 1545 goto fw_err; 1546 } 1547 memcpy(data_buf, fw->data, fw->size); 1548 data_pa = virt_to_phys(data_buf); 1549 reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa); 1550 reg_pair_from_64(&data_size_high, &data_size_low, data_size); 1551 goto fw_load; 1552 1553 fw_err: 1554 pr_warn("image loading failed\n"); 1555 data_pa_high = 0; 1556 data_pa_low = 0; 1557 data_size_high = 0; 1558 data_size_low = 0; 1559 1560 fw_load: 1561 /* 1562 * Always invoke the SMC, even if loading the image fails, to indicate 1563 * to EL3 that we have passed the point where it should allow invoking 1564 * this SMC. 1565 */ 1566 pr_warn("OP-TEE image loaded from kernel, this can be insecure"); 1567 invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low, 1568 data_pa_high, data_pa_low, 0, 0, 0, &res); 1569 if (!rc) 1570 rc = res.a0; 1571 if (fw) 1572 release_firmware(fw); 1573 kfree(data_buf); 1574 1575 if (!rc) { 1576 /* 1577 * We need to initialize OP-TEE on all other running cores as 1578 * well. Any cores that aren't running yet will get initialized 1579 * when they are brought up by the power management functions in 1580 * TF-A which are registered by the OP-TEE SPD. Due to that we 1581 * can un-register the callback right after registering it. 1582 */ 1583 cpuhp_invoke_fn = invoke_fn; 1584 hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe", 1585 optee_cpuhp_probe, NULL); 1586 if (hp_state < 0) { 1587 pr_warn("Failed with CPU hotplug setup for OP-TEE"); 1588 return -EINVAL; 1589 } 1590 cpuhp_remove_state(hp_state); 1591 cpuhp_invoke_fn = NULL; 1592 } 1593 1594 return rc; 1595 } 1596 #else 1597 static inline int optee_load_fw(struct platform_device *pdev, 1598 optee_invoke_fn *invoke_fn) 1599 { 1600 return 0; 1601 } 1602 #endif 1603 1604 static int optee_probe(struct platform_device *pdev) 1605 { 1606 optee_invoke_fn *invoke_fn; 1607 struct tee_shm_pool *pool = ERR_PTR(-EINVAL); 1608 struct optee *optee = NULL; 1609 void *memremaped_shm = NULL; 1610 unsigned int rpc_param_count; 1611 struct tee_device *teedev; 1612 struct tee_context *ctx; 1613 u32 max_notif_value; 1614 u32 arg_cache_flags; 1615 u32 sec_caps; 1616 int rc; 1617 1618 invoke_fn = get_invoke_func(&pdev->dev); 1619 if (IS_ERR(invoke_fn)) 1620 return PTR_ERR(invoke_fn); 1621 1622 rc = optee_load_fw(pdev, invoke_fn); 1623 if (rc) 1624 return rc; 1625 1626 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) { 1627 pr_warn("api uid mismatch\n"); 1628 return -EINVAL; 1629 } 1630 1631 optee_msg_get_os_revision(invoke_fn); 1632 1633 if (!optee_msg_api_revision_is_compatible(invoke_fn)) { 1634 pr_warn("api revision mismatch\n"); 1635 return -EINVAL; 1636 } 1637 1638 if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps, 1639 &max_notif_value, 1640 &rpc_param_count)) { 1641 pr_warn("capabilities mismatch\n"); 1642 return -EINVAL; 1643 } 1644 1645 /* 1646 * Try to use dynamic shared memory if possible 1647 */ 1648 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) { 1649 /* 1650 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask 1651 * optee_get_msg_arg() to pre-register (by having 1652 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass 1653 * an argument struct. 1654 * 1655 * With the page is pre-registered we can use a non-zero 1656 * offset for argument struct, this is indicated with 1657 * OPTEE_SHM_ARG_SHARED. 1658 * 1659 * This means that optee_smc_do_call_with_arg() will use 1660 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages. 1661 */ 1662 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG) 1663 arg_cache_flags = OPTEE_SHM_ARG_SHARED; 1664 else 1665 arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV; 1666 1667 pool = optee_shm_pool_alloc_pages(); 1668 } 1669 1670 /* 1671 * If dynamic shared memory is not available or failed - try static one 1672 */ 1673 if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) { 1674 /* 1675 * The static memory pool can use non-zero page offsets so 1676 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED. 1677 * 1678 * optee_get_msg_arg() should not pre-register the 1679 * allocated page used to pass an argument struct, this is 1680 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV. 1681 * 1682 * This means that optee_smc_do_call_with_arg() will use 1683 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else 1684 * OPTEE_SMC_CALL_WITH_RPC_ARG. 