xref: /openbmc/linux/drivers/tee/optee/smc_abi.c (revision ad4455c6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, Linaro Limited
4  * Copyright (c) 2016, EPAM Systems
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/cpuhotplug.h>
11 #include <linux/errno.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irqdomain.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/tee_drv.h>
27 #include <linux/types.h>
28 #include <linux/workqueue.h>
29 #include "optee_private.h"
30 #include "optee_smc.h"
31 #include "optee_rpc_cmd.h"
32 #include <linux/kmemleak.h>
33 #define CREATE_TRACE_POINTS
34 #include "optee_trace.h"
35 
36 /*
37  * This file implement the SMC ABI used when communicating with secure world
38  * OP-TEE OS via raw SMCs.
39  * This file is divided into the following sections:
40  * 1. Convert between struct tee_param and struct optee_msg_param
41  * 2. Low level support functions to register shared memory in secure world
42  * 3. Dynamic shared memory pool based on alloc_pages()
43  * 4. Do a normal scheduled call into secure world
44  * 5. Asynchronous notification
45  * 6. Driver initialization.
46  */
47 
48 /*
49  * A typical OP-TEE private shm allocation is 224 bytes (argument struct
50  * with 6 parameters, needed for open session). So with an alignment of 512
51  * we'll waste a bit more than 50%. However, it's only expected that we'll
52  * have a handful of these structs allocated at a time. Most memory will
53  * be allocated aligned to the page size, So all in all this should scale
54  * up and down quite well.
55  */
56 #define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
57 
58 /* SMC ABI considers at most a single TEE firmware */
59 static unsigned int pcpu_irq_num;
60 
61 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu)
62 {
63 	enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE);
64 
65 	return 0;
66 }
67 
68 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu)
69 {
70 	disable_percpu_irq(pcpu_irq_num);
71 
72 	return 0;
73 }
74 
75 /*
76  * 1. Convert between struct tee_param and struct optee_msg_param
77  *
78  * optee_from_msg_param() and optee_to_msg_param() are the main
79  * functions.
80  */
81 
82 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
83 				  const struct optee_msg_param *mp)
84 {
85 	struct tee_shm *shm;
86 	phys_addr_t pa;
87 	int rc;
88 
89 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
90 		  attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
91 	p->u.memref.size = mp->u.tmem.size;
92 	shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
93 	if (!shm) {
94 		p->u.memref.shm_offs = 0;
95 		p->u.memref.shm = NULL;
96 		return 0;
97 	}
98 
99 	rc = tee_shm_get_pa(shm, 0, &pa);
100 	if (rc)
101 		return rc;
102 
103 	p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
104 	p->u.memref.shm = shm;
105 
106 	return 0;
107 }
108 
109 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
110 				   const struct optee_msg_param *mp)
111 {
112 	struct tee_shm *shm;
113 
114 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
115 		  attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
116 	p->u.memref.size = mp->u.rmem.size;
117 	shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
118 
119 	if (shm) {
120 		p->u.memref.shm_offs = mp->u.rmem.offs;
121 		p->u.memref.shm = shm;
122 	} else {
123 		p->u.memref.shm_offs = 0;
124 		p->u.memref.shm = NULL;
125 	}
126 }
127 
128 /**
129  * optee_from_msg_param() - convert from OPTEE_MSG parameters to
130  *			    struct tee_param
131  * @optee:	main service struct
132  * @params:	subsystem internal parameter representation
133  * @num_params:	number of elements in the parameter arrays
134  * @msg_params:	OPTEE_MSG parameters
135  * Returns 0 on success or <0 on failure
136  */
137 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
138 				size_t num_params,
139 				const struct optee_msg_param *msg_params)
140 {
141 	int rc;
142 	size_t n;
143 
144 	for (n = 0; n < num_params; n++) {
145 		struct tee_param *p = params + n;
146 		const struct optee_msg_param *mp = msg_params + n;
147 		u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
148 
149 		switch (attr) {
150 		case OPTEE_MSG_ATTR_TYPE_NONE:
151 			p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
152 			memset(&p->u, 0, sizeof(p->u));
153 			break;
154 		case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
155 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
156 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
157 			optee_from_msg_param_value(p, attr, mp);
158 			break;
159 		case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
160 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
161 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
162 			rc = from_msg_param_tmp_mem(p, attr, mp);
163 			if (rc)
164 				return rc;
165 			break;
166 		case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
167 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
168 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
169 			from_msg_param_reg_mem(p, attr, mp);
170 			break;
171 
172 		default:
173 			return -EINVAL;
174 		}
175 	}
176 	return 0;
177 }
178 
179 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
180 				const struct tee_param *p)
181 {
182 	int rc;
183 	phys_addr_t pa;
184 
185 	mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
186 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
187 
188 	mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
189 	mp->u.tmem.size = p->u.memref.size;
190 
191 	if (!p->u.memref.shm) {
192 		mp->u.tmem.buf_ptr = 0;
193 		return 0;
194 	}
195 
196 	rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
197 	if (rc)
198 		return rc;
199 
200 	mp->u.tmem.buf_ptr = pa;
201 	mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
202 		    OPTEE_MSG_ATTR_CACHE_SHIFT;
203 
204 	return 0;
205 }
206 
207 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
208 				const struct tee_param *p)
209 {
210 	mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
211 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
212 
213 	mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
214 	mp->u.rmem.size = p->u.memref.size;
215 	mp->u.rmem.offs = p->u.memref.shm_offs;
216 	return 0;
217 }
218 
219 /**
220  * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
221  * @optee:	main service struct
222  * @msg_params:	OPTEE_MSG parameters
223  * @num_params:	number of elements in the parameter arrays
224  * @params:	subsystem itnernal parameter representation
225  * Returns 0 on success or <0 on failure
226  */
227 static int optee_to_msg_param(struct optee *optee,
228 			      struct optee_msg_param *msg_params,
229 			      size_t num_params, const struct tee_param *params)
230 {
231 	int rc;
232 	size_t n;
233 
234 	for (n = 0; n < num_params; n++) {
235 		const struct tee_param *p = params + n;
236 		struct optee_msg_param *mp = msg_params + n;
237 
238 		switch (p->attr) {
239 		case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
240 			mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
241 			memset(&mp->u, 0, sizeof(mp->u));
242 			break;
243 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
244 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
245 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
246 			optee_to_msg_param_value(mp, p);
247 			break;
248 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
249 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
250 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
251 			if (tee_shm_is_dynamic(p->u.memref.shm))
252 				rc = to_msg_param_reg_mem(mp, p);
253 			else
254 				rc = to_msg_param_tmp_mem(mp, p);
255 			if (rc)
256 				return rc;
257 			break;
258 		default:
259 			return -EINVAL;
260 		}
261 	}
262 	return 0;
263 }
264 
265 /*
266  * 2. Low level support functions to register shared memory in secure world
267  *
268  * Functions to enable/disable shared memory caching in secure world, that
269  * is, lazy freeing of previously allocated shared memory. Freeing is
270  * performed when a request has been compled.
271  *
272  * Functions to register and unregister shared memory both for normal
273  * clients and for tee-supplicant.
274  */
275 
276 /**
277  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
278  *			      in OP-TEE
279  * @optee:	main service struct
280  */
281 static void optee_enable_shm_cache(struct optee *optee)
282 {
283 	struct optee_call_waiter w;
284 
285 	/* We need to retry until secure world isn't busy. */
286 	optee_cq_wait_init(&optee->call_queue, &w);
287 	while (true) {
288 		struct arm_smccc_res res;
289 
290 		optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
291 				     0, 0, 0, 0, 0, 0, 0, &res);
292 		if (res.a0 == OPTEE_SMC_RETURN_OK)
293 			break;
294 		optee_cq_wait_for_completion(&optee->call_queue, &w);
295 	}
296 	optee_cq_wait_final(&optee->call_queue, &w);
297 }
298 
299 /**
300  * __optee_disable_shm_cache() - Disables caching of some shared memory
301  *				 allocation in OP-TEE
302  * @optee:	main service struct
303  * @is_mapped:	true if the cached shared memory addresses were mapped by this
304  *		kernel, are safe to dereference, and should be freed
305  */
306 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
307 {
308 	struct optee_call_waiter w;
309 
310 	/* We need to retry until secure world isn't busy. */
311 	optee_cq_wait_init(&optee->call_queue, &w);
312 	while (true) {
313 		union {
314 			struct arm_smccc_res smccc;
315 			struct optee_smc_disable_shm_cache_result result;
316 		} res;
317 
318 		optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
319 				     0, 0, 0, 0, 0, 0, 0, &res.smccc);
320 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
321 			break; /* All shm's freed */
322 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
323 			struct tee_shm *shm;
324 
325 			/*
326 			 * Shared memory references that were not mapped by
327 			 * this kernel must be ignored to prevent a crash.
328 			 */
329 			if (!is_mapped)
330 				continue;
331 
332 			shm = reg_pair_to_ptr(res.result.shm_upper32,
333 					      res.result.shm_lower32);
334 			tee_shm_free(shm);
335 		} else {
336 			optee_cq_wait_for_completion(&optee->call_queue, &w);
337 		}
338 	}
339 	optee_cq_wait_final(&optee->call_queue, &w);
340 }
341 
342 /**
343  * optee_disable_shm_cache() - Disables caching of mapped shared memory
344  *			       allocations in OP-TEE
345  * @optee:	main service struct
346  */
347 static void optee_disable_shm_cache(struct optee *optee)
348 {
349 	return __optee_disable_shm_cache(optee, true);
350 }
351 
352 /**
353  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
354  *					allocations in OP-TEE which are not
355  *					currently mapped
356  * @optee:	main service struct
357  */
358 static void optee_disable_unmapped_shm_cache(struct optee *optee)
359 {
360 	return __optee_disable_shm_cache(optee, false);
361 }
362 
363 #define PAGELIST_ENTRIES_PER_PAGE				\
364 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
365 
366 /*
367  * The final entry in each pagelist page is a pointer to the next
368  * pagelist page.
369  */
370 static size_t get_pages_list_size(size_t num_entries)
371 {
372 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
373 
374 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
375 }
376 
377 static u64 *optee_allocate_pages_list(size_t num_entries)
378 {
379 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
380 }
381 
382 static void optee_free_pages_list(void *list, size_t num_entries)
383 {
384 	free_pages_exact(list, get_pages_list_size(num_entries));
385 }
386 
387 /**
388  * optee_fill_pages_list() - write list of user pages to given shared
389  * buffer.
390  *
391  * @dst: page-aligned buffer where list of pages will be stored
392  * @pages: array of pages that represents shared buffer
393  * @num_pages: number of entries in @pages
394  * @page_offset: offset of user buffer from page start
395  *
396  * @dst should be big enough to hold list of user page addresses and
397  *	links to the next pages of buffer
398  */
399 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
400 				  size_t page_offset)
401 {
402 	int n = 0;
403 	phys_addr_t optee_page;
404 	/*
405 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
406 	 * for details.
407 	 */
408 	struct {
409 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
410 		u64 next_page_data;
411 	} *pages_data;
412 
413 	/*
414 	 * Currently OP-TEE uses 4k page size and it does not looks
415 	 * like this will change in the future.  On other hand, there are
416 	 * no know ARM architectures with page size < 4k.
417 	 * Thus the next built assert looks redundant. But the following
418 	 * code heavily relies on this assumption, so it is better be
419 	 * safe than sorry.
420 	 */
421 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
422 
423 	pages_data = (void *)dst;
424 	/*
425 	 * If linux page is bigger than 4k, and user buffer offset is
426 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
427 	 * because they bear no value data for OP-TEE.
428 	 */
429 	optee_page = page_to_phys(*pages) +
430 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
431 
432 	while (true) {
433 		pages_data->pages_list[n++] = optee_page;
434 
435 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
436 			pages_data->next_page_data =
437 				virt_to_phys(pages_data + 1);
438 			pages_data++;
439 			n = 0;
440 		}
441 
442 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
443 		if (!(optee_page & ~PAGE_MASK)) {
444 			if (!--num_pages)
445 				break;
446 			pages++;
447 			optee_page = page_to_phys(*pages);
448 		}
449 	}
450 }
451 
452 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
453 			      struct page **pages, size_t num_pages,
454 			      unsigned long start)
455 {
456 	struct optee *optee = tee_get_drvdata(ctx->teedev);
457 	struct optee_msg_arg *msg_arg;
458 	struct tee_shm *shm_arg;
459 	u64 *pages_list;
460 	size_t sz;
461 	int rc;
462 
463 	if (!num_pages)
464 		return -EINVAL;
465 
466 	rc = optee_check_mem_type(start, num_pages);
467 	if (rc)
468 		return rc;
469 
470 	pages_list = optee_allocate_pages_list(num_pages);
471 	if (!pages_list)
472 		return -ENOMEM;
473 
474 	/*
475 	 * We're about to register shared memory we can't register shared
476 	 * memory for this request or there's a catch-22.
477 	 *
478 	 * So in this we'll have to do the good old temporary private
479 	 * allocation instead of using optee_get_msg_arg().
480 	 */
481 	sz = optee_msg_arg_size(optee->rpc_param_count);
482 	shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
483 	if (IS_ERR(shm_arg)) {
484 		rc = PTR_ERR(shm_arg);
485 		goto out;
486 	}
487 	msg_arg = tee_shm_get_va(shm_arg, 0);
488 	if (IS_ERR(msg_arg)) {
489 		rc = PTR_ERR(msg_arg);
490 		goto out;
491 	}
492 
493 	optee_fill_pages_list(pages_list, pages, num_pages,
494 			      tee_shm_get_page_offset(shm));
495 
496 	memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
497 	msg_arg->num_params = 1;
498 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
499 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
500 				OPTEE_MSG_ATTR_NONCONTIG;
501 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
502 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
503 	/*
504 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
505 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
506 	 */
507 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
508 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
509 
510 	if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
511 	    msg_arg->ret != TEEC_SUCCESS)
512 		rc = -EINVAL;
513 
514 	tee_shm_free(shm_arg);
515 out:
516 	optee_free_pages_list(pages_list, num_pages);
517 	return rc;
518 }
519 
520 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
521 {
522 	struct optee *optee = tee_get_drvdata(ctx->teedev);
523 	struct optee_msg_arg *msg_arg;
524 	struct tee_shm *shm_arg;
525 	int rc = 0;
526 	size_t sz;
527 
528 	/*
529 	 * We're about to unregister shared memory and we may not be able
530 	 * register shared memory for this request in case we're called
531 	 * from optee_shm_arg_cache_uninit().