1685 */ 1686 arg_cache_flags = OPTEE_SHM_ARG_SHARED | 1687 OPTEE_SHM_ARG_ALLOC_PRIV; 1688 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm); 1689 } 1690 1691 if (IS_ERR(pool)) 1692 return PTR_ERR(pool); 1693 1694 optee = kzalloc(sizeof(*optee), GFP_KERNEL); 1695 if (!optee) { 1696 rc = -ENOMEM; 1697 goto err_free_pool; 1698 } 1699 1700 optee->ops = &optee_ops; 1701 optee->smc.invoke_fn = invoke_fn; 1702 optee->smc.sec_caps = sec_caps; 1703 optee->rpc_param_count = rpc_param_count; 1704 1705 teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee); 1706 if (IS_ERR(teedev)) { 1707 rc = PTR_ERR(teedev); 1708 goto err_free_optee; 1709 } 1710 optee->teedev = teedev; 1711 1712 teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee); 1713 if (IS_ERR(teedev)) { 1714 rc = PTR_ERR(teedev); 1715 goto err_unreg_teedev; 1716 } 1717 optee->supp_teedev = teedev; 1718 1719 rc = tee_device_register(optee->teedev); 1720 if (rc) 1721 goto err_unreg_supp_teedev; 1722 1723 rc = tee_device_register(optee->supp_teedev); 1724 if (rc) 1725 goto err_unreg_supp_teedev; 1726 1727 mutex_init(&optee->call_queue.mutex); 1728 INIT_LIST_HEAD(&optee->call_queue.waiters); 1729 optee_supp_init(&optee->supp); 1730 optee->smc.memremaped_shm = memremaped_shm; 1731 optee->pool = pool; 1732 optee_shm_arg_cache_init(optee, arg_cache_flags); 1733 1734 platform_set_drvdata(pdev, optee); 1735 ctx = teedev_open(optee->teedev); 1736 if (IS_ERR(ctx)) { 1737 rc = PTR_ERR(ctx); 1738 goto err_supp_uninit; 1739 } 1740 optee->ctx = ctx; 1741 rc = optee_notif_init(optee, max_notif_value); 1742 if (rc) 1743 goto err_close_ctx; 1744 1745 if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) { 1746 unsigned int irq; 1747 1748 rc = platform_get_irq(pdev, 0); 1749 if (rc < 0) { 1750 pr_err("platform_get_irq: ret %d\n", rc); 1751 goto err_notif_uninit; 1752 } 1753 irq = rc; 1754 1755 rc = optee_smc_notif_init_irq(optee, irq); 1756 if (rc) { 1757 irq_dispose_mapping(irq); 1758 goto err_notif_uninit; 1759 } 1760 enable_async_notif(optee->smc.invoke_fn); 1761 pr_info("Asynchronous notifications enabled\n"); 1762 } 1763 1764 /* 1765 * Ensure that there are no pre-existing shm objects before enabling 1766 * the shm cache so that there's no chance of receiving an invalid 1767 * address during shutdown. This could occur, for example, if we're 1768 * kexec booting from an older kernel that did not properly cleanup the 1769 * shm cache. 1770 */ 1771 optee_disable_unmapped_shm_cache(optee); 1772 1773 /* 1774 * Only enable the shm cache in case we're not able to pass the RPC 1775 * arg struct right after the normal arg struct. 1776 */ 1777 if (!optee->rpc_param_count) 1778 optee_enable_shm_cache(optee); 1779 1780 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1781 pr_info("dynamic shared memory is enabled\n"); 1782 1783 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); 1784 if (rc) 1785 goto err_disable_shm_cache; 1786 1787 pr_info("initialized driver\n"); 1788 return 0; 1789 1790 err_disable_shm_cache: 1791 if (!optee->rpc_param_count) 1792 optee_disable_shm_cache(optee); 1793 optee_smc_notif_uninit_irq(optee); 1794 optee_unregister_devices(); 1795 err_notif_uninit: 1796 optee_notif_uninit(optee); 1797 err_close_ctx: 1798 teedev_close_context(ctx); 1799 err_supp_uninit: 1800 optee_shm_arg_cache_uninit(optee); 1801 optee_supp_uninit(&optee->supp); 1802 mutex_destroy(&optee->call_queue.mutex); 1803 err_unreg_supp_teedev: 1804 tee_device_unregister(optee->supp_teedev); 1805 err_unreg_teedev: 1806 tee_device_unregister(optee->teedev); 1807 err_free_optee: 1808 kfree(optee); 1809 err_free_pool: 1810 tee_shm_pool_free(pool); 1811 if (memremaped_shm) 1812 memunmap(memremaped_shm); 1813 return rc; 1814 } 1815 1816 static const struct of_device_id optee_dt_match[] = { 1817 { .compatible = "linaro,optee-tz" }, 1818 {}, 1819 }; 1820 MODULE_DEVICE_TABLE(of, optee_dt_match); 1821 1822 static struct platform_driver optee_driver = { 1823 .probe = optee_probe, 1824 .remove = optee_smc_remove, 1825 .shutdown = optee_shutdown, 1826 .driver = { 1827 .name = "optee", 1828 .of_match_table = optee_dt_match, 1829 }, 1830 }; 1831 1832 int optee_smc_abi_register(void) 1833 { 1834 return platform_driver_register(&optee_driver); 1835 } 1836 1837 void optee_smc_abi_unregister(void) 1838 { 1839 platform_driver_unregister(&optee_driver); 1840 } 1841