532 	 *
533 	 * So in order to keep things simple in this function just as in
534 	 * optee_shm_register() we'll use temporary private allocation
535 	 * instead of using optee_get_msg_arg().
536 	 */
537 	sz = optee_msg_arg_size(optee->rpc_param_count);
538 	shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
539 	if (IS_ERR(shm_arg))
540 		return PTR_ERR(shm_arg);
541 	msg_arg = tee_shm_get_va(shm_arg, 0);
542 	if (IS_ERR(msg_arg)) {
543 		rc = PTR_ERR(msg_arg);
544 		goto out;
545 	}
546 
547 	memset(msg_arg, 0, sz);
548 	msg_arg->num_params = 1;
549 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
550 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
551 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
552 
553 	if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
554 	    msg_arg->ret != TEEC_SUCCESS)
555 		rc = -EINVAL;
556 out:
557 	tee_shm_free(shm_arg);
558 	return rc;
559 }
560 
561 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
562 				   struct page **pages, size_t num_pages,
563 				   unsigned long start)
564 {
565 	/*
566 	 * We don't want to register supplicant memory in OP-TEE.
567 	 * Instead information about it will be passed in RPC code.
568 	 */
569 	return optee_check_mem_type(start, num_pages);
570 }
571 
572 static int optee_shm_unregister_supp(struct tee_context *ctx,
573 				     struct tee_shm *shm)
574 {
575 	return 0;
576 }
577 
578 /*
579  * 3. Dynamic shared memory pool based on alloc_pages()
580  *
581  * Implements an OP-TEE specific shared memory pool which is used
582  * when dynamic shared memory is supported by secure world.
583  *
584  * The main function is optee_shm_pool_alloc_pages().
585  */
586 
587 static int pool_op_alloc(struct tee_shm_pool *pool,
588 			 struct tee_shm *shm, size_t size, size_t align)
589 {
590 	/*
591 	 * Shared memory private to the OP-TEE driver doesn't need
592 	 * to be registered with OP-TEE.
593 	 */
594 	if (shm->flags & TEE_SHM_PRIV)
595 		return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
596 
597 	return optee_pool_op_alloc_helper(pool, shm, size, align,
598 					  optee_shm_register);
599 }
600 
601 static void pool_op_free(struct tee_shm_pool *pool,
602 			 struct tee_shm *shm)
603 {
604 	if (!(shm->flags & TEE_SHM_PRIV))
605 		optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
606 	else
607 		optee_pool_op_free_helper(pool, shm, NULL);
608 }
609 
610 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
611 {
612 	kfree(pool);
613 }
614 
615 static const struct tee_shm_pool_ops pool_ops = {
616 	.alloc = pool_op_alloc,
617 	.free = pool_op_free,
618 	.destroy_pool = pool_op_destroy_pool,
619 };
620 
621 /**
622  * optee_shm_pool_alloc_pages() - create page-based allocator pool
623  *
624  * This pool is used when OP-TEE supports dymanic SHM. In this case
625  * command buffers and such are allocated from kernel's own memory.
626  */
627 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
628 {
629 	struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
630 
631 	if (!pool)
632 		return ERR_PTR(-ENOMEM);
633 
634 	pool->ops = &pool_ops;
635 
636 	return pool;
637 }
638 
639 /*
640  * 4. Do a normal scheduled call into secure world
641  *
642  * The function optee_smc_do_call_with_arg() performs a normal scheduled
643  * call into secure world. During this call may normal world request help
644  * from normal world using RPCs, Remote Procedure Calls. This includes
645  * delivery of non-secure interrupts to for instance allow rescheduling of
646  * the current task.
647  */
648 
649 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
650 					 struct optee_msg_arg *arg)
651 {
652 	struct tee_shm *shm;
653 
654 	arg->ret_origin = TEEC_ORIGIN_COMMS;
655 
656 	if (arg->num_params != 1 ||
657 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
658 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
659 		return;
660 	}
661 
662 	shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
663 	switch (arg->params[0].u.value.a) {
664 	case OPTEE_RPC_SHM_TYPE_APPL:
665 		optee_rpc_cmd_free_suppl(ctx, shm);
666 		break;
667 	case OPTEE_RPC_SHM_TYPE_KERNEL:
668 		tee_shm_free(shm);
669 		break;
670 	default:
671 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
672 	}
673 	arg->ret = TEEC_SUCCESS;
674 }
675 
676 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
677 					  struct optee *optee,
678 					  struct optee_msg_arg *arg,
679 					  struct optee_call_ctx *call_ctx)
680 {
681 	phys_addr_t pa;
682 	struct tee_shm *shm;
683 	size_t sz;
684 	size_t n;
685 
686 	arg->ret_origin = TEEC_ORIGIN_COMMS;
687 
688 	if (!arg->num_params ||
689 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
690 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
691 		return;
692 	}
693 
694 	for (n = 1; n < arg->num_params; n++) {
695 		if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
696 			arg->ret = TEEC_ERROR_BAD_PARAMETERS;
697 			return;
698 		}
699 	}
700 
701 	sz = arg->params[0].u.value.b;
702 	switch (arg->params[0].u.value.a) {
703 	case OPTEE_RPC_SHM_TYPE_APPL:
704 		shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
705 		break;
706 	case OPTEE_RPC_SHM_TYPE_KERNEL:
707 		shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
708 		break;
709 	default:
710 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
711 		return;
712 	}
713 
714 	if (IS_ERR(shm)) {
715 		arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
716 		return;
717 	}
718 
719 	if (tee_shm_get_pa(shm, 0, &pa)) {
720 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
721 		goto bad;
722 	}
723 
724 	sz = tee_shm_get_size(shm);
725 
726 	if (tee_shm_is_dynamic(shm)) {
727 		struct page **pages;
728 		u64 *pages_list;
729 		size_t page_num;
730 
731 		pages = tee_shm_get_pages(shm, &page_num);
732 		if (!pages || !page_num) {
733 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
734 			goto bad;
735 		}
736 
737 		pages_list = optee_allocate_pages_list(page_num);
738 		if (!pages_list) {
739 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
740 			goto bad;
741 		}
742 
743 		call_ctx->pages_list = pages_list;
744 		call_ctx->num_entries = page_num;
745 
746 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
747 				      OPTEE_MSG_ATTR_NONCONTIG;
748 		/*
749 		 * In the least bits of u.tmem.buf_ptr we store buffer offset
750 		 * from 4k page, as described in OP-TEE ABI.
751 		 */
752 		arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
753 			(tee_shm_get_page_offset(shm) &
754 			 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
755 		arg->params[0].u.tmem.size = tee_shm_get_size(shm);
756 		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
757 
758 		optee_fill_pages_list(pages_list, pages, page_num,
759 				      tee_shm_get_page_offset(shm));
760 	} else {
761 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
762 		arg->params[0].u.tmem.buf_ptr = pa;
763 		arg->params[0].u.tmem.size = sz;
764 		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
765 	}
766 
767 	arg->ret = TEEC_SUCCESS;
768 	return;
769 bad:
770 	tee_shm_free(shm);
771 }
772 
773 static void free_pages_list(struct optee_call_ctx *call_ctx)
774 {
775 	if (call_ctx->pages_list) {
776 		optee_free_pages_list(call_ctx->pages_list,
777 				      call_ctx->num_entries);
778 		call_ctx->pages_list = NULL;
779 		call_ctx->num_entries = 0;
780 	}
781 }
782 
783 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
784 {
785 	free_pages_list(call_ctx);
786 }
787 
788 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
789 				struct optee_msg_arg *arg,
790 				struct optee_call_ctx *call_ctx)
791 {
792 
793 	switch (arg->cmd) {
794 	case OPTEE_RPC_CMD_SHM_ALLOC:
795 		free_pages_list(call_ctx);
796 		handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
797 		break;
798 	case OPTEE_RPC_CMD_SHM_FREE:
799 		handle_rpc_func_cmd_shm_free(ctx, arg);
800 		break;
801 	default:
802 		optee_rpc_cmd(ctx, optee, arg);
803 	}
804 }
805 
806 /**
807  * optee_handle_rpc() - handle RPC from secure world
808  * @ctx:	context doing the RPC
809  * @param:	value of registers for the RPC
810  * @call_ctx:	call context. Preserved during one OP-TEE invocation
811  *
812  * Result of RPC is written back into @param.
813  */
814 static void optee_handle_rpc(struct tee_context *ctx,
815 			     struct optee_msg_arg *rpc_arg,
816 			     struct optee_rpc_param *param,
817 			     struct optee_call_ctx *call_ctx)
818 {
819 	struct tee_device *teedev = ctx->teedev;
820 	struct optee *optee = tee_get_drvdata(teedev);
821 	struct optee_msg_arg *arg;
822 	struct tee_shm *shm;
823 	phys_addr_t pa;
824 
825 	switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
826 	case OPTEE_SMC_RPC_FUNC_ALLOC:
827 		shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
828 		if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
829 			reg_pair_from_64(&param->a1, &param->a2, pa);
830 			reg_pair_from_64(&param->a4, &param->a5,
831 					 (unsigned long)shm);
832 		} else {
833 			param->a1 = 0;
834 			param->a2 = 0;
835 			param->a4 = 0;
836 			param->a5 = 0;
837 		}
838 		kmemleak_not_leak(shm);
839 		break;
840 	case OPTEE_SMC_RPC_FUNC_FREE:
841 		shm = reg_pair_to_ptr(param->a1, param->a2);
842 		tee_shm_free(shm);
843 		break;
844 	case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
845 		/*
846 		 * A foreign interrupt was raised while secure world was
847 		 * executing, since they are handled in Linux a dummy RPC is
848 		 * performed to let Linux take the interrupt through the normal
849 		 * vector.
850 		 */
851 		break;
852 	case OPTEE_SMC_RPC_FUNC_CMD:
853 		if (rpc_arg) {
854 			arg = rpc_arg;
855 		} else {
856 			shm = reg_pair_to_ptr(param->a1, param->a2);
857 			arg = tee_shm_get_va(shm, 0);
858 			if (IS_ERR(arg)) {
859 				pr_err("%s: tee_shm_get_va %p failed\n",
860 				       __func__, shm);
861 				break;
862 			}
863 		}
864 
865 		handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
866 		break;
867 	default:
868 		pr_warn("Unknown RPC func 0x%x\n",
869 			(u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
870 		break;
871 	}
872 
873 	param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
874 }
875 
876 /**
877  * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
878  * @ctx:	calling context
879  * @shm:	shared memory holding the message to pass to secure world
880  * @offs:	offset of the message in @shm
881  *
882  * Does and SMC to OP-TEE in secure world and handles eventual resulting
883  * Remote Procedure Calls (RPC) from OP-TEE.
884  *
885  * Returns return code from secure world, 0 is OK
886  */
887 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
888 				      struct tee_shm *shm, u_int offs)
889 {
890 	struct optee *optee = tee_get_drvdata(ctx->teedev);
891 	struct optee_call_waiter w;
892 	struct optee_rpc_param param = { };
893 	struct optee_call_ctx call_ctx = { };
894 	struct optee_msg_arg *rpc_arg = NULL;
895 	int rc;
896 
897 	if (optee->rpc_param_count) {
898 		struct optee_msg_arg *arg;
899 		unsigned int rpc_arg_offs;
900 
901 		arg = tee_shm_get_va(shm, offs);
902 		if (IS_ERR(arg))
903 			return PTR_ERR(arg);
904 
905 		rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
906 		rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
907 		if (IS_ERR(rpc_arg))
908 			return PTR_ERR(rpc_arg);
909 	}
910 
911 	if  (rpc_arg && tee_shm_is_dynamic(shm)) {
912 		param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
913 		reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
914 		param.a3 = offs;
915 	} else {
916 		phys_addr_t parg;
917 
918 		rc = tee_shm_get_pa(shm, offs, &parg);
919 		if (rc)
920 			return rc;
921 
922 		if (rpc_arg)
923 			param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
924 		else
925 			param.a0 = OPTEE_SMC_CALL_WITH_ARG;
926 		reg_pair_from_64(&param.a1, &param.a2, parg);
927 	}
928 	/* Initialize waiter */
929 	optee_cq_wait_init(&optee->call_queue, &w);
930 	while (true) {
931 		struct arm_smccc_res res;
932 
933 		trace_optee_invoke_fn_begin(&param);
934 		optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
935 				     param.a4, param.a5, param.a6, param.a7,
936 				     &res);
937 		trace_optee_invoke_fn_end(&param, &res);
938 
939 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
940 			/*
941 			 * Out of threads in secure world, wait for a thread
942 			 * become available.
943 			 */
944 			optee_cq_wait_for_completion(&optee->call_queue, &w);
945 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
946 			cond_resched();
947 			param.a0 = res.a0;
948 			param.a1 = res.a1;
949 			param.a2 = res.a2;
950 			param.a3 = res.a3;
951 			optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
952 		} else {
953 			rc = res.a0;
954 			break;
955 		}
956 	}
957 
958 	optee_rpc_finalize_call(&call_ctx);
959 	/*
960 	 * We're done with our thread in secure world, if there's any
961 	 * thread waiters wake up one.
962 	 */
963 	optee_cq_wait_final(&optee->call_queue, &w);
964 
965 	return rc;
966 }
967 
968 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
969 {
970 	struct optee_shm_arg_entry *entry;
971 	struct optee_msg_arg *msg_arg;
972 	struct tee_shm *shm;
973 	u_int offs;
974 
975 	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
976 	if (IS_ERR(msg_arg))
977 		return PTR_ERR(msg_arg);
978 
979 	msg_arg->cmd = cmd;
980 	optee_smc_do_call_with_arg(ctx, shm, offs);
981 
982 	optee_free_msg_arg(ctx, entry, offs);
983 	return 0;
984 }
985 
986 static int optee_smc_do_bottom_half(struct tee_context *ctx)
987 {
988 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
989 }
990 
991 static int optee_smc_stop_async_notif(struct tee_context *ctx)
992 {
993 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
994 }
995 
996 /*
997  * 5. Asynchronous notification
998  */
999 
1000 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
1001 				 bool *value_pending)
1002 {
1003 	struct arm_smccc_res res;
1004 
1005 	invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
1006 
1007 	if (res.a0) {
1008 		*value_valid = false;
1009 		return 0;
1010 	}
1011 	*value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
1012 	*value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
1013 	return res.a1;
1014 }
1015 
1016 static irqreturn_t irq_handler(struct optee *optee)
1017 {
1018 	bool do_bottom_half = false;
1019 	bool value_valid;
1020 	bool value_pending;
1021 	u32 value;
1022 
1023 	do {
1024 		value = get_async_notif_value(optee->smc.invoke_fn,
1025 					      &value_valid, &value_pending);
1026 		if (!value_valid)
1027 			break;
1028 
1029 		if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1030 			do_bottom_half = true;
1031 		else
1032 			optee_notif_send(optee, value);
1033 	} while (value_pending);
1034 
1035 	if (do_bottom_half)
1036 		return IRQ_WAKE_THREAD;
1037 	return IRQ_HANDLED;
1038 }
1039 
1040 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
1041 {
1042 	struct optee *optee = dev_id;
1043 
1044 	return irq_handler(optee);
1045 }
1046 
1047 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1048 {
1049 	struct optee *optee = dev_id;
1050 
1051 	optee_smc_do_bottom_half(optee->ctx);
1052 
1053 	return IRQ_HANDLED;
1054 }
1055 
1056 static int init_irq(struct optee *optee, u_int irq)
1057 {
1058 	int rc;
1059 
1060 	rc = request_threaded_irq(irq, notif_irq_handler,
1061 				  notif_irq_thread_fn,
1062 				  0, "optee_notification", optee);
1063 	if (rc)
1064 		return rc;
1065 
1066 	optee->smc.notif_irq = irq;
1067 
1068 	return 0;
1069 }
1070 
1071 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id)
1072 {
1073 	struct optee_pcpu *pcpu = dev_id;
1074 	struct optee *optee = pcpu->optee;
1075 
1076 	if (irq_handler(optee) == IRQ_WAKE_THREAD)
1077 		queue_work(optee->smc.notif_pcpu_wq,
1078 			   &optee->smc.notif_pcpu_work);
1079 
1080 	return IRQ_HANDLED;
1081 }
1082 
1083 static void notif_pcpu_irq_work_fn(struct work_struct *work)
1084 {
1085 	struct optee_smc *optee_smc = container_of(work, struct optee_smc,
1086 						   notif_pcpu_work);
1087 	struct optee *optee = container_of(optee_smc, struct optee, smc);
1088 
1089 	optee_smc_do_bottom_half(optee->ctx);
1090 }
1091 
1092 static int init_pcpu_irq(struct optee *optee, u_int irq)
1093 {
1094 	struct optee_pcpu __percpu *optee_pcpu;
1095 	int cpu, rc;
1096 
1097 	optee_pcpu = alloc_percpu(struct optee_pcpu);
1098 	if (!optee_pcpu)
1099 		return -ENOMEM;
1100 
1101 	for_each_present_cpu(cpu)
1102 		per_cpu_ptr(optee_pcpu, cpu)->optee = optee;
1103 
1104 	rc = request_percpu_irq(irq, notif_pcpu_irq_handler,
1105 				"optee_pcpu_notification", optee_pcpu);
1106 	if (rc)
1107 		goto err_free_pcpu;
1108 
1109 	INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn);
1110 	optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification");
1111 	if (!optee->smc.notif_pcpu_wq) {
1112 		rc = -EINVAL;
1113 		goto err_free_pcpu_irq;
1114 	}
1115 
1116 	optee->smc.optee_pcpu = optee_pcpu;
1117 	optee->smc.notif_irq = irq;
1118 
1119 	pcpu_irq_num = irq;
1120 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting",
1121 			       optee_cpuhp_enable_pcpu_irq,
1122 			       optee_cpuhp_disable_pcpu_irq);
1123 	if (!rc)
1124 		rc = -EINVAL;
1125 	if (rc < 0)
1126 		goto err_free_pcpu_irq;
1127 
1128 	optee->smc.notif_cpuhp_state = rc;
1129 
1130 	return 0;
1131 
1132 err_free_pcpu_irq:
1133 	free_percpu_irq(irq, optee_pcpu);
1134 err_free_pcpu:
1135 	free_percpu(optee_pcpu);
1136 
1137 	return rc;
1138 }
1139 
1140 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1141 {
1142 	if (irq_is_percpu_devid(irq))
1143 		return init_pcpu_irq(optee, irq);
1144 	else
1145 		return init_irq(optee, irq);
1146 }
1147 
1148 static void uninit_pcpu_irq(struct optee *optee)
1149 {
1150 	cpuhp_remove_state(optee->smc.notif_cpuhp_state);
1151 
1152 	destroy_workqueue(optee->smc.notif_pcpu_wq);
1153 
1154 	free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu);
1155 	free_percpu(optee->smc.optee_pcpu);
1156 }
1157 
1158 static void optee_smc_notif_uninit_irq(struct optee *optee)
1159 {
1160 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1161 		optee_smc_stop_async_notif(optee->ctx);
1162 		if (optee->smc.notif_irq) {
1163 			if (irq_is_percpu_devid(optee->smc.notif_irq))
1164 				uninit_pcpu_irq(optee);
1165 			else
1166 				free_irq(optee->smc.notif_irq, optee);
1167 
1168 			irq_dispose_mapping(optee->smc.notif_irq);
1169 		}
1170 	}
1171 }
1172 
1173 /*
1174  * 6. Driver initialization
1175  *
1176  * During driver initialization is secure world probed to find out which
1177  * features it supports so the driver can be initialized with a matching
1178  * configuration. This involves for instance support for dynamic shared
1179  * memory instead of a static memory carvout.
1180  */
1181 
1182 static void optee_get_version(struct tee_device *teedev,
1183 			      struct tee_ioctl_version_data *vers)
1184 {
1185 	struct tee_ioctl_version_data v = {
1186 		.impl_id = TEE_IMPL_ID_OPTEE,
1187 		.impl_caps = TEE_OPTEE_CAP_TZ,
1188 		.gen_caps = TEE_GEN_CAP_GP,
1189 	};
1190 	struct optee *optee = tee_get_drvdata(teedev);
1191 
1192 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1193 		v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1194 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1195 		v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1196 	*vers = v;
1197 }
1198 
1199 static int optee_smc_open(struct tee_context *ctx)
1200 {
1201 	struct optee *optee = tee_get_drvdata(ctx->teedev);
1202 	u32 sec_caps = optee->smc.sec_caps;
1203 
1204 	return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1205 }
1206 
1207 static const struct tee_driver_ops optee_clnt_ops = {
1208 	.get_version = optee_get_version,
1209 	.open = optee_smc_open,
1210 	.release = optee_release,
1211 	.open_session = optee_open_session,
1212 	.close_session = optee_close_session,
1213 	.invoke_func = optee_invoke_func,
1214 	.cancel_req = optee_cancel_req,
1215 	.shm_register = optee_shm_register,
1216 	.shm_unregister = optee_shm_unregister,
1217 };
1218 
1219 static const struct tee_desc optee_clnt_desc = {
1220 	.name = DRIVER_NAME "-clnt",
1221 	.ops = &optee_clnt_ops,
1222 	.owner = THIS_MODULE,
1223 };
1224 
1225 static const struct tee_driver_ops optee_supp_ops = {
1226 	.get_version = optee_get_version,
1227 	.open = optee_smc_open,
1228 	.release = optee_release_supp,
1229 	.supp_recv = optee_supp_recv,
1230 	.supp_send = optee_supp_send,
1231 	.shm_register = optee_shm_register_supp,
1232 	.shm_unregister = optee_shm_unregister_supp,
1233 };
1234 
1235 static const struct tee_desc optee_supp_desc = {
1236 	.name = DRIVER_NAME "-supp",
1237 	.ops = &optee_supp_ops,
1238 	.owner = THIS_MODULE,
1239 	.flags = TEE_DESC_PRIVILEGED,
1240 };
1241 
1242 static const struct optee_ops optee_ops = {
1243 	.do_call_with_arg = optee_smc_do_call_with_arg,
1244 	.to_msg_param = optee_to_msg_param,
1245 	.from_msg_param = optee_from_msg_param,
1246 };
1247 
1248 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1249 {
1250 	struct arm_smccc_res res;
1251 
1252 	invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1253 
1254 	if (res.a0)
1255 		return -EINVAL;
1256 	return 0;
1257 }
1258 
1259 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1260 {
1261 	struct arm_smccc_res res;
1262 
1263 	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1264 
1265 	if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1266 	    res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1267 		return true;
1268 	return false;
1269 }
1270 
1271 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1272 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn)
1273 {
1274 	struct arm_smccc_res res;
1275 
1276 	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1277 
1278 	if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 &&
1279 	    res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 &&
1280 	    res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 &&
1281 	    res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3)
1282 		return true;
1283 	return false;
1284 }
1285 #endif
1286 
1287 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1288 {
1289 	union {
1290 		struct arm_smccc_res smccc;
1291 		struct optee_smc_call_get_os_revision_result result;
1292 	} res = {
1293 		.result = {
1294 			.build_id = 0
1295 		}
1296 	};
1297 
1298 	invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1299 		  &res.smccc);
1300 
1301 	if (res.result.build_id)
1302 		pr_info("revision %lu.%lu (%08lx)", res.result.major,
1303 			res.result.minor, res.result.build_id);
1304 	else
1305 		pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1306 }
1307 
1308 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1309 {
1310 	union {
1311 		struct arm_smccc_res smccc;
1312 		struct optee_smc_calls_revision_result result;
1313 	} res;
1314 
1315 	invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1316 
1317 	if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1318 	    (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1319 		return true;
1320 	return false;
1321 }
1322 
1323 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1324 					    u32 *sec_caps, u32 *max_notif_value,
1325 					    unsigned int *rpc_param_count)
1326 {
1327 	union {
1328 		struct arm_smccc_res smccc;
1329 		struct optee_smc_exchange_capabilities_result result;
1330 	} res;
1331 	u32 a1 = 0;
1332 
1333 	/*
1334 	 * TODO This isn't enough to tell if it's UP system (from kernel
1335 	 * point of view) or not, is_smp() returns the information
1336 	 * needed, but can't be called directly from here.
1337 	 */
1338 	if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1339 		a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1340 
1341 	invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1342 		  &res.smccc);
1343 
1344 	if (res.result.status != OPTEE_SMC_RETURN_OK)
1345 		return false;
1346 
1347 	*sec_caps = res.result.capabilities;
1348 	if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1349 		*max_notif_value = res.result.max_notif_value;
1350 	else
1351 		*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1352 	if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1353 		*rpc_param_count = (u8)res.result.data;
1354 	else
1355 		*rpc_param_count = 0;
1356 
1357 	return true;
1358 }
1359 
1360 static struct tee_shm_pool *
1361 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1362 {
1363 	union {
1364 		struct arm_smccc_res smccc;
1365 		struct optee_smc_get_shm_config_result result;
1366 	} res;
1367 	unsigned long vaddr;
1368 	phys_addr_t paddr;
1369 	size_t size;
1370 	phys_addr_t begin;
1371 	phys_addr_t end;
1372 	void *va;
1373 	void *rc;
1374 
1375 	invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1376 	if (res.result.status != OPTEE_SMC_RETURN_OK) {
1377 		pr_err("static shm service not available\n");
1378 		return ERR_PTR(-ENOENT);
1379 	}
1380 
1381 	if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1382 		pr_err("only normal cached shared memory supported\n");
1383 		return ERR_PTR(-EINVAL);
1384 	}
1385 
1386 	begin = roundup(res.result.start, PAGE_SIZE);
1387 	end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1388 	paddr = begin;
1389 	size = end - begin;
1390 
1391 	va = memremap(paddr, size, MEMREMAP_WB);
1392 	if (!va) {
1393 		pr_err("shared memory ioremap failed\n");
1394 		return ERR_PTR(-EINVAL);
1395 	}
1396 	vaddr = (unsigned long)va;
1397 
1398 	rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1399 					OPTEE_MIN_STATIC_POOL_ALIGN);
1400 	if (IS_ERR(rc))
1401 		memunmap(va);
1402 	else
1403 		*memremaped_shm = va;
1404 
1405 	return rc;
1406 }
1407 
1408 /* Simple wrapper functions to be able to use a function pointer */
1409 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1410 			    unsigned long a2, unsigned long a3,
1411 			    unsigned long a4, unsigned long a5,
1412 			    unsigned long a6, unsigned long a7,
1413 			    struct arm_smccc_res *res)
1414 {
1415 	arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1416 }
1417 
1418 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1419 			    unsigned long a2, unsigned long a3,
1420 			    unsigned long a4, unsigned long a5,
1421 			    unsigned long a6, unsigned long a7,
1422 			    struct arm_smccc_res *res)
1423 {
1424 	arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1425 }
1426 
1427 static optee_invoke_fn *get_invoke_func(struct device *dev)
1428 {
1429 	const char *method;
1430 
1431 	pr_info("probing for conduit method.\n");
1432 
1433 	if (device_property_read_string(dev, "method", &method)) {
1434 		pr_warn("missing \"method\" property\n");
1435 		return ERR_PTR(-ENXIO);
1436 	}
1437 
1438 	if (!strcmp("hvc", method))
1439 		return optee_smccc_hvc;
1440 	else if (!strcmp("smc", method))
1441 		return optee_smccc_smc;
1442 
1443 	pr_warn("invalid \"method\" property: %s\n", method);
1444 	return ERR_PTR(-EINVAL);
1445 }
1446 
1447 /* optee_remove - Device Removal Routine
1448  * @pdev: platform device information struct
1449  *
1450  * optee_remove is called by platform subsystem to alert the driver
1451  * that it should release the device
1452  */
1453 static int optee_smc_remove(struct platform_device *pdev)
1454 {
1455 	struct optee *optee = platform_get_drvdata(pdev);
1456 
1457 	/*
1458 	 * Ask OP-TEE to free all cached shared memory objects to decrease
1459 	 * reference counters and also avoid wild pointers in secure world
1460 	 * into the old shared memory range.
1461 	 */
1462 	if (!optee->rpc_param_count)
1463 		optee_disable_shm_cache(optee);
1464 
1465 	optee_smc_notif_uninit_irq(optee);
1466 
1467 	optee_remove_common(optee);
1468 
1469 	if (optee->smc.memremaped_shm)
1470 		memunmap(optee->smc.memremaped_shm);
1471 
1472 	kfree(optee);
1473 
1474 	return 0;
1475 }
1476 
1477 /* optee_shutdown - Device Removal Routine
1478  * @pdev: platform device information struct
1479  *
1480  * platform_shutdown is called by the platform subsystem to alert
1481  * the driver that a shutdown, reboot, or kexec is happening and
1482  * device must be disabled.
1483  */
1484 static void optee_shutdown(struct platform_device *pdev)
1485 {
1486 	struct optee *optee = platform_get_drvdata(pdev);
1487 
1488 	if (!optee->rpc_param_count)
1489 		optee_disable_shm_cache(optee);
1490 }
1491 
1492 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1493 
1494 #define OPTEE_FW_IMAGE "optee/tee.bin"
1495 
1496 static optee_invoke_fn *cpuhp_invoke_fn;
1497 
1498 static int optee_cpuhp_probe(unsigned int cpu)
1499 {
1500 	/*
1501 	 * Invoking a call on a CPU will cause OP-TEE to perform the required
1502 	 * setup for that CPU. Just invoke the call to get the UID since that
1503 	 * has no side effects.
1504 	 */
1505 	if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn))
1506 		return 0;
1507 	else
1508 		return -EINVAL;
1509 }
1510 
1511 static int optee_load_fw(struct platform_device *pdev,
1512 			 optee_invoke_fn *invoke_fn)
1513 {
1514 	const struct firmware *fw = NULL;
1515 	struct arm_smccc_res res;
1516 	phys_addr_t data_pa;
1517 	u8 *data_buf = NULL;
1518 	u64 data_size;
1519 	u32 data_pa_high, data_pa_low;
1520 	u32 data_size_high, data_size_low;
1521 	int rc;
1522 	int hp_state;
1523 
1524 	if (!optee_msg_api_uid_is_optee_image_load(invoke_fn))
1525 		return 0;
1526 
1527 	rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev);
1528 	if (rc) {
1529 		/*
1530 		 * The firmware in the rootfs will not be accessible until we
1531 		 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until
1532 		 * that point.
1533 		 */
1534 		if (system_state < SYSTEM_RUNNING)
1535 			return -EPROBE_DEFER;
1536 		goto fw_err;
1537 	}
1538 
1539 	data_size = fw->size;
1540 	/*
1541 	 * This uses the GFP_DMA flag to ensure we are allocated memory in the
1542 	 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary.
1543 	 */
1544 	data_buf = kmalloc(fw->size, GFP_KERNEL | GFP_DMA);
1545 	if (!data_buf) {
1546 		rc = -ENOMEM;
1547 		goto fw_err;
1548 	}
1549 	memcpy(data_buf, fw->data, fw->size);
1550 	data_pa = virt_to_phys(data_buf);
1551 	reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa);
1552 	reg_pair_from_64(&data_size_high, &data_size_low, data_size);
1553 	goto fw_load;
1554 
1555 fw_err:
1556 	pr_warn("image loading failed\n");
1557 	data_pa_high = 0;
1558 	data_pa_low = 0;
1559 	data_size_high = 0;
1560 	data_size_low = 0;
1561 
1562 fw_load:
1563 	/*
1564 	 * Always invoke the SMC, even if loading the image fails, to indicate
1565 	 * to EL3 that we have passed the point where it should allow invoking
1566 	 * this SMC.
1567 	 */
1568 	pr_warn("OP-TEE image loaded from kernel, this can be insecure");
1569 	invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low,
1570 		  data_pa_high, data_pa_low, 0, 0, 0, &res);
1571 	if (!rc)
1572 		rc = res.a0;
1573 	if (fw)
1574 		release_firmware(fw);
1575 	kfree(data_buf);
1576 
1577 	if (!rc) {
1578 		/*
1579 		 * We need to initialize OP-TEE on all other running cores as
1580 		 * well. Any cores that aren't running yet will get initialized
1581 		 * when they are brought up by the power management functions in
1582 		 * TF-A which are registered by the OP-TEE SPD. Due to that we
1583 		 * can un-register the callback right after registering it.
1584 		 */
1585 		cpuhp_invoke_fn = invoke_fn;
1586 		hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe",
1587 					     optee_cpuhp_probe, NULL);
1588 		if (hp_state < 0) {
1589 			pr_warn("Failed with CPU hotplug setup for OP-TEE");
1590 			return -EINVAL;
1591 		}
1592 		cpuhp_remove_state(hp_state);
1593 		cpuhp_invoke_fn = NULL;
1594 	}
1595 
1596 	return rc;
1597 }
1598 #else
1599 static inline int optee_load_fw(struct platform_device *pdev,
1600 				optee_invoke_fn *invoke_fn)
1601 {
1602 	return 0;
1603 }
1604 #endif
1605 
1606 static int optee_probe(struct platform_device *pdev)
1607 {
1608 	optee_invoke_fn *invoke_fn;
1609 	struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1610 	struct optee *optee = NULL;
1611 	void *memremaped_shm = NULL;
1612 	unsigned int rpc_param_count;
1613 	struct tee_device *teedev;
1614 	struct tee_context *ctx;
1615 	u32 max_notif_value;
1616 	u32 arg_cache_flags;
1617 	u32 sec_caps;
1618 	int rc;
1619 
1620 	invoke_fn = get_invoke_func(&pdev->dev);
1621 	if (IS_ERR(invoke_fn))
1622 		return PTR_ERR(invoke_fn);
1623 
1624 	rc = optee_load_fw(pdev, invoke_fn);
1625 	if (rc)
1626 		return rc;
1627 
1628 	if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1629 		pr_warn("api uid mismatch\n");
1630 		return -EINVAL;
1631 	}
1632 
1633 	optee_msg_get_os_revision(invoke_fn);
1634 
1635 	if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1636 		pr_warn("api revision mismatch\n");
1637 		return -EINVAL;
1638 	}
1639 
1640 	if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1641 					     &max_notif_value,
1642 					     &rpc_param_count)) {
1643 		pr_warn("capabilities mismatch\n");
1644 		return -EINVAL;
1645 	}
1646 
1647 	/*
1648 	 * Try to use dynamic shared memory if possible
1649 	 */
1650 	if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1651 		/*
1652 		 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1653 		 * optee_get_msg_arg() to pre-register (by having
1654 		 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1655 		 * an argument struct.
1656 		 *
1657 		 * With the page is pre-registered we can use a non-zero
1658 		 * offset for argument struct, this is indicated with
1659 		 * OPTEE_SHM_ARG_SHARED.
1660 		 *
1661 		 * This means that optee_smc_do_call_with_arg() will use
1662 		 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1663 		 */
1664 		if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1665 			arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1666 		else
1667 			arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1668 
1669 		pool = optee_shm_pool_alloc_pages();
1670 	}
1671 
1672 	/*
1673 	 * If dynamic shared memory is not available or failed - try static one
1674 	 */
1675 	if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1676 		/*
1677 		 * The static memory pool can use non-zero page offsets so
1678 		 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1679 		 *
1680 		 * optee_get_msg_arg() should not pre-register the
1681 		 * allocated page used to pass an argument struct, this is
1682 		 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1683 		 *
1684 		 * This means that optee_smc_do_call_with_arg() will use
1685 		 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1686 		 * OPTEE_SMC_CALL_WITH_RPC_ARG.
1687 		 */
1688 		arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1689 				  OPTEE_SHM_ARG_ALLOC_PRIV;
1690 		pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1691 	}
1692 
1693 	if (IS_ERR(pool))
1694 		return PTR_ERR(pool);
1695 
1696 	optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1697 	if (!optee) {
1698 		rc = -ENOMEM;
1699 		goto err_free_pool;
1700 	}
1701 
1702 	optee->ops = &optee_ops;
1703 	optee->smc.invoke_fn = invoke_fn;
1704 	optee->smc.sec_caps = sec_caps;
1705 	optee->rpc_param_count = rpc_param_count;
1706 
1707 	teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1708 	if (IS_ERR(teedev)) {
1709 		rc = PTR_ERR(teedev);
1710 		goto err_free_optee;
1711 	}
1712 	optee->teedev = teedev;
1713 
1714 	teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1715 	if (IS_ERR(teedev)) {
1716 		rc = PTR_ERR(teedev);
1717 		goto err_unreg_teedev;
1718 	}
1719 	optee->supp_teedev = teedev;
1720 
1721 	rc = tee_device_register(optee->teedev);
1722 	if (rc)
1723 		goto err_unreg_supp_teedev;
1724 
1725 	rc = tee_device_register(optee->supp_teedev);
1726 	if (rc)
1727 		goto err_unreg_supp_teedev;
1728 
1729 	mutex_init(&optee->call_queue.mutex);
1730 	INIT_LIST_HEAD(&optee->call_queue.waiters);
1731 	optee_supp_init(&optee->supp);
1732 	optee->smc.memremaped_shm = memremaped_shm;
1733 	optee->pool = pool;
1734 	optee_shm_arg_cache_init(optee, arg_cache_flags);
1735 
1736 	platform_set_drvdata(pdev, optee);
1737 	ctx = teedev_open(optee->teedev);
1738 	if (IS_ERR(ctx)) {
1739 		rc = PTR_ERR(ctx);
1740 		goto err_supp_uninit;
1741 	}
1742 	optee->ctx = ctx;
1743 	rc = optee_notif_init(optee, max_notif_value);
1744 	if (rc)
1745 		goto err_close_ctx;
1746 
1747 	if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1748 		unsigned int irq;
1749 
1750 		rc = platform_get_irq(pdev, 0);
1751 		if (rc < 0) {
1752 			pr_err("platform_get_irq: ret %d\n", rc);
1753 			goto err_notif_uninit;
1754 		}
1755 		irq = rc;
1756 
1757 		rc = optee_smc_notif_init_irq(optee, irq);
1758 		if (rc) {
1759 			irq_dispose_mapping(irq);
1760 			goto err_notif_uninit;
1761 		}
1762 		enable_async_notif(optee->smc.invoke_fn);
1763 		pr_info("Asynchronous notifications enabled\n");
1764 	}
1765 
1766 	/*
1767 	 * Ensure that there are no pre-existing shm objects before enabling
1768 	 * the shm cache so that there's no chance of receiving an invalid
1769 	 * address during shutdown. This could occur, for example, if we're
1770 	 * kexec booting from an older kernel that did not properly cleanup the
1771 	 * shm cache.
1772 	 */
1773 	optee_disable_unmapped_shm_cache(optee);
1774 
1775 	/*
1776 	 * Only enable the shm cache in case we're not able to pass the RPC
1777 	 * arg struct right after the normal arg struct.
1778 	 */
1779 	if (!optee->rpc_param_count)
1780 		optee_enable_shm_cache(optee);
1781 
1782 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1783 		pr_info("dynamic shared memory is enabled\n");
1784 
1785 	rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1786 	if (rc)
1787 		goto err_disable_shm_cache;
1788 
1789 	pr_info("initialized driver\n");
1790 	return 0;
1791 
1792 err_disable_shm_cache:
1793 	if (!optee->rpc_param_count)
1794 		optee_disable_shm_cache(optee);
1795 	optee_smc_notif_uninit_irq(optee);
1796 	optee_unregister_devices();
1797 err_notif_uninit:
1798 	optee_notif_uninit(optee);
1799 err_close_ctx:
1800 	teedev_close_context(ctx);
1801 err_supp_uninit:
1802 	optee_shm_arg_cache_uninit(optee);
1803 	optee_supp_uninit(&optee->supp);
1804 	mutex_destroy(&optee->call_queue.mutex);
1805 err_unreg_supp_teedev:
1806 	tee_device_unregister(optee->supp_teedev);
1807 err_unreg_teedev:
1808 	tee_device_unregister(optee->teedev);
1809 err_free_optee:
1810 	kfree(optee);
1811 err_free_pool:
1812 	tee_shm_pool_free(pool);
1813 	if (memremaped_shm)
1814 		memunmap(memremaped_shm);
1815 	return rc;
1816 }
1817 
1818 static const struct of_device_id optee_dt_match[] = {
1819 	{ .compatible = "linaro,optee-tz" },
1820 	{},
1821 };
1822 MODULE_DEVICE_TABLE(of, optee_dt_match);
1823 
1824 static struct platform_driver optee_driver = {
1825 	.probe  = optee_probe,
1826 	.remove = optee_smc_remove,
1827 	.shutdown = optee_shutdown,
1828 	.driver = {
1829 		.name = "optee",
1830 		.of_match_table = optee_dt_match,
1831 	},
1832 };
1833 
1834 int optee_smc_abi_register(void)
1835 {
1836 	return platform_driver_register(&optee_driver);
1837 }
1838 
1839 void optee_smc_abi_unregister(void)
1840 {
1841 	platform_driver_unregister(&optee_driver);
1842 }
1